Properties

Label 2925.2.c.g.2224.2
Level $2925$
Weight $2$
Character 2925.2224
Analytic conductor $23.356$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(23.3562425912\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 585)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2224.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2925.2224
Dual form 2925.2.c.g.2224.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000 q^{4} -2.00000i q^{7} +3.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} +1.00000 q^{4} -2.00000i q^{7} +3.00000i q^{8} -4.00000 q^{11} -1.00000i q^{13} +2.00000 q^{14} -1.00000 q^{16} +4.00000i q^{17} -6.00000 q^{19} -4.00000i q^{22} +1.00000 q^{26} -2.00000i q^{28} +4.00000 q^{29} -10.0000 q^{31} +5.00000i q^{32} -4.00000 q^{34} +2.00000i q^{37} -6.00000i q^{38} -6.00000 q^{41} -8.00000i q^{43} -4.00000 q^{44} +8.00000i q^{47} +3.00000 q^{49} -1.00000i q^{52} -4.00000i q^{53} +6.00000 q^{56} +4.00000i q^{58} -12.0000 q^{59} +2.00000 q^{61} -10.0000i q^{62} -7.00000 q^{64} +10.0000i q^{67} +4.00000i q^{68} -6.00000i q^{73} -2.00000 q^{74} -6.00000 q^{76} +8.00000i q^{77} -12.0000 q^{79} -6.00000i q^{82} -4.00000i q^{83} +8.00000 q^{86} -12.0000i q^{88} -14.0000 q^{89} -2.00000 q^{91} -8.00000 q^{94} +14.0000i q^{97} +3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{4} - 8 q^{11} + 4 q^{14} - 2 q^{16} - 12 q^{19} + 2 q^{26} + 8 q^{29} - 20 q^{31} - 8 q^{34} - 12 q^{41} - 8 q^{44} + 6 q^{49} + 12 q^{56} - 24 q^{59} + 4 q^{61} - 14 q^{64} - 4 q^{74} - 12 q^{76} - 24 q^{79} + 16 q^{86} - 28 q^{89} - 4 q^{91} - 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(2251\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.00000i − 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 0 0
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.00000i 0.970143i 0.874475 + 0.485071i \(0.161206\pi\)
−0.874475 + 0.485071i \(0.838794\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 4.00000i − 0.852803i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) − 2.00000i − 0.377964i
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) − 6.00000i − 0.973329i
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) − 1.00000i − 0.138675i
\(53\) − 4.00000i − 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) 0 0
\(58\) 4.00000i 0.525226i
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) − 10.0000i − 1.27000i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) 10.0000i 1.22169i 0.791748 + 0.610847i \(0.209171\pi\)
−0.791748 + 0.610847i \(0.790829\pi\)
\(68\) 4.00000i 0.485071i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) − 6.00000i − 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 8.00000i 0.911685i
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 6.00000i − 0.662589i
\(83\) − 4.00000i − 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) − 12.0000i − 1.27920i
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000i 1.42148i 0.703452 + 0.710742i \(0.251641\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 0 0
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) − 4.00000i − 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 3.00000 0.294174
\(105\) 0 0
\(106\) 4.00000 0.388514
\(107\) − 4.00000i − 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) 16.0000i 1.50515i 0.658505 + 0.752577i \(0.271189\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) − 12.0000i − 1.10469i
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 2.00000i 0.181071i
\(123\) 0 0
\(124\) −10.0000 −0.898027
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 0 0
\(130\) 0 0
\(131\) −16.0000 −1.39793 −0.698963 0.715158i \(-0.746355\pi\)
−0.698963 + 0.715158i \(0.746355\pi\)
\(132\) 0 0
\(133\) 12.0000i 1.04053i
\(134\) −10.0000 −0.863868
\(135\) 0 0
\(136\) −12.0000 −1.02899
\(137\) − 10.0000i − 0.854358i −0.904167 0.427179i \(-0.859507\pi\)
0.904167 0.427179i \(-0.140493\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 0 0
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) 2.00000i 0.164399i
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) − 18.0000i − 1.45999i
\(153\) 0 0
\(154\) −8.00000 −0.644658
\(155\) 0 0
\(156\) 0 0
\(157\) − 18.0000i − 1.43656i −0.695756 0.718278i \(-0.744931\pi\)
0.695756 0.718278i \(-0.255069\pi\)
\(158\) − 12.0000i − 0.954669i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.00000i 0.469956i 0.972001 + 0.234978i \(0.0755019\pi\)
−0.972001 + 0.234978i \(0.924498\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 24.0000i 1.85718i 0.371113 + 0.928588i \(0.378976\pi\)
−0.371113 + 0.928588i \(0.621024\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) − 8.00000i − 0.609994i
\(173\) 24.0000i 1.82469i 0.409426 + 0.912343i \(0.365729\pi\)
−0.409426 + 0.912343i \(0.634271\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) − 14.0000i − 1.04934i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) − 2.00000i − 0.148250i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 16.0000i − 1.17004i
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) − 26.0000i − 1.87152i −0.352636 0.935760i \(-0.614715\pi\)
0.352636 0.935760i \(-0.385285\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) − 18.0000i − 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 12.0000i 0.844317i
\(203\) − 8.00000i − 0.561490i
\(204\) 0 0
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) 1.00000i 0.0693375i
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) − 4.00000i − 0.274721i
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) 0 0
\(216\) 0 0
\(217\) 20.0000i 1.35769i
\(218\) 2.00000i 0.135457i
\(219\) 0 0
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) − 14.0000i − 0.937509i −0.883328 0.468755i \(-0.844703\pi\)
0.883328 0.468755i \(-0.155297\pi\)
\(224\) 10.0000 0.668153
\(225\) 0 0
\(226\) −16.0000 −1.06430
\(227\) 20.0000i 1.32745i 0.747978 + 0.663723i \(0.231025\pi\)
−0.747978 + 0.663723i \(0.768975\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 12.0000i 0.787839i
\(233\) − 8.00000i − 0.524097i −0.965055 0.262049i \(-0.915602\pi\)
0.965055 0.262049i \(-0.0843981\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 8.00000i 0.518563i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 5.00000i 0.321412i
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) 6.00000i 0.381771i
\(248\) − 30.0000i − 1.90500i
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) − 8.00000i − 0.499026i −0.968371 0.249513i \(-0.919729\pi\)
0.968371 0.249513i \(-0.0802706\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) − 16.0000i − 0.988483i
\(263\) − 4.00000i − 0.246651i −0.992366 0.123325i \(-0.960644\pi\)
0.992366 0.123325i \(-0.0393559\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −12.0000 −0.735767
\(267\) 0 0
\(268\) 10.0000i 0.610847i
\(269\) −12.0000 −0.731653 −0.365826 0.930683i \(-0.619214\pi\)
−0.365826 + 0.930683i \(0.619214\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) − 4.00000i − 0.242536i
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 0 0
\(276\) 0 0
\(277\) − 10.0000i − 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) − 12.0000i − 0.719712i
\(279\) 0 0
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) − 4.00000i − 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 12.0000i 0.708338i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) − 6.00000i − 0.351123i
\(293\) − 2.00000i − 0.116841i −0.998292 0.0584206i \(-0.981394\pi\)
0.998292 0.0584206i \(-0.0186065\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) 18.0000i 1.04271i
\(299\) 0 0
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) 10.0000i 0.575435i
\(303\) 0 0
\(304\) 6.00000 0.344124
\(305\) 0 0
\(306\) 0 0
\(307\) 22.0000i 1.25561i 0.778372 + 0.627803i \(0.216046\pi\)
−0.778372 + 0.627803i \(0.783954\pi\)
\(308\) 8.00000i 0.455842i
\(309\) 0 0
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 0 0
\(313\) 2.00000i 0.113047i 0.998401 + 0.0565233i \(0.0180015\pi\)
−0.998401 + 0.0565233i \(0.981998\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) − 18.0000i − 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) −16.0000 −0.895828
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 24.0000i − 1.33540i
\(324\) 0 0
\(325\) 0 0
\(326\) −6.00000 −0.332309
\(327\) 0 0
\(328\) − 18.0000i − 0.993884i
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 18.0000 0.989369 0.494685 0.869072i \(-0.335284\pi\)
0.494685 + 0.869072i \(0.335284\pi\)
\(332\) − 4.00000i − 0.219529i
\(333\) 0 0
\(334\) −24.0000 −1.31322
\(335\) 0 0
\(336\) 0 0
\(337\) − 14.0000i − 0.762629i −0.924445 0.381314i \(-0.875472\pi\)
0.924445 0.381314i \(-0.124528\pi\)
\(338\) − 1.00000i − 0.0543928i
\(339\) 0 0
\(340\) 0 0
\(341\) 40.0000 2.16612
\(342\) 0 0
\(343\) − 20.0000i − 1.07990i
\(344\) 24.0000 1.29399
\(345\) 0 0
\(346\) −24.0000 −1.29025
\(347\) − 32.0000i − 1.71785i −0.512101 0.858925i \(-0.671133\pi\)
0.512101 0.858925i \(-0.328867\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 20.0000i − 1.06600i
\(353\) − 6.00000i − 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −14.0000 −0.741999
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) − 10.0000i − 0.525588i
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000i 0.417597i 0.977959 + 0.208798i \(0.0669552\pi\)
−0.977959 + 0.208798i \(0.933045\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) 22.0000i 1.13912i 0.821951 + 0.569558i \(0.192886\pi\)
−0.821951 + 0.569558i \(0.807114\pi\)
\(374\) 16.0000 0.827340
\(375\) 0 0
\(376\) −24.0000 −1.23771
\(377\) − 4.00000i − 0.206010i
\(378\) 0 0
\(379\) 2.00000 0.102733 0.0513665 0.998680i \(-0.483642\pi\)
0.0513665 + 0.998680i \(0.483642\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 12.0000i − 0.613973i
\(383\) − 24.0000i − 1.22634i −0.789950 0.613171i \(-0.789894\pi\)
0.789950 0.613171i \(-0.210106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 26.0000 1.32337
\(387\) 0 0
\(388\) 14.0000i 0.710742i
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000i 0.454569i
\(393\) 0 0
\(394\) 18.0000 0.906827
\(395\) 0 0
\(396\) 0 0
\(397\) 18.0000i 0.903394i 0.892171 + 0.451697i \(0.149181\pi\)
−0.892171 + 0.451697i \(0.850819\pi\)
\(398\) − 8.00000i − 0.401004i
\(399\) 0 0
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) 10.0000i 0.498135i
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) 8.00000 0.397033
\(407\) − 8.00000i − 0.396545i
\(408\) 0 0
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 4.00000i − 0.197066i
\(413\) 24.0000i 1.18096i
\(414\) 0 0
\(415\) 0 0
\(416\) 5.00000 0.245145
\(417\) 0 0
\(418\) 24.0000i 1.17388i
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 12.0000 0.582772
\(425\) 0 0
\(426\) 0 0
\(427\) − 4.00000i − 0.193574i
\(428\) − 4.00000i − 0.193347i
\(429\) 0 0
\(430\) 0 0
\(431\) −40.0000 −1.92673 −0.963366 0.268190i \(-0.913575\pi\)
−0.963366 + 0.268190i \(0.913575\pi\)
\(432\) 0 0
\(433\) − 2.00000i − 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) −20.0000 −0.960031
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 0 0
\(438\) 0 0
\(439\) 36.0000 1.71819 0.859093 0.511819i \(-0.171028\pi\)
0.859093 + 0.511819i \(0.171028\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.00000i 0.190261i
\(443\) 20.0000i 0.950229i 0.879924 + 0.475114i \(0.157593\pi\)
−0.879924 + 0.475114i \(0.842407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 14.0000 0.662919
\(447\) 0 0
\(448\) 14.0000i 0.661438i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 16.0000i 0.752577i
\(453\) 0 0
\(454\) −20.0000 −0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000i 1.02912i 0.857455 + 0.514558i \(0.172044\pi\)
−0.857455 + 0.514558i \(0.827956\pi\)
\(458\) 10.0000i 0.467269i
\(459\) 0 0
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 18.0000i 0.836531i 0.908325 + 0.418265i \(0.137362\pi\)
−0.908325 + 0.418265i \(0.862638\pi\)
\(464\) −4.00000 −0.185695
\(465\) 0 0
\(466\) 8.00000 0.370593
\(467\) − 8.00000i − 0.370196i −0.982720 0.185098i \(-0.940740\pi\)
0.982720 0.185098i \(-0.0592602\pi\)
\(468\) 0 0
\(469\) 20.0000 0.923514
\(470\) 0 0
\(471\) 0 0
\(472\) − 36.0000i − 1.65703i
\(473\) 32.0000i 1.47136i
\(474\) 0 0
\(475\) 0 0
\(476\) 8.00000 0.366679
\(477\) 0 0
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) 22.0000i 0.996915i 0.866914 + 0.498458i \(0.166100\pi\)
−0.866914 + 0.498458i \(0.833900\pi\)
\(488\) 6.00000i 0.271607i
\(489\) 0 0
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 0 0
\(493\) 16.0000i 0.720604i
\(494\) −6.00000 −0.269953
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) 0 0
\(498\) 0 0
\(499\) 38.0000 1.70111 0.850557 0.525883i \(-0.176265\pi\)
0.850557 + 0.525883i \(0.176265\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 12.0000i 0.535586i
\(503\) 12.0000i 0.535054i 0.963550 + 0.267527i \(0.0862064\pi\)
−0.963550 + 0.267527i \(0.913794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 8.00000i 0.354943i
\(509\) −42.0000 −1.86162 −0.930809 0.365507i \(-0.880896\pi\)
−0.930809 + 0.365507i \(0.880896\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) − 11.0000i − 0.486136i
\(513\) 0 0
\(514\) 8.00000 0.352865
\(515\) 0 0
\(516\) 0 0
\(517\) − 32.0000i − 1.40736i
\(518\) 4.00000i 0.175750i
\(519\) 0 0
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) − 12.0000i − 0.524723i −0.964970 0.262362i \(-0.915499\pi\)
0.964970 0.262362i \(-0.0845013\pi\)
\(524\) −16.0000 −0.698963
\(525\) 0 0
\(526\) 4.00000 0.174408
\(527\) − 40.0000i − 1.74243i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 12.0000i 0.520266i
\(533\) 6.00000i 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) −30.0000 −1.29580
\(537\) 0 0
\(538\) − 12.0000i − 0.517357i
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 14.0000i 0.601351i
\(543\) 0 0
\(544\) −20.0000 −0.857493
\(545\) 0 0
\(546\) 0 0
\(547\) 36.0000i 1.53925i 0.638497 + 0.769624i \(0.279557\pi\)
−0.638497 + 0.769624i \(0.720443\pi\)
\(548\) − 10.0000i − 0.427179i
\(549\) 0 0
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 24.0000i 1.02058i
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) 26.0000i 1.10166i 0.834619 + 0.550828i \(0.185688\pi\)
−0.834619 + 0.550828i \(0.814312\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) − 30.0000i − 1.26547i
\(563\) − 4.00000i − 0.168580i −0.996441 0.0842900i \(-0.973138\pi\)
0.996441 0.0842900i \(-0.0268622\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) 0 0
\(569\) −28.0000 −1.17382 −0.586911 0.809652i \(-0.699656\pi\)
−0.586911 + 0.809652i \(0.699656\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 4.00000i 0.167248i
\(573\) 0 0
\(574\) −12.0000 −0.500870
\(575\) 0 0
\(576\) 0 0
\(577\) − 38.0000i − 1.58196i −0.611842 0.790980i \(-0.709571\pi\)
0.611842 0.790980i \(-0.290429\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 0 0
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) 0 0
\(583\) 16.0000i 0.662652i
\(584\) 18.0000 0.744845
\(585\) 0 0
\(586\) 2.00000 0.0826192
\(587\) 20.0000i 0.825488i 0.910847 + 0.412744i \(0.135430\pi\)
−0.910847 + 0.412744i \(0.864570\pi\)
\(588\) 0 0
\(589\) 60.0000 2.47226
\(590\) 0 0
\(591\) 0 0
\(592\) − 2.00000i − 0.0821995i
\(593\) 14.0000i 0.574911i 0.957794 + 0.287456i \(0.0928094\pi\)
−0.957794 + 0.287456i \(0.907191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) 0 0
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) − 16.0000i − 0.652111i
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) 8.00000i 0.324710i 0.986732 + 0.162355i \(0.0519090\pi\)
−0.986732 + 0.162355i \(0.948091\pi\)
\(608\) − 30.0000i − 1.21666i
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) −22.0000 −0.887848
\(615\) 0 0
\(616\) −24.0000 −0.966988
\(617\) − 18.0000i − 0.724653i −0.932051 0.362326i \(-0.881983\pi\)
0.932051 0.362326i \(-0.118017\pi\)
\(618\) 0 0
\(619\) −22.0000 −0.884255 −0.442127 0.896952i \(-0.645776\pi\)
−0.442127 + 0.896952i \(0.645776\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 4.00000i − 0.160385i
\(623\) 28.0000i 1.12180i
\(624\) 0 0
\(625\) 0 0
\(626\) −2.00000 −0.0799361
\(627\) 0 0
\(628\) − 18.0000i − 0.718278i
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) − 36.0000i − 1.43200i
\(633\) 0 0
\(634\) 18.0000 0.714871
\(635\) 0 0
\(636\) 0 0
\(637\) − 3.00000i − 0.118864i
\(638\) − 16.0000i − 0.633446i
\(639\) 0 0
\(640\) 0 0
\(641\) −40.0000 −1.57991 −0.789953 0.613168i \(-0.789895\pi\)
−0.789953 + 0.613168i \(0.789895\pi\)
\(642\) 0 0
\(643\) 14.0000i 0.552106i 0.961142 + 0.276053i \(0.0890266\pi\)
−0.961142 + 0.276053i \(0.910973\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 24.0000 0.944267
\(647\) 28.0000i 1.10079i 0.834903 + 0.550397i \(0.185524\pi\)
−0.834903 + 0.550397i \(0.814476\pi\)
\(648\) 0 0
\(649\) 48.0000 1.88416
\(650\) 0 0
\(651\) 0 0
\(652\) 6.00000i 0.234978i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 16.0000i 0.623745i
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 26.0000 1.01128 0.505641 0.862744i \(-0.331256\pi\)
0.505641 + 0.862744i \(0.331256\pi\)
\(662\) 18.0000i 0.699590i
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 24.0000i 0.928588i
\(669\) 0 0
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) − 18.0000i − 0.693849i −0.937893 0.346925i \(-0.887226\pi\)
0.937893 0.346925i \(-0.112774\pi\)
\(674\) 14.0000 0.539260
\(675\) 0 0
\(676\) −1.00000 −0.0384615
\(677\) 36.0000i 1.38359i 0.722093 + 0.691796i \(0.243180\pi\)
−0.722093 + 0.691796i \(0.756820\pi\)
\(678\) 0 0
\(679\) 28.0000 1.07454
\(680\) 0 0
\(681\) 0 0
\(682\) 40.0000i 1.53168i
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) 8.00000i 0.304997i
\(689\) −4.00000 −0.152388
\(690\) 0 0
\(691\) 34.0000 1.29342 0.646710 0.762736i \(-0.276144\pi\)
0.646710 + 0.762736i \(0.276144\pi\)
\(692\) 24.0000i 0.912343i
\(693\) 0 0
\(694\) 32.0000 1.21470
\(695\) 0 0
\(696\) 0 0
\(697\) − 24.0000i − 0.909065i
\(698\) 6.00000i 0.227103i
\(699\) 0 0
\(700\) 0 0
\(701\) 40.0000 1.51078 0.755390 0.655276i \(-0.227448\pi\)
0.755390 + 0.655276i \(0.227448\pi\)
\(702\) 0 0
\(703\) − 12.0000i − 0.452589i
\(704\) 28.0000 1.05529
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) − 24.0000i − 0.902613i
\(708\) 0 0
\(709\) 50.0000 1.87779 0.938895 0.344204i \(-0.111851\pi\)
0.938895 + 0.344204i \(0.111851\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 42.0000i − 1.57402i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 16.0000i 0.597115i
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 17.0000i 0.632674i
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) 0 0
\(726\) 0 0
\(727\) 24.0000i 0.890111i 0.895503 + 0.445055i \(0.146816\pi\)
−0.895503 + 0.445055i \(0.853184\pi\)
\(728\) − 6.00000i − 0.222375i
\(729\) 0 0
\(730\) 0 0
\(731\) 32.0000 1.18356
\(732\) 0 0
\(733\) 34.0000i 1.25582i 0.778287 + 0.627909i \(0.216089\pi\)
−0.778287 + 0.627909i \(0.783911\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) − 40.0000i − 1.47342i
\(738\) 0 0
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 8.00000i − 0.293689i
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −22.0000 −0.805477
\(747\) 0 0
\(748\) − 16.0000i − 0.585018i
\(749\) −8.00000 −0.292314
\(750\) 0 0
\(751\) 20.0000 0.729810 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(752\) − 8.00000i − 0.291730i
\(753\) 0 0
\(754\) 4.00000 0.145671
\(755\) 0 0
\(756\) 0 0
\(757\) 34.0000i 1.23575i 0.786276 + 0.617876i \(0.212006\pi\)
−0.786276 + 0.617876i \(0.787994\pi\)
\(758\) 2.00000i 0.0726433i
\(759\) 0 0
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) − 4.00000i − 0.144810i
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) 12.0000i 0.433295i
\(768\) 0 0
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 26.0000i − 0.935760i
\(773\) − 50.0000i − 1.79838i −0.437564 0.899188i \(-0.644158\pi\)
0.437564 0.899188i \(-0.355842\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −42.0000 −1.50771
\(777\) 0 0
\(778\) − 8.00000i − 0.286814i
\(779\) 36.0000 1.28983
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) 22.0000i 0.784215i 0.919919 + 0.392108i \(0.128254\pi\)
−0.919919 + 0.392108i \(0.871746\pi\)
\(788\) − 18.0000i − 0.641223i
\(789\) 0 0
\(790\) 0 0
\(791\) 32.0000 1.13779
\(792\) 0 0
\(793\) − 2.00000i − 0.0710221i
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) 12.0000i 0.425062i 0.977154 + 0.212531i \(0.0681706\pi\)
−0.977154 + 0.212531i \(0.931829\pi\)
\(798\) 0 0
\(799\) −32.0000 −1.13208
\(800\) 0 0
\(801\) 0 0
\(802\) 22.0000i 0.776847i
\(803\) 24.0000i 0.846942i
\(804\) 0 0
\(805\) 0 0
\(806\) −10.0000 −0.352235
\(807\) 0 0
\(808\) 36.0000i 1.26648i
\(809\) −28.0000 −0.984428 −0.492214 0.870474i \(-0.663812\pi\)
−0.492214 + 0.870474i \(0.663812\pi\)
\(810\) 0 0
\(811\) 30.0000 1.05344 0.526721 0.850038i \(-0.323421\pi\)
0.526721 + 0.850038i \(0.323421\pi\)
\(812\) − 8.00000i − 0.280745i
\(813\) 0 0
\(814\) 8.00000 0.280400
\(815\) 0 0
\(816\) 0 0
\(817\) 48.0000i 1.67931i
\(818\) − 30.0000i − 1.04893i
\(819\) 0 0
\(820\) 0 0
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 0 0
\(823\) − 4.00000i − 0.139431i −0.997567 0.0697156i \(-0.977791\pi\)
0.997567 0.0697156i \(-0.0222092\pi\)
\(824\) 12.0000 0.418040
\(825\) 0 0
\(826\) −24.0000 −0.835067
\(827\) 20.0000i 0.695468i 0.937593 + 0.347734i \(0.113049\pi\)
−0.937593 + 0.347734i \(0.886951\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 7.00000i 0.242681i
\(833\) 12.0000i 0.415775i
\(834\) 0 0
\(835\) 0 0
\(836\) 24.0000 0.830057
\(837\) 0 0
\(838\) 16.0000i 0.552711i
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 22.0000i 0.758170i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 10.0000i − 0.343604i
\(848\) 4.00000i 0.137361i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 30.0000i 1.02718i 0.858036 + 0.513590i \(0.171685\pi\)
−0.858036 + 0.513590i \(0.828315\pi\)
\(854\) 4.00000 0.136877
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 48.0000i 1.63965i 0.572615 + 0.819824i \(0.305929\pi\)
−0.572615 + 0.819824i \(0.694071\pi\)
\(858\) 0 0
\(859\) −16.0000 −0.545913 −0.272956 0.962026i \(-0.588002\pi\)
−0.272956 + 0.962026i \(0.588002\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 40.0000i − 1.36241i
\(863\) − 48.0000i − 1.63394i −0.576681 0.816970i \(-0.695652\pi\)
0.576681 0.816970i \(-0.304348\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.00000 0.0679628
\(867\) 0 0
\(868\) 20.0000i 0.678844i
\(869\) 48.0000 1.62829
\(870\) 0 0
\(871\) 10.0000 0.338837
\(872\) 6.00000i 0.203186i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 42.0000i 1.41824i 0.705088 + 0.709120i \(0.250907\pi\)
−0.705088 + 0.709120i \(0.749093\pi\)
\(878\) 36.0000i 1.21494i
\(879\) 0 0
\(880\) 0 0
\(881\) −28.0000 −0.943344 −0.471672 0.881774i \(-0.656349\pi\)
−0.471672 + 0.881774i \(0.656349\pi\)
\(882\) 0 0
\(883\) − 4.00000i − 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) 4.00000 0.134535
\(885\) 0 0
\(886\) −20.0000 −0.671913
\(887\) 56.0000i 1.88030i 0.340766 + 0.940148i \(0.389313\pi\)
−0.340766 + 0.940148i \(0.610687\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) − 14.0000i − 0.468755i
\(893\) − 48.0000i − 1.60626i
\(894\) 0 0
\(895\) 0 0
\(896\) 6.00000 0.200446
\(897\) 0 0
\(898\) − 30.0000i − 1.00111i
\(899\) −40.0000 −1.33407
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) 24.0000i 0.799113i
\(903\) 0 0
\(904\) −48.0000 −1.59646
\(905\) 0 0
\(906\) 0 0
\(907\) − 44.0000i − 1.46100i −0.682915 0.730498i \(-0.739288\pi\)
0.682915 0.730498i \(-0.260712\pi\)
\(908\) 20.0000i 0.663723i
\(909\) 0 0
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 16.0000i 0.529523i
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) 10.0000 0.330409
\(917\) 32.0000i 1.05673i
\(918\) 0 0
\(919\) −44.0000 −1.45143 −0.725713 0.687998i \(-0.758490\pi\)
−0.725713 + 0.687998i \(0.758490\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 14.0000i − 0.461065i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −18.0000 −0.591517
\(927\) 0 0
\(928\) 20.0000i 0.656532i
\(929\) −10.0000 −0.328089 −0.164045 0.986453i \(-0.552454\pi\)
−0.164045 + 0.986453i \(0.552454\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) − 8.00000i − 0.262049i
\(933\) 0 0
\(934\) 8.00000 0.261768
\(935\) 0 0
\(936\) 0 0
\(937\) − 54.0000i − 1.76410i −0.471153 0.882052i \(-0.656162\pi\)
0.471153 0.882052i \(-0.343838\pi\)
\(938\) 20.0000i 0.653023i
\(939\) 0 0
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) −32.0000 −1.04041
\(947\) − 12.0000i − 0.389948i −0.980808 0.194974i \(-0.937538\pi\)
0.980808 0.194974i \(-0.0624622\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) 24.0000i 0.777844i
\(953\) − 48.0000i − 1.55487i −0.628962 0.777436i \(-0.716520\pi\)
0.628962 0.777436i \(-0.283480\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 24.0000i 0.775405i
\(959\) −20.0000 −0.645834
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 2.00000i 0.0644826i
\(963\) 0 0
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) 0 0
\(967\) − 58.0000i − 1.86515i −0.360971 0.932577i \(-0.617555\pi\)
0.360971 0.932577i \(-0.382445\pi\)
\(968\) 15.0000i 0.482118i
\(969\) 0 0
\(970\) 0 0
\(971\) −52.0000 −1.66876 −0.834380 0.551190i \(-0.814174\pi\)
−0.834380 + 0.551190i \(0.814174\pi\)
\(972\) 0 0
\(973\) 24.0000i 0.769405i
\(974\) −22.0000 −0.704925
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) − 54.0000i − 1.72761i −0.503824 0.863807i \(-0.668074\pi\)
0.503824 0.863807i \(-0.331926\pi\)
\(978\) 0 0
\(979\) 56.0000 1.78977
\(980\) 0 0
\(981\) 0 0
\(982\) 36.0000i 1.14881i
\(983\) − 16.0000i − 0.510321i −0.966899 0.255160i \(-0.917872\pi\)
0.966899 0.255160i \(-0.0821283\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −16.0000 −0.509544
\(987\) 0 0
\(988\) 6.00000i 0.190885i
\(989\) 0 0
\(990\) 0 0
\(991\) −48.0000 −1.52477 −0.762385 0.647124i \(-0.775972\pi\)
−0.762385 + 0.647124i \(0.775972\pi\)
\(992\) − 50.0000i − 1.58750i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 58.0000i 1.83688i 0.395562 + 0.918439i \(0.370550\pi\)
−0.395562 + 0.918439i \(0.629450\pi\)
\(998\) 38.0000i 1.20287i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2925.2.c.g.2224.2 2
3.2 odd 2 2925.2.c.k.2224.1 2
5.2 odd 4 585.2.a.d.1.1 1
5.3 odd 4 2925.2.a.m.1.1 1
5.4 even 2 inner 2925.2.c.g.2224.1 2
15.2 even 4 585.2.a.i.1.1 yes 1
15.8 even 4 2925.2.a.c.1.1 1
15.14 odd 2 2925.2.c.k.2224.2 2
20.7 even 4 9360.2.a.i.1.1 1
60.47 odd 4 9360.2.a.be.1.1 1
65.12 odd 4 7605.2.a.q.1.1 1
195.77 even 4 7605.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
585.2.a.d.1.1 1 5.2 odd 4
585.2.a.i.1.1 yes 1 15.2 even 4
2925.2.a.c.1.1 1 15.8 even 4
2925.2.a.m.1.1 1 5.3 odd 4
2925.2.c.g.2224.1 2 5.4 even 2 inner
2925.2.c.g.2224.2 2 1.1 even 1 trivial
2925.2.c.k.2224.1 2 3.2 odd 2
2925.2.c.k.2224.2 2 15.14 odd 2
7605.2.a.c.1.1 1 195.77 even 4
7605.2.a.q.1.1 1 65.12 odd 4
9360.2.a.i.1.1 1 20.7 even 4
9360.2.a.be.1.1 1 60.47 odd 4