Properties

Label 2925.2.a.p
Level $2925$
Weight $2$
Character orbit 2925.a
Self dual yes
Analytic conductor $23.356$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2925.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(23.3562425912\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{4} + 4 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{4} + 4 q^{7} - 3 q^{8} - 4 q^{11} - q^{13} + 4 q^{14} - q^{16} + 2 q^{17} - 4 q^{22} - q^{26} - 4 q^{28} + 10 q^{29} + 4 q^{31} + 5 q^{32} + 2 q^{34} + 2 q^{37} - 6 q^{41} + 12 q^{43} + 4 q^{44} + 9 q^{49} + q^{52} + 6 q^{53} - 12 q^{56} + 10 q^{58} - 12 q^{59} - 2 q^{61} + 4 q^{62} + 7 q^{64} + 8 q^{67} - 2 q^{68} - 2 q^{73} + 2 q^{74} - 16 q^{77} + 8 q^{79} - 6 q^{82} + 4 q^{83} + 12 q^{86} + 12 q^{88} + 2 q^{89} - 4 q^{91} - 10 q^{97} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 −1.00000 0 0 4.00000 −3.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2925.2.a.p 1
3.b odd 2 1 975.2.a.f 1
5.b even 2 1 117.2.a.a 1
5.c odd 4 2 2925.2.c.e 2
15.d odd 2 1 39.2.a.a 1
15.e even 4 2 975.2.c.f 2
20.d odd 2 1 1872.2.a.h 1
35.c odd 2 1 5733.2.a.e 1
40.e odd 2 1 7488.2.a.by 1
40.f even 2 1 7488.2.a.bl 1
45.h odd 6 2 1053.2.e.b 2
45.j even 6 2 1053.2.e.d 2
60.h even 2 1 624.2.a.i 1
65.d even 2 1 1521.2.a.e 1
65.g odd 4 2 1521.2.b.b 2
105.g even 2 1 1911.2.a.f 1
120.i odd 2 1 2496.2.a.q 1
120.m even 2 1 2496.2.a.e 1
165.d even 2 1 4719.2.a.c 1
195.e odd 2 1 507.2.a.a 1
195.n even 4 2 507.2.b.a 2
195.x odd 6 2 507.2.e.a 2
195.y odd 6 2 507.2.e.b 2
195.bh even 12 4 507.2.j.e 4
780.d even 2 1 8112.2.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.a.a 1 15.d odd 2 1
117.2.a.a 1 5.b even 2 1
507.2.a.a 1 195.e odd 2 1
507.2.b.a 2 195.n even 4 2
507.2.e.a 2 195.x odd 6 2
507.2.e.b 2 195.y odd 6 2
507.2.j.e 4 195.bh even 12 4
624.2.a.i 1 60.h even 2 1
975.2.a.f 1 3.b odd 2 1
975.2.c.f 2 15.e even 4 2
1053.2.e.b 2 45.h odd 6 2
1053.2.e.d 2 45.j even 6 2
1521.2.a.e 1 65.d even 2 1
1521.2.b.b 2 65.g odd 4 2
1872.2.a.h 1 20.d odd 2 1
1911.2.a.f 1 105.g even 2 1
2496.2.a.e 1 120.m even 2 1
2496.2.a.q 1 120.i odd 2 1
2925.2.a.p 1 1.a even 1 1 trivial
2925.2.c.e 2 5.c odd 4 2
4719.2.a.c 1 165.d even 2 1
5733.2.a.e 1 35.c odd 2 1
7488.2.a.bl 1 40.f even 2 1
7488.2.a.by 1 40.e odd 2 1
8112.2.a.s 1 780.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2925))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 10 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 12 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T - 8 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T - 2 \) Copy content Toggle raw display
$97$ \( T + 10 \) Copy content Toggle raw display
show more
show less