# Properties

 Label 2925.2.c.a Level $2925$ Weight $2$ Character orbit 2925.c Analytic conductor $23.356$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2925,2,Mod(2224,2925)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2925, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2925.2224");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2925 = 3^{2} \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2925.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$23.3562425912$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 195) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 i q^{2} - 2 q^{4} + i q^{7}+O(q^{10})$$ q + 2*i * q^2 - 2 * q^4 + i * q^7 $$q + 2 i q^{2} - 2 q^{4} + i q^{7} - 5 q^{11} - i q^{13} - 2 q^{14} - 4 q^{16} - 7 i q^{17} + 6 q^{19} - 10 i q^{22} - 3 i q^{23} + 2 q^{26} - 2 i q^{28} + 2 q^{29} + 2 q^{31} - 8 i q^{32} + 14 q^{34} - 7 i q^{37} + 12 i q^{38} - 9 q^{41} - 8 i q^{43} + 10 q^{44} + 6 q^{46} + 10 i q^{47} + 6 q^{49} + 2 i q^{52} - 5 i q^{53} + 4 i q^{58} + 5 q^{61} + 4 i q^{62} + 8 q^{64} + 4 i q^{67} + 14 i q^{68} - 9 q^{71} - 6 i q^{73} + 14 q^{74} - 12 q^{76} - 5 i q^{77} + 3 q^{79} - 18 i q^{82} + 4 i q^{83} + 16 q^{86} + 11 q^{89} + q^{91} + 6 i q^{92} - 20 q^{94} + 11 i q^{97} + 12 i q^{98} +O(q^{100})$$ q + 2*i * q^2 - 2 * q^4 + i * q^7 - 5 * q^11 - i * q^13 - 2 * q^14 - 4 * q^16 - 7*i * q^17 + 6 * q^19 - 10*i * q^22 - 3*i * q^23 + 2 * q^26 - 2*i * q^28 + 2 * q^29 + 2 * q^31 - 8*i * q^32 + 14 * q^34 - 7*i * q^37 + 12*i * q^38 - 9 * q^41 - 8*i * q^43 + 10 * q^44 + 6 * q^46 + 10*i * q^47 + 6 * q^49 + 2*i * q^52 - 5*i * q^53 + 4*i * q^58 + 5 * q^61 + 4*i * q^62 + 8 * q^64 + 4*i * q^67 + 14*i * q^68 - 9 * q^71 - 6*i * q^73 + 14 * q^74 - 12 * q^76 - 5*i * q^77 + 3 * q^79 - 18*i * q^82 + 4*i * q^83 + 16 * q^86 + 11 * q^89 + q^91 + 6*i * q^92 - 20 * q^94 + 11*i * q^97 + 12*i * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 4 q^{4}+O(q^{10})$$ 2 * q - 4 * q^4 $$2 q - 4 q^{4} - 10 q^{11} - 4 q^{14} - 8 q^{16} + 12 q^{19} + 4 q^{26} + 4 q^{29} + 4 q^{31} + 28 q^{34} - 18 q^{41} + 20 q^{44} + 12 q^{46} + 12 q^{49} + 10 q^{61} + 16 q^{64} - 18 q^{71} + 28 q^{74} - 24 q^{76} + 6 q^{79} + 32 q^{86} + 22 q^{89} + 2 q^{91} - 40 q^{94}+O(q^{100})$$ 2 * q - 4 * q^4 - 10 * q^11 - 4 * q^14 - 8 * q^16 + 12 * q^19 + 4 * q^26 + 4 * q^29 + 4 * q^31 + 28 * q^34 - 18 * q^41 + 20 * q^44 + 12 * q^46 + 12 * q^49 + 10 * q^61 + 16 * q^64 - 18 * q^71 + 28 * q^74 - 24 * q^76 + 6 * q^79 + 32 * q^86 + 22 * q^89 + 2 * q^91 - 40 * q^94

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2925\mathbb{Z}\right)^\times$$.

 $$n$$ $$326$$ $$352$$ $$2251$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2224.1
 − 1.00000i 1.00000i
2.00000i 0 −2.00000 0 0 1.00000i 0 0 0
2224.2 2.00000i 0 −2.00000 0 0 1.00000i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2925.2.c.a 2
3.b odd 2 1 975.2.c.c 2
5.b even 2 1 inner 2925.2.c.a 2
5.c odd 4 1 585.2.a.c 1
5.c odd 4 1 2925.2.a.s 1
15.d odd 2 1 975.2.c.c 2
15.e even 4 1 195.2.a.c 1
15.e even 4 1 975.2.a.a 1
20.e even 4 1 9360.2.a.bv 1
60.l odd 4 1 3120.2.a.d 1
65.h odd 4 1 7605.2.a.t 1
105.k odd 4 1 9555.2.a.u 1
195.s even 4 1 2535.2.a.d 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.a.c 1 15.e even 4 1
585.2.a.c 1 5.c odd 4 1
975.2.a.a 1 15.e even 4 1
975.2.c.c 2 3.b odd 2 1
975.2.c.c 2 15.d odd 2 1
2535.2.a.d 1 195.s even 4 1
2925.2.a.s 1 5.c odd 4 1
2925.2.c.a 2 1.a even 1 1 trivial
2925.2.c.a 2 5.b even 2 1 inner
3120.2.a.d 1 60.l odd 4 1
7605.2.a.t 1 65.h odd 4 1
9360.2.a.bv 1 20.e even 4 1
9555.2.a.u 1 105.k odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2925, [\chi])$$:

 $$T_{2}^{2} + 4$$ T2^2 + 4 $$T_{7}^{2} + 1$$ T7^2 + 1 $$T_{11} + 5$$ T11 + 5

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 4$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 1$$
$11$ $$(T + 5)^{2}$$
$13$ $$T^{2} + 1$$
$17$ $$T^{2} + 49$$
$19$ $$(T - 6)^{2}$$
$23$ $$T^{2} + 9$$
$29$ $$(T - 2)^{2}$$
$31$ $$(T - 2)^{2}$$
$37$ $$T^{2} + 49$$
$41$ $$(T + 9)^{2}$$
$43$ $$T^{2} + 64$$
$47$ $$T^{2} + 100$$
$53$ $$T^{2} + 25$$
$59$ $$T^{2}$$
$61$ $$(T - 5)^{2}$$
$67$ $$T^{2} + 16$$
$71$ $$(T + 9)^{2}$$
$73$ $$T^{2} + 36$$
$79$ $$(T - 3)^{2}$$
$83$ $$T^{2} + 16$$
$89$ $$(T - 11)^{2}$$
$97$ $$T^{2} + 121$$