Properties

Label 294.4.e.d
Level $294$
Weight $4$
Character orbit 294.e
Analytic conductor $17.347$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(17.3465615417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -2 \zeta_{6} q^{2} + ( 3 - 3 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + 2 \zeta_{6} q^{5} -6 q^{6} + 8 q^{8} -9 \zeta_{6} q^{9} +O(q^{10})\) \( q -2 \zeta_{6} q^{2} + ( 3 - 3 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + 2 \zeta_{6} q^{5} -6 q^{6} + 8 q^{8} -9 \zeta_{6} q^{9} + ( 4 - 4 \zeta_{6} ) q^{10} + ( 8 - 8 \zeta_{6} ) q^{11} + 12 \zeta_{6} q^{12} + 42 q^{13} + 6 q^{15} -16 \zeta_{6} q^{16} + ( -2 + 2 \zeta_{6} ) q^{17} + ( -18 + 18 \zeta_{6} ) q^{18} -124 \zeta_{6} q^{19} -8 q^{20} -16 q^{22} -76 \zeta_{6} q^{23} + ( 24 - 24 \zeta_{6} ) q^{24} + ( 121 - 121 \zeta_{6} ) q^{25} -84 \zeta_{6} q^{26} -27 q^{27} + 254 q^{29} -12 \zeta_{6} q^{30} + ( -72 + 72 \zeta_{6} ) q^{31} + ( -32 + 32 \zeta_{6} ) q^{32} -24 \zeta_{6} q^{33} + 4 q^{34} + 36 q^{36} -398 \zeta_{6} q^{37} + ( -248 + 248 \zeta_{6} ) q^{38} + ( 126 - 126 \zeta_{6} ) q^{39} + 16 \zeta_{6} q^{40} -462 q^{41} + 212 q^{43} + 32 \zeta_{6} q^{44} + ( 18 - 18 \zeta_{6} ) q^{45} + ( -152 + 152 \zeta_{6} ) q^{46} -264 \zeta_{6} q^{47} -48 q^{48} -242 q^{50} + 6 \zeta_{6} q^{51} + ( -168 + 168 \zeta_{6} ) q^{52} + ( 162 - 162 \zeta_{6} ) q^{53} + 54 \zeta_{6} q^{54} + 16 q^{55} -372 q^{57} -508 \zeta_{6} q^{58} + ( -772 + 772 \zeta_{6} ) q^{59} + ( -24 + 24 \zeta_{6} ) q^{60} + 30 \zeta_{6} q^{61} + 144 q^{62} + 64 q^{64} + 84 \zeta_{6} q^{65} + ( -48 + 48 \zeta_{6} ) q^{66} + ( 764 - 764 \zeta_{6} ) q^{67} -8 \zeta_{6} q^{68} -228 q^{69} -236 q^{71} -72 \zeta_{6} q^{72} + ( 418 - 418 \zeta_{6} ) q^{73} + ( -796 + 796 \zeta_{6} ) q^{74} -363 \zeta_{6} q^{75} + 496 q^{76} -252 q^{78} -552 \zeta_{6} q^{79} + ( 32 - 32 \zeta_{6} ) q^{80} + ( -81 + 81 \zeta_{6} ) q^{81} + 924 \zeta_{6} q^{82} -1036 q^{83} -4 q^{85} -424 \zeta_{6} q^{86} + ( 762 - 762 \zeta_{6} ) q^{87} + ( 64 - 64 \zeta_{6} ) q^{88} + 30 \zeta_{6} q^{89} -36 q^{90} + 304 q^{92} + 216 \zeta_{6} q^{93} + ( -528 + 528 \zeta_{6} ) q^{94} + ( 248 - 248 \zeta_{6} ) q^{95} + 96 \zeta_{6} q^{96} + 1190 q^{97} -72 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} + 3q^{3} - 4q^{4} + 2q^{5} - 12q^{6} + 16q^{8} - 9q^{9} + O(q^{10}) \) \( 2q - 2q^{2} + 3q^{3} - 4q^{4} + 2q^{5} - 12q^{6} + 16q^{8} - 9q^{9} + 4q^{10} + 8q^{11} + 12q^{12} + 84q^{13} + 12q^{15} - 16q^{16} - 2q^{17} - 18q^{18} - 124q^{19} - 16q^{20} - 32q^{22} - 76q^{23} + 24q^{24} + 121q^{25} - 84q^{26} - 54q^{27} + 508q^{29} - 12q^{30} - 72q^{31} - 32q^{32} - 24q^{33} + 8q^{34} + 72q^{36} - 398q^{37} - 248q^{38} + 126q^{39} + 16q^{40} - 924q^{41} + 424q^{43} + 32q^{44} + 18q^{45} - 152q^{46} - 264q^{47} - 96q^{48} - 484q^{50} + 6q^{51} - 168q^{52} + 162q^{53} + 54q^{54} + 32q^{55} - 744q^{57} - 508q^{58} - 772q^{59} - 24q^{60} + 30q^{61} + 288q^{62} + 128q^{64} + 84q^{65} - 48q^{66} + 764q^{67} - 8q^{68} - 456q^{69} - 472q^{71} - 72q^{72} + 418q^{73} - 796q^{74} - 363q^{75} + 992q^{76} - 504q^{78} - 552q^{79} + 32q^{80} - 81q^{81} + 924q^{82} - 2072q^{83} - 8q^{85} - 424q^{86} + 762q^{87} + 64q^{88} + 30q^{89} - 72q^{90} + 608q^{92} + 216q^{93} - 528q^{94} + 248q^{95} + 96q^{96} + 2380q^{97} - 144q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i 1.00000 + 1.73205i −6.00000 0 8.00000 −4.50000 7.79423i 2.00000 3.46410i
79.1 −1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i 1.00000 1.73205i −6.00000 0 8.00000 −4.50000 + 7.79423i 2.00000 + 3.46410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.4.e.d 2
3.b odd 2 1 882.4.g.r 2
7.b odd 2 1 294.4.e.a 2
7.c even 3 1 294.4.a.h 1
7.c even 3 1 inner 294.4.e.d 2
7.d odd 6 1 42.4.a.b 1
7.d odd 6 1 294.4.e.a 2
21.c even 2 1 882.4.g.s 2
21.g even 6 1 126.4.a.c 1
21.g even 6 1 882.4.g.s 2
21.h odd 6 1 882.4.a.d 1
21.h odd 6 1 882.4.g.r 2
28.f even 6 1 336.4.a.d 1
28.g odd 6 1 2352.4.a.ba 1
35.i odd 6 1 1050.4.a.d 1
35.k even 12 2 1050.4.g.n 2
56.j odd 6 1 1344.4.a.f 1
56.m even 6 1 1344.4.a.t 1
84.j odd 6 1 1008.4.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.a.b 1 7.d odd 6 1
126.4.a.c 1 21.g even 6 1
294.4.a.h 1 7.c even 3 1
294.4.e.a 2 7.b odd 2 1
294.4.e.a 2 7.d odd 6 1
294.4.e.d 2 1.a even 1 1 trivial
294.4.e.d 2 7.c even 3 1 inner
336.4.a.d 1 28.f even 6 1
882.4.a.d 1 21.h odd 6 1
882.4.g.r 2 3.b odd 2 1
882.4.g.r 2 21.h odd 6 1
882.4.g.s 2 21.c even 2 1
882.4.g.s 2 21.g even 6 1
1008.4.a.j 1 84.j odd 6 1
1050.4.a.d 1 35.i odd 6 1
1050.4.g.n 2 35.k even 12 2
1344.4.a.f 1 56.j odd 6 1
1344.4.a.t 1 56.m even 6 1
2352.4.a.ba 1 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(294, [\chi])\):

\( T_{5}^{2} - 2 T_{5} + 4 \)
\( T_{11}^{2} - 8 T_{11} + 64 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 + 2 T + T^{2} \)
$3$ \( 9 - 3 T + T^{2} \)
$5$ \( 4 - 2 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 64 - 8 T + T^{2} \)
$13$ \( ( -42 + T )^{2} \)
$17$ \( 4 + 2 T + T^{2} \)
$19$ \( 15376 + 124 T + T^{2} \)
$23$ \( 5776 + 76 T + T^{2} \)
$29$ \( ( -254 + T )^{2} \)
$31$ \( 5184 + 72 T + T^{2} \)
$37$ \( 158404 + 398 T + T^{2} \)
$41$ \( ( 462 + T )^{2} \)
$43$ \( ( -212 + T )^{2} \)
$47$ \( 69696 + 264 T + T^{2} \)
$53$ \( 26244 - 162 T + T^{2} \)
$59$ \( 595984 + 772 T + T^{2} \)
$61$ \( 900 - 30 T + T^{2} \)
$67$ \( 583696 - 764 T + T^{2} \)
$71$ \( ( 236 + T )^{2} \)
$73$ \( 174724 - 418 T + T^{2} \)
$79$ \( 304704 + 552 T + T^{2} \)
$83$ \( ( 1036 + T )^{2} \)
$89$ \( 900 - 30 T + T^{2} \)
$97$ \( ( -1190 + T )^{2} \)
show more
show less