Properties

Label 294.3.h.c
Level $294$
Weight $3$
Character orbit 294.h
Analytic conductor $8.011$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 294.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.01091977219\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - 2 \beta_{3} + \beta_{2} + 2 \beta_1) q^{3} + 2 \beta_{2} q^{4} + \beta_1 q^{5} + (\beta_{3} + 4) q^{6} + 2 \beta_{3} q^{8} + ( - 7 \beta_{2} + 4 \beta_1 + 7) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + ( - 2 \beta_{3} + \beta_{2} + 2 \beta_1) q^{3} + 2 \beta_{2} q^{4} + \beta_1 q^{5} + (\beta_{3} + 4) q^{6} + 2 \beta_{3} q^{8} + ( - 7 \beta_{2} + 4 \beta_1 + 7) q^{9} + 2 \beta_{2} q^{10} + (7 \beta_{3} - 7 \beta_1) q^{11} + (2 \beta_{2} + 4 \beta_1 - 2) q^{12} + 20 q^{13} + (\beta_{3} + 4) q^{15} + (4 \beta_{2} - 4) q^{16} + ( - 15 \beta_{3} + 15 \beta_1) q^{17} + ( - 7 \beta_{3} + 8 \beta_{2} + 7 \beta_1) q^{18} + (32 \beta_{2} - 32) q^{19} + 2 \beta_{3} q^{20} - 14 q^{22} - 15 \beta_1 q^{23} + (2 \beta_{3} + 8 \beta_{2} - 2 \beta_1) q^{24} - 23 \beta_{2} q^{25} + 20 \beta_1 q^{26} + ( - 10 \beta_{3} + 23) q^{27} - 16 \beta_{3} q^{29} + (2 \beta_{2} + 4 \beta_1 - 2) q^{30} + 14 \beta_{2} q^{31} + (4 \beta_{3} - 4 \beta_1) q^{32} + (28 \beta_{2} - 7 \beta_1 - 28) q^{33} + 30 q^{34} + (8 \beta_{3} + 14) q^{36} + (48 \beta_{2} - 48) q^{37} + (32 \beta_{3} - 32 \beta_1) q^{38} + ( - 40 \beta_{3} + 20 \beta_{2} + 40 \beta_1) q^{39} + (4 \beta_{2} - 4) q^{40} - 39 \beta_{3} q^{41} + 4 q^{43} - 14 \beta_1 q^{44} + ( - 7 \beta_{3} + 8 \beta_{2} + 7 \beta_1) q^{45} - 30 \beta_{2} q^{46} - 44 \beta_1 q^{47} + (8 \beta_{3} - 4) q^{48} - 23 \beta_{3} q^{50} + ( - 60 \beta_{2} + 15 \beta_1 + 60) q^{51} + 40 \beta_{2} q^{52} + (52 \beta_{3} - 52 \beta_1) q^{53} + ( - 20 \beta_{2} + 23 \beta_1 + 20) q^{54} - 14 q^{55} + (64 \beta_{3} - 32) q^{57} + ( - 32 \beta_{2} + 32) q^{58} + ( - 8 \beta_{3} + 8 \beta_1) q^{59} + (2 \beta_{3} + 8 \beta_{2} - 2 \beta_1) q^{60} + ( - 20 \beta_{2} + 20) q^{61} + 14 \beta_{3} q^{62} - 8 q^{64} + 20 \beta_1 q^{65} + (28 \beta_{3} - 14 \beta_{2} - 28 \beta_1) q^{66} + 68 \beta_{2} q^{67} + 30 \beta_1 q^{68} + ( - 15 \beta_{3} - 60) q^{69} - 49 \beta_{3} q^{71} + (16 \beta_{2} + 14 \beta_1 - 16) q^{72} - 64 \beta_{2} q^{73} + (48 \beta_{3} - 48 \beta_1) q^{74} + ( - 23 \beta_{2} - 46 \beta_1 + 23) q^{75} - 64 q^{76} + (20 \beta_{3} + 80) q^{78} + (16 \beta_{2} - 16) q^{79} + (4 \beta_{3} - 4 \beta_1) q^{80} + ( - 56 \beta_{3} - 17 \beta_{2} + 56 \beta_1) q^{81} + ( - 78 \beta_{2} + 78) q^{82} + 72 \beta_{3} q^{83} + 30 q^{85} + 4 \beta_1 q^{86} + ( - 16 \beta_{3} - 64 \beta_{2} + 16 \beta_1) q^{87} - 28 \beta_{2} q^{88} - 7 \beta_1 q^{89} + (8 \beta_{3} + 14) q^{90} - 30 \beta_{3} q^{92} + (14 \beta_{2} + 28 \beta_1 - 14) q^{93} - 88 \beta_{2} q^{94} + (32 \beta_{3} - 32 \beta_1) q^{95} + (16 \beta_{2} - 4 \beta_1 - 16) q^{96} - 152 q^{97} + (49 \beta_{3} - 56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 4 q^{4} + 16 q^{6} + 14 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{3} + 4 q^{4} + 16 q^{6} + 14 q^{9} + 4 q^{10} - 4 q^{12} + 80 q^{13} + 16 q^{15} - 8 q^{16} + 16 q^{18} - 64 q^{19} - 56 q^{22} + 16 q^{24} - 46 q^{25} + 92 q^{27} - 4 q^{30} + 28 q^{31} - 56 q^{33} + 120 q^{34} + 56 q^{36} - 96 q^{37} + 40 q^{39} - 8 q^{40} + 16 q^{43} + 16 q^{45} - 60 q^{46} - 16 q^{48} + 120 q^{51} + 80 q^{52} + 40 q^{54} - 56 q^{55} - 128 q^{57} + 64 q^{58} + 16 q^{60} + 40 q^{61} - 32 q^{64} - 28 q^{66} + 136 q^{67} - 240 q^{69} - 32 q^{72} - 128 q^{73} + 46 q^{75} - 256 q^{76} + 320 q^{78} - 32 q^{79} - 34 q^{81} + 156 q^{82} + 120 q^{85} - 128 q^{87} - 56 q^{88} + 56 q^{90} - 28 q^{93} - 176 q^{94} - 32 q^{96} - 608 q^{97} - 224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(-1\) \(-1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
263.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 + 0.707107i −1.94949 2.28024i 1.00000 1.73205i −1.22474 + 0.707107i 4.00000 + 1.41421i 0 2.82843i −1.39898 + 8.89060i 1.00000 1.73205i
263.2 1.22474 0.707107i 2.94949 + 0.548188i 1.00000 1.73205i 1.22474 0.707107i 4.00000 1.41421i 0 2.82843i 8.39898 + 3.23375i 1.00000 1.73205i
275.1 −1.22474 0.707107i −1.94949 + 2.28024i 1.00000 + 1.73205i −1.22474 0.707107i 4.00000 1.41421i 0 2.82843i −1.39898 8.89060i 1.00000 + 1.73205i
275.2 1.22474 + 0.707107i 2.94949 0.548188i 1.00000 + 1.73205i 1.22474 + 0.707107i 4.00000 + 1.41421i 0 2.82843i 8.39898 3.23375i 1.00000 + 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.3.h.c 4
3.b odd 2 1 inner 294.3.h.c 4
7.b odd 2 1 294.3.h.a 4
7.c even 3 1 294.3.b.a 2
7.c even 3 1 inner 294.3.h.c 4
7.d odd 6 1 294.3.b.d yes 2
7.d odd 6 1 294.3.h.a 4
21.c even 2 1 294.3.h.a 4
21.g even 6 1 294.3.b.d yes 2
21.g even 6 1 294.3.h.a 4
21.h odd 6 1 294.3.b.a 2
21.h odd 6 1 inner 294.3.h.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.3.b.a 2 7.c even 3 1
294.3.b.a 2 21.h odd 6 1
294.3.b.d yes 2 7.d odd 6 1
294.3.b.d yes 2 21.g even 6 1
294.3.h.a 4 7.b odd 2 1
294.3.h.a 4 7.d odd 6 1
294.3.h.a 4 21.c even 2 1
294.3.h.a 4 21.g even 6 1
294.3.h.c 4 1.a even 1 1 trivial
294.3.h.c 4 3.b odd 2 1 inner
294.3.h.c 4 7.c even 3 1 inner
294.3.h.c 4 21.h odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(294, [\chi])\):

\( T_{5}^{4} - 2T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{13} - 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} - 5 T^{2} - 18 T + 81 \) Copy content Toggle raw display
$5$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 98T^{2} + 9604 \) Copy content Toggle raw display
$13$ \( (T - 20)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 450 T^{2} + 202500 \) Copy content Toggle raw display
$19$ \( (T^{2} + 32 T + 1024)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 450 T^{2} + 202500 \) Copy content Toggle raw display
$29$ \( (T^{2} + 512)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 14 T + 196)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 48 T + 2304)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3042)^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} - 3872 T^{2} + \cdots + 14992384 \) Copy content Toggle raw display
$53$ \( T^{4} - 5408 T^{2} + \cdots + 29246464 \) Copy content Toggle raw display
$59$ \( T^{4} - 128 T^{2} + 16384 \) Copy content Toggle raw display
$61$ \( (T^{2} - 20 T + 400)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 68 T + 4624)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 4802)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 64 T + 4096)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 16 T + 256)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 10368)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 98T^{2} + 9604 \) Copy content Toggle raw display
$97$ \( (T + 152)^{4} \) Copy content Toggle raw display
show more
show less