Newspace parameters
Level: | \( N \) | \(=\) | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 294.f (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.34760181943\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 42) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).
\(n\) | \(197\) | \(199\) |
\(\chi(n)\) | \(-1\) | \(1 - \zeta_{12}^{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
215.1 |
|
−0.866025 | − | 0.500000i | −0.866025 | − | 1.50000i | 0.500000 | + | 0.866025i | −0.866025 | + | 1.50000i | 1.73205i | 0 | − | 1.00000i | −1.50000 | + | 2.59808i | 1.50000 | − | 0.866025i | |||||||||||||||||
215.2 | 0.866025 | + | 0.500000i | 0.866025 | + | 1.50000i | 0.500000 | + | 0.866025i | 0.866025 | − | 1.50000i | 1.73205i | 0 | 1.00000i | −1.50000 | + | 2.59808i | 1.50000 | − | 0.866025i | |||||||||||||||||||
227.1 | −0.866025 | + | 0.500000i | −0.866025 | + | 1.50000i | 0.500000 | − | 0.866025i | −0.866025 | − | 1.50000i | − | 1.73205i | 0 | 1.00000i | −1.50000 | − | 2.59808i | 1.50000 | + | 0.866025i | ||||||||||||||||||
227.2 | 0.866025 | − | 0.500000i | 0.866025 | − | 1.50000i | 0.500000 | − | 0.866025i | 0.866025 | + | 1.50000i | − | 1.73205i | 0 | − | 1.00000i | −1.50000 | − | 2.59808i | 1.50000 | + | 0.866025i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
21.g | even | 6 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 3T_{5}^{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(294, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - T^{2} + 1 \)
$3$
\( T^{4} + 3T^{2} + 9 \)
$5$
\( T^{4} + 3T^{2} + 9 \)
$7$
\( T^{4} \)
$11$
\( T^{4} - 9T^{2} + 81 \)
$13$
\( (T^{2} + 12)^{2} \)
$17$
\( T^{4} + 12T^{2} + 144 \)
$19$
\( (T^{2} + 6 T + 12)^{2} \)
$23$
\( T^{4} - 36T^{2} + 1296 \)
$29$
\( (T^{2} + 9)^{2} \)
$31$
\( (T^{2} - 3 T + 3)^{2} \)
$37$
\( (T^{2} - 2 T + 4)^{2} \)
$41$
\( (T^{2} - 48)^{2} \)
$43$
\( (T + 8)^{4} \)
$47$
\( T^{4} + 48T^{2} + 2304 \)
$53$
\( T^{4} - 81T^{2} + 6561 \)
$59$
\( T^{4} + 3T^{2} + 9 \)
$61$
\( T^{4} \)
$67$
\( (T^{2} + 2 T + 4)^{2} \)
$71$
\( (T^{2} + 144)^{2} \)
$73$
\( (T^{2} + 12 T + 48)^{2} \)
$79$
\( (T^{2} - T + 1)^{2} \)
$83$
\( (T^{2} - 75)^{2} \)
$89$
\( T^{4} + 108 T^{2} + 11664 \)
$97$
\( (T^{2} + 27)^{2} \)
show more
show less