Properties

Label 2915.1.e
Level $2915$
Weight $1$
Character orbit 2915.e
Rep. character $\chi_{2915}(2914,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $8$
Sturm bound $324$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2915 = 5 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2915.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2915 \)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(324\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2915, [\chi])\).

Total New Old
Modular forms 14 14 0
Cusp forms 10 10 0
Eisenstein series 4 4 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10 q + 10 q^{4} + 6 q^{9} - 2 q^{11} - 4 q^{15} + 10 q^{16} + 10 q^{25} + 6 q^{36} - 2 q^{44} + 6 q^{49} - 4 q^{59} - 4 q^{60} + 10 q^{64} - 8 q^{69} + 2 q^{81} - 4 q^{89} - 8 q^{91} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2915, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2915.1.e.a 2915.e 2915.e $1$ $1.455$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-2915}) \) \(\Q(\sqrt{265}) \) 2915.1.e.a \(0\) \(-2\) \(1\) \(0\) \(q-2q^{3}+q^{4}+q^{5}+3q^{9}-q^{11}-2q^{12}+\cdots\)
2915.1.e.b 2915.e 2915.e $1$ $1.455$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-2915}) \) None 2915.1.e.b \(0\) \(-1\) \(1\) \(-1\) \(q-q^{3}+q^{4}+q^{5}-q^{7}+q^{11}-q^{12}+\cdots\)
2915.1.e.c 2915.e 2915.e $1$ $1.455$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-2915}) \) None 2915.1.e.b \(0\) \(-1\) \(1\) \(1\) \(q-q^{3}+q^{4}+q^{5}+q^{7}+q^{11}-q^{12}+\cdots\)
2915.1.e.d 2915.e 2915.e $1$ $1.455$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-2915}) \) None 2915.1.e.b \(0\) \(1\) \(-1\) \(-1\) \(q+q^{3}+q^{4}-q^{5}-q^{7}+q^{11}+q^{12}+\cdots\)
2915.1.e.e 2915.e 2915.e $1$ $1.455$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-2915}) \) None 2915.1.e.b \(0\) \(1\) \(-1\) \(1\) \(q+q^{3}+q^{4}-q^{5}+q^{7}+q^{11}+q^{12}+\cdots\)
2915.1.e.f 2915.e 2915.e $1$ $1.455$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-2915}) \) \(\Q(\sqrt{265}) \) 2915.1.e.a \(0\) \(2\) \(-1\) \(0\) \(q+2q^{3}+q^{4}-q^{5}+3q^{9}-q^{11}+2q^{12}+\cdots\)
2915.1.e.g 2915.e 2915.e $2$ $1.455$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-2915}) \) None 2915.1.e.g \(0\) \(-2\) \(-2\) \(0\) \(q-q^{3}+q^{4}-q^{5}-\beta q^{7}-q^{11}-q^{12}+\cdots\)
2915.1.e.h 2915.e 2915.e $2$ $1.455$ \(\Q(\sqrt{3}) \) $D_{6}$ \(\Q(\sqrt{-2915}) \) None 2915.1.e.g \(0\) \(2\) \(2\) \(0\) \(q+q^{3}+q^{4}+q^{5}-\beta q^{7}-q^{11}+q^{12}+\cdots\)