Properties

Label 2925.2.c.f.2224.2
Level $2925$
Weight $2$
Character 2925.2224
Analytic conductor $23.356$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(23.3562425912\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2224.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2925.2224
Dual form 2925.2.c.f.2224.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000 q^{4} +3.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} +1.00000 q^{4} +3.00000i q^{8} -4.00000 q^{11} -1.00000i q^{13} -1.00000 q^{16} -2.00000i q^{17} +4.00000 q^{19} -4.00000i q^{22} +8.00000i q^{23} +1.00000 q^{26} -2.00000 q^{29} -8.00000 q^{31} +5.00000i q^{32} +2.00000 q^{34} +6.00000i q^{37} +4.00000i q^{38} +6.00000 q^{41} +4.00000i q^{43} -4.00000 q^{44} -8.00000 q^{46} +8.00000i q^{47} +7.00000 q^{49} -1.00000i q^{52} +6.00000i q^{53} -2.00000i q^{58} -12.0000 q^{59} -2.00000 q^{61} -8.00000i q^{62} -7.00000 q^{64} -4.00000i q^{67} -2.00000i q^{68} +6.00000i q^{73} -6.00000 q^{74} +4.00000 q^{76} -16.0000 q^{79} +6.00000i q^{82} -4.00000i q^{83} -4.00000 q^{86} -12.0000i q^{88} +10.0000 q^{89} +8.00000i q^{92} -8.00000 q^{94} +18.0000i q^{97} +7.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{4} - 8 q^{11} - 2 q^{16} + 8 q^{19} + 2 q^{26} - 4 q^{29} - 16 q^{31} + 4 q^{34} + 12 q^{41} - 8 q^{44} - 16 q^{46} + 14 q^{49} - 24 q^{59} - 4 q^{61} - 14 q^{64} - 12 q^{74} + 8 q^{76} - 32 q^{79} - 8 q^{86} + 20 q^{89} - 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(2251\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 0 0
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) − 2.00000i − 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 4.00000i − 0.852803i
\(23\) 8.00000i 1.66812i 0.551677 + 0.834058i \(0.313988\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) − 1.00000i − 0.138675i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) − 2.00000i − 0.262613i
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) − 8.00000i − 1.01600i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) − 2.00000i − 0.242536i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) −16.0000 −1.80014 −0.900070 0.435745i \(-0.856485\pi\)
−0.900070 + 0.435745i \(0.856485\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 6.00000i 0.662589i
\(83\) − 4.00000i − 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) − 12.0000i − 1.27920i
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.00000i 0.834058i
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) 18.0000i 1.82762i 0.406138 + 0.913812i \(0.366875\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 7.00000i 0.707107i
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 3.00000 0.294174
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000i 0.188144i 0.995565 + 0.0940721i \(0.0299884\pi\)
−0.995565 + 0.0940721i \(0.970012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) − 12.0000i − 1.10469i
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) − 2.00000i − 0.181071i
\(123\) 0 0
\(124\) −8.00000 −0.718421
\(125\) 0 0
\(126\) 0 0
\(127\) − 16.0000i − 1.41977i −0.704317 0.709885i \(-0.748747\pi\)
0.704317 0.709885i \(-0.251253\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 0 0
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 12.0000i 0.973329i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 2.00000i − 0.159617i −0.996810 0.0798087i \(-0.974569\pi\)
0.996810 0.0798087i \(-0.0254309\pi\)
\(158\) − 16.0000i − 1.27289i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.0000i 1.56652i 0.621694 + 0.783260i \(0.286445\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) − 16.0000i − 1.23812i −0.785345 0.619059i \(-0.787514\pi\)
0.785345 0.619059i \(-0.212486\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) − 2.00000i − 0.152057i −0.997106 0.0760286i \(-0.975776\pi\)
0.997106 0.0760286i \(-0.0242240\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) 10.0000i 0.749532i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −24.0000 −1.76930
\(185\) 0 0
\(186\) 0 0
\(187\) 8.00000i 0.585018i
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 0 0
\(193\) 14.0000i 1.00774i 0.863779 + 0.503871i \(0.168091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) −18.0000 −1.29232
\(195\) 0 0
\(196\) 7.00000 0.500000
\(197\) − 6.00000i − 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 6.00000i − 0.422159i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 1.00000i 0.0693375i
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 2.00000i 0.135457i
\(219\) 0 0
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 24.0000i 1.60716i 0.595198 + 0.803579i \(0.297074\pi\)
−0.595198 + 0.803579i \(0.702926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.00000 −0.133038
\(227\) − 12.0000i − 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 6.00000i − 0.393919i
\(233\) 26.0000i 1.70332i 0.524097 + 0.851658i \(0.324403\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 5.00000i 0.321412i
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) − 4.00000i − 0.254514i
\(248\) − 24.0000i − 1.52400i
\(249\) 0 0
\(250\) 0 0
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) 0 0
\(253\) − 32.0000i − 2.01182i
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) − 18.0000i − 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 12.0000i 0.741362i
\(263\) − 24.0000i − 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) − 4.00000i − 0.244339i
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) − 10.0000i − 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) 20.0000i 1.19952i
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i 0.804141 + 0.594438i \(0.202626\pi\)
−0.804141 + 0.594438i \(0.797374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 0 0
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 6.00000i 0.351123i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −18.0000 −1.04623
\(297\) 0 0
\(298\) − 10.0000i − 0.579284i
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) − 4.00000i − 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) − 26.0000i − 1.46961i −0.678280 0.734803i \(-0.737274\pi\)
0.678280 0.734803i \(-0.262726\pi\)
\(314\) 2.00000 0.112867
\(315\) 0 0
\(316\) −16.0000 −0.900070
\(317\) − 30.0000i − 1.68497i −0.538721 0.842484i \(-0.681092\pi\)
0.538721 0.842484i \(-0.318908\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 8.00000i − 0.445132i
\(324\) 0 0
\(325\) 0 0
\(326\) −20.0000 −1.10770
\(327\) 0 0
\(328\) 18.0000i 0.993884i
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) − 4.00000i − 0.219529i
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) 0 0
\(336\) 0 0
\(337\) − 14.0000i − 0.762629i −0.924445 0.381314i \(-0.875472\pi\)
0.924445 0.381314i \(-0.124528\pi\)
\(338\) − 1.00000i − 0.0543928i
\(339\) 0 0
\(340\) 0 0
\(341\) 32.0000 1.73290
\(342\) 0 0
\(343\) 0 0
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) 4.00000i 0.214731i 0.994220 + 0.107366i \(0.0342415\pi\)
−0.994220 + 0.107366i \(0.965758\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 20.0000i − 1.06600i
\(353\) − 14.0000i − 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 10.0000 0.529999
\(357\) 0 0
\(358\) − 12.0000i − 0.634220i
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 22.0000i 1.15629i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 16.0000i − 0.835193i −0.908633 0.417597i \(-0.862873\pi\)
0.908633 0.417597i \(-0.137127\pi\)
\(368\) − 8.00000i − 0.417029i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 22.0000i − 1.13912i −0.821951 0.569558i \(-0.807114\pi\)
0.821951 0.569558i \(-0.192886\pi\)
\(374\) −8.00000 −0.413670
\(375\) 0 0
\(376\) −24.0000 −1.23771
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) −36.0000 −1.84920 −0.924598 0.380945i \(-0.875599\pi\)
−0.924598 + 0.380945i \(0.875599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 16.0000i − 0.818631i
\(383\) 24.0000i 1.22634i 0.789950 + 0.613171i \(0.210106\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) 18.0000i 0.913812i
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) 21.0000i 1.06066i
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 8.00000i 0.398508i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) − 24.0000i − 1.18964i
\(408\) 0 0
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 8.00000i 0.394132i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 5.00000 0.245145
\(417\) 0 0
\(418\) − 16.0000i − 0.782586i
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 20.0000i 0.973585i
\(423\) 0 0
\(424\) −18.0000 −0.874157
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 12.0000i − 0.580042i
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) − 18.0000i − 0.865025i −0.901628 0.432512i \(-0.857627\pi\)
0.901628 0.432512i \(-0.142373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 32.0000i 1.53077i
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 2.00000i − 0.0951303i
\(443\) − 4.00000i − 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −24.0000 −1.13643
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 2.00000i 0.0940721i
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) 26.0000i 1.21623i 0.793849 + 0.608114i \(0.208074\pi\)
−0.793849 + 0.608114i \(0.791926\pi\)
\(458\) − 22.0000i − 1.02799i
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) − 8.00000i − 0.371792i −0.982569 0.185896i \(-0.940481\pi\)
0.982569 0.185896i \(-0.0595187\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) −26.0000 −1.20443
\(467\) − 4.00000i − 0.185098i −0.995708 0.0925490i \(-0.970499\pi\)
0.995708 0.0925490i \(-0.0295015\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) − 36.0000i − 1.65703i
\(473\) − 16.0000i − 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) − 24.0000i − 1.09773i
\(479\) 8.00000 0.365529 0.182765 0.983157i \(-0.441495\pi\)
0.182765 + 0.983157i \(0.441495\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) − 14.0000i − 0.637683i
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000i 0.725029i 0.931978 + 0.362515i \(0.118082\pi\)
−0.931978 + 0.362515i \(0.881918\pi\)
\(488\) − 6.00000i − 0.271607i
\(489\) 0 0
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) 4.00000i 0.180151i
\(494\) 4.00000 0.179969
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 4.00000i 0.178529i
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 32.0000 1.42257
\(507\) 0 0
\(508\) − 16.0000i − 0.709885i
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 11.0000i − 0.486136i
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 0 0
\(517\) − 32.0000i − 1.40736i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i 0.899331 + 0.437269i \(0.144054\pi\)
−0.899331 + 0.437269i \(0.855946\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 6.00000i − 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) 14.0000i 0.603583i
\(539\) −28.0000 −1.20605
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) − 8.00000i − 0.343629i
\(543\) 0 0
\(544\) 10.0000 0.428746
\(545\) 0 0
\(546\) 0 0
\(547\) 36.0000i 1.53925i 0.638497 + 0.769624i \(0.279557\pi\)
−0.638497 + 0.769624i \(0.720443\pi\)
\(548\) 6.00000i 0.256307i
\(549\) 0 0
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) 20.0000 0.848189
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 22.0000i 0.928014i
\(563\) 4.00000i 0.168580i 0.996441 + 0.0842900i \(0.0268622\pi\)
−0.996441 + 0.0842900i \(0.973138\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) 0 0
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 4.00000i 0.167248i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.0000i 0.749350i 0.927156 + 0.374675i \(0.122246\pi\)
−0.927156 + 0.374675i \(0.877754\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 24.0000i − 0.993978i
\(584\) −18.0000 −0.744845
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) 0 0
\(591\) 0 0
\(592\) − 6.00000i − 0.246598i
\(593\) − 30.0000i − 1.23195i −0.787765 0.615976i \(-0.788762\pi\)
0.787765 0.615976i \(-0.211238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.0000 −0.409616
\(597\) 0 0
\(598\) 8.00000i 0.327144i
\(599\) 40.0000 1.63436 0.817178 0.576386i \(-0.195537\pi\)
0.817178 + 0.576386i \(0.195537\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 20.0000i 0.811107i
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) − 6.00000i − 0.242338i −0.992632 0.121169i \(-0.961336\pi\)
0.992632 0.121169i \(-0.0386643\pi\)
\(614\) 4.00000 0.161427
\(615\) 0 0
\(616\) 0 0
\(617\) 38.0000i 1.52982i 0.644136 + 0.764911i \(0.277217\pi\)
−0.644136 + 0.764911i \(0.722783\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 24.0000i − 0.962312i
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 26.0000 1.03917
\(627\) 0 0
\(628\) − 2.00000i − 0.0798087i
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) − 48.0000i − 1.90934i
\(633\) 0 0
\(634\) 30.0000 1.19145
\(635\) 0 0
\(636\) 0 0
\(637\) − 7.00000i − 0.277350i
\(638\) 8.00000i 0.316723i
\(639\) 0 0
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) − 28.0000i − 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 8.00000 0.314756
\(647\) − 24.0000i − 0.943537i −0.881722 0.471769i \(-0.843616\pi\)
0.881722 0.471769i \(-0.156384\pi\)
\(648\) 0 0
\(649\) 48.0000 1.88416
\(650\) 0 0
\(651\) 0 0
\(652\) 20.0000i 0.783260i
\(653\) 30.0000i 1.17399i 0.809590 + 0.586995i \(0.199689\pi\)
−0.809590 + 0.586995i \(0.800311\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 20.0000i 0.777322i
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) − 16.0000i − 0.619522i
\(668\) − 16.0000i − 0.619059i
\(669\) 0 0
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) − 34.0000i − 1.31060i −0.755367 0.655302i \(-0.772541\pi\)
0.755367 0.655302i \(-0.227459\pi\)
\(674\) 14.0000 0.539260
\(675\) 0 0
\(676\) −1.00000 −0.0384615
\(677\) 10.0000i 0.384331i 0.981363 + 0.192166i \(0.0615511\pi\)
−0.981363 + 0.192166i \(0.938449\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 32.0000i 1.22534i
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) − 4.00000i − 0.152499i
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) − 2.00000i − 0.0760286i
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) − 12.0000i − 0.454532i
\(698\) − 14.0000i − 0.529908i
\(699\) 0 0
\(700\) 0 0
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) 24.0000i 0.905177i
\(704\) 28.0000 1.05529
\(705\) 0 0
\(706\) 14.0000 0.526897
\(707\) 0 0
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 30.0000i 1.12430i
\(713\) − 64.0000i − 2.39682i
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 16.0000i 0.597115i
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 3.00000i − 0.111648i
\(723\) 0 0
\(724\) 22.0000 0.817624
\(725\) 0 0
\(726\) 0 0
\(727\) − 24.0000i − 0.890111i −0.895503 0.445055i \(-0.853184\pi\)
0.895503 0.445055i \(-0.146816\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) − 30.0000i − 1.10808i −0.832492 0.554038i \(-0.813086\pi\)
0.832492 0.554038i \(-0.186914\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) −40.0000 −1.47442
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 22.0000 0.805477
\(747\) 0 0
\(748\) 8.00000i 0.292509i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) − 8.00000i − 0.291730i
\(753\) 0 0
\(754\) −2.00000 −0.0728357
\(755\) 0 0
\(756\) 0 0
\(757\) − 42.0000i − 1.52652i −0.646094 0.763258i \(-0.723599\pi\)
0.646094 0.763258i \(-0.276401\pi\)
\(758\) − 36.0000i − 1.30758i
\(759\) 0 0
\(760\) 0 0
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) 12.0000i 0.433295i
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 14.0000i 0.503871i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −54.0000 −1.93849
\(777\) 0 0
\(778\) 6.00000i 0.215110i
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) 16.0000i 0.572159i
\(783\) 0 0
\(784\) −7.00000 −0.250000
\(785\) 0 0
\(786\) 0 0
\(787\) − 4.00000i − 0.142585i −0.997455 0.0712923i \(-0.977288\pi\)
0.997455 0.0712923i \(-0.0227123\pi\)
\(788\) − 6.00000i − 0.213741i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.00000i 0.0710221i
\(794\) −14.0000 −0.496841
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) − 46.0000i − 1.62940i −0.579880 0.814702i \(-0.696901\pi\)
0.579880 0.814702i \(-0.303099\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) 0 0
\(801\) 0 0
\(802\) 30.0000i 1.05934i
\(803\) − 24.0000i − 0.846942i
\(804\) 0 0
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) 0 0
\(808\) − 18.0000i − 0.633238i
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 24.0000 0.841200
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000i 0.559769i
\(818\) 38.0000i 1.32864i
\(819\) 0 0
\(820\) 0 0
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) 24.0000i 0.836587i 0.908312 + 0.418294i \(0.137372\pi\)
−0.908312 + 0.418294i \(0.862628\pi\)
\(824\) −24.0000 −0.836080
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 0 0
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 7.00000i 0.242681i
\(833\) − 14.0000i − 0.485071i
\(834\) 0 0
\(835\) 0 0
\(836\) −16.0000 −0.553372
\(837\) 0 0
\(838\) 20.0000i 0.690889i
\(839\) 16.0000 0.552381 0.276191 0.961103i \(-0.410928\pi\)
0.276191 + 0.961103i \(0.410928\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) − 10.0000i − 0.344623i
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) − 6.00000i − 0.206041i
\(849\) 0 0
\(850\) 0 0
\(851\) −48.0000 −1.64542
\(852\) 0 0
\(853\) 42.0000i 1.43805i 0.694983 + 0.719026i \(0.255412\pi\)
−0.694983 + 0.719026i \(0.744588\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 36.0000 1.23045
\(857\) − 10.0000i − 0.341593i −0.985306 0.170797i \(-0.945366\pi\)
0.985306 0.170797i \(-0.0546341\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 8.00000i − 0.272481i
\(863\) − 40.0000i − 1.36162i −0.732462 0.680808i \(-0.761629\pi\)
0.732462 0.680808i \(-0.238371\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 18.0000 0.611665
\(867\) 0 0
\(868\) 0 0
\(869\) 64.0000 2.17105
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 6.00000i 0.203186i
\(873\) 0 0
\(874\) −32.0000 −1.08242
\(875\) 0 0
\(876\) 0 0
\(877\) − 50.0000i − 1.68838i −0.536044 0.844190i \(-0.680082\pi\)
0.536044 0.844190i \(-0.319918\pi\)
\(878\) 24.0000i 0.809961i
\(879\) 0 0
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) − 36.0000i − 1.21150i −0.795656 0.605748i \(-0.792874\pi\)
0.795656 0.605748i \(-0.207126\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) − 24.0000i − 0.805841i −0.915235 0.402921i \(-0.867995\pi\)
0.915235 0.402921i \(-0.132005\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 24.0000i 0.803579i
\(893\) 32.0000i 1.07084i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 18.0000i 0.600668i
\(899\) 16.0000 0.533630
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) − 24.0000i − 0.799113i
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) 0 0
\(907\) − 4.00000i − 0.132818i −0.997792 0.0664089i \(-0.978846\pi\)
0.997792 0.0664089i \(-0.0211542\pi\)
\(908\) − 12.0000i − 0.398234i
\(909\) 0 0
\(910\) 0 0
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) 16.0000i 0.529523i
\(914\) −26.0000 −0.860004
\(915\) 0 0
\(916\) −22.0000 −0.726900
\(917\) 0 0
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.0000i 0.592798i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 8.00000 0.262896
\(927\) 0 0
\(928\) − 10.0000i − 0.328266i
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 28.0000 0.917663
\(932\) 26.0000i 0.851658i
\(933\) 0 0
\(934\) 4.00000 0.130884
\(935\) 0 0
\(936\) 0 0
\(937\) − 22.0000i − 0.718709i −0.933201 0.359354i \(-0.882997\pi\)
0.933201 0.359354i \(-0.117003\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −46.0000 −1.49956 −0.749779 0.661689i \(-0.769840\pi\)
−0.749779 + 0.661689i \(0.769840\pi\)
\(942\) 0 0
\(943\) 48.0000i 1.56310i
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) − 12.0000i − 0.389948i −0.980808 0.194974i \(-0.937538\pi\)
0.980808 0.194974i \(-0.0624622\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.0000i 0.323932i 0.986796 + 0.161966i \(0.0517835\pi\)
−0.986796 + 0.161966i \(0.948217\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) 8.00000i 0.258468i
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 6.00000i 0.193448i
\(963\) 0 0
\(964\) −14.0000 −0.450910
\(965\) 0 0
\(966\) 0 0
\(967\) − 16.0000i − 0.514525i −0.966342 0.257263i \(-0.917179\pi\)
0.966342 0.257263i \(-0.0828206\pi\)
\(968\) 15.0000i 0.482118i
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) 30.0000i 0.959785i 0.877327 + 0.479893i \(0.159324\pi\)
−0.877327 + 0.479893i \(0.840676\pi\)
\(978\) 0 0
\(979\) −40.0000 −1.27841
\(980\) 0 0
\(981\) 0 0
\(982\) 20.0000i 0.638226i
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −4.00000 −0.127386
\(987\) 0 0
\(988\) − 4.00000i − 0.127257i
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) − 40.0000i − 1.27000i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 38.0000i 1.20347i 0.798695 + 0.601736i \(0.205524\pi\)
−0.798695 + 0.601736i \(0.794476\pi\)
\(998\) − 28.0000i − 0.886325i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2925.2.c.f.2224.2 2
3.2 odd 2 975.2.c.e.274.1 2
5.2 odd 4 2925.2.a.d.1.1 1
5.3 odd 4 585.2.a.g.1.1 1
5.4 even 2 inner 2925.2.c.f.2224.1 2
15.2 even 4 975.2.a.i.1.1 1
15.8 even 4 195.2.a.a.1.1 1
15.14 odd 2 975.2.c.e.274.2 2
20.3 even 4 9360.2.a.o.1.1 1
60.23 odd 4 3120.2.a.k.1.1 1
65.38 odd 4 7605.2.a.h.1.1 1
105.83 odd 4 9555.2.a.b.1.1 1
195.38 even 4 2535.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.a.a.1.1 1 15.8 even 4
585.2.a.g.1.1 1 5.3 odd 4
975.2.a.i.1.1 1 15.2 even 4
975.2.c.e.274.1 2 3.2 odd 2
975.2.c.e.274.2 2 15.14 odd 2
2535.2.a.k.1.1 1 195.38 even 4
2925.2.a.d.1.1 1 5.2 odd 4
2925.2.c.f.2224.1 2 5.4 even 2 inner
2925.2.c.f.2224.2 2 1.1 even 1 trivial
3120.2.a.k.1.1 1 60.23 odd 4
7605.2.a.h.1.1 1 65.38 odd 4
9360.2.a.o.1.1 1 20.3 even 4
9555.2.a.b.1.1 1 105.83 odd 4