Properties

Label 294.4.a.h
Level $294$
Weight $4$
Character orbit 294.a
Self dual yes
Analytic conductor $17.347$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(17.3465615417\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{2} - 3q^{3} + 4q^{4} - 2q^{5} - 6q^{6} + 8q^{8} + 9q^{9} + O(q^{10}) \) \( q + 2q^{2} - 3q^{3} + 4q^{4} - 2q^{5} - 6q^{6} + 8q^{8} + 9q^{9} - 4q^{10} - 8q^{11} - 12q^{12} + 42q^{13} + 6q^{15} + 16q^{16} + 2q^{17} + 18q^{18} + 124q^{19} - 8q^{20} - 16q^{22} + 76q^{23} - 24q^{24} - 121q^{25} + 84q^{26} - 27q^{27} + 254q^{29} + 12q^{30} + 72q^{31} + 32q^{32} + 24q^{33} + 4q^{34} + 36q^{36} + 398q^{37} + 248q^{38} - 126q^{39} - 16q^{40} - 462q^{41} + 212q^{43} - 32q^{44} - 18q^{45} + 152q^{46} + 264q^{47} - 48q^{48} - 242q^{50} - 6q^{51} + 168q^{52} - 162q^{53} - 54q^{54} + 16q^{55} - 372q^{57} + 508q^{58} + 772q^{59} + 24q^{60} - 30q^{61} + 144q^{62} + 64q^{64} - 84q^{65} + 48q^{66} - 764q^{67} + 8q^{68} - 228q^{69} - 236q^{71} + 72q^{72} - 418q^{73} + 796q^{74} + 363q^{75} + 496q^{76} - 252q^{78} + 552q^{79} - 32q^{80} + 81q^{81} - 924q^{82} - 1036q^{83} - 4q^{85} + 424q^{86} - 762q^{87} - 64q^{88} - 30q^{89} - 36q^{90} + 304q^{92} - 216q^{93} + 528q^{94} - 248q^{95} - 96q^{96} + 1190q^{97} - 72q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −3.00000 4.00000 −2.00000 −6.00000 0 8.00000 9.00000 −4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.4.a.h 1
3.b odd 2 1 882.4.a.d 1
4.b odd 2 1 2352.4.a.ba 1
7.b odd 2 1 42.4.a.b 1
7.c even 3 2 294.4.e.d 2
7.d odd 6 2 294.4.e.a 2
21.c even 2 1 126.4.a.c 1
21.g even 6 2 882.4.g.s 2
21.h odd 6 2 882.4.g.r 2
28.d even 2 1 336.4.a.d 1
35.c odd 2 1 1050.4.a.d 1
35.f even 4 2 1050.4.g.n 2
56.e even 2 1 1344.4.a.t 1
56.h odd 2 1 1344.4.a.f 1
84.h odd 2 1 1008.4.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.4.a.b 1 7.b odd 2 1
126.4.a.c 1 21.c even 2 1
294.4.a.h 1 1.a even 1 1 trivial
294.4.e.a 2 7.d odd 6 2
294.4.e.d 2 7.c even 3 2
336.4.a.d 1 28.d even 2 1
882.4.a.d 1 3.b odd 2 1
882.4.g.r 2 21.h odd 6 2
882.4.g.s 2 21.g even 6 2
1008.4.a.j 1 84.h odd 2 1
1050.4.a.d 1 35.c odd 2 1
1050.4.g.n 2 35.f even 4 2
1344.4.a.f 1 56.h odd 2 1
1344.4.a.t 1 56.e even 2 1
2352.4.a.ba 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(294))\):

\( T_{5} + 2 \)
\( T_{11} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( 3 + T \)
$5$ \( 2 + T \)
$7$ \( T \)
$11$ \( 8 + T \)
$13$ \( -42 + T \)
$17$ \( -2 + T \)
$19$ \( -124 + T \)
$23$ \( -76 + T \)
$29$ \( -254 + T \)
$31$ \( -72 + T \)
$37$ \( -398 + T \)
$41$ \( 462 + T \)
$43$ \( -212 + T \)
$47$ \( -264 + T \)
$53$ \( 162 + T \)
$59$ \( -772 + T \)
$61$ \( 30 + T \)
$67$ \( 764 + T \)
$71$ \( 236 + T \)
$73$ \( 418 + T \)
$79$ \( -552 + T \)
$83$ \( 1036 + T \)
$89$ \( 30 + T \)
$97$ \( -1190 + T \)
show more
show less