Defining parameters
| Level: | \( N \) | \(=\) | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 294.f (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(112\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(294, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 144 | 28 | 116 |
| Cusp forms | 80 | 28 | 52 |
| Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(294, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 294.2.f.a | $4$ | $2.348$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{2}+(\zeta_{12}+\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
| 294.2.f.b | $8$ | $2.348$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta_{4}-\beta_1)q^{2}-\beta_{6} q^{3}+(-\beta_{2}+1)q^{4}+\cdots\) |
| 294.2.f.c | $16$ | $2.348$ | \(\Q(\zeta_{48})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{48}^{4}-\zeta_{48}^{12})q^{2}+(\zeta_{48}+\zeta_{48}^{3}+\cdots)q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(294, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(294, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)