Properties

Label 2912.2.i.a.337.18
Level $2912$
Weight $2$
Character 2912.337
Analytic conductor $23.252$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(337,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.18
Character \(\chi\) \(=\) 2912.337
Dual form 2912.2.i.a.337.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.944401i q^{3} +3.13735 q^{5} +1.00000i q^{7} +2.10811 q^{9} -0.668990 q^{11} +(-3.33818 - 1.36256i) q^{13} +2.96292i q^{15} -2.89622 q^{17} +5.15356 q^{19} -0.944401 q^{21} +4.18873 q^{23} +4.84297 q^{25} +4.82410i q^{27} -2.22655i q^{29} -7.61759i q^{31} -0.631795i q^{33} +3.13735i q^{35} +10.8069 q^{37} +(1.28681 - 3.15258i) q^{39} +11.2974i q^{41} +6.14812i q^{43} +6.61387 q^{45} +11.4840i q^{47} -1.00000 q^{49} -2.73519i q^{51} +3.09234i q^{53} -2.09886 q^{55} +4.86703i q^{57} +12.7056 q^{59} -11.0620i q^{61} +2.10811i q^{63} +(-10.4730 - 4.27484i) q^{65} -6.94022 q^{67} +3.95584i q^{69} -7.81277i q^{71} +10.3939i q^{73} +4.57371i q^{75} -0.668990i q^{77} +13.1329 q^{79} +1.76843 q^{81} -5.56860 q^{83} -9.08645 q^{85} +2.10276 q^{87} +0.496967i q^{89} +(1.36256 - 3.33818i) q^{91} +7.19406 q^{93} +16.1685 q^{95} +1.71943i q^{97} -1.41030 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{17} + 24 q^{23} + 92 q^{25} + 24 q^{39} - 84 q^{49} - 32 q^{55} - 24 q^{65} + 40 q^{79} + 84 q^{81} + 48 q^{87} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.944401i 0.545250i 0.962120 + 0.272625i \(0.0878919\pi\)
−0.962120 + 0.272625i \(0.912108\pi\)
\(4\) 0 0
\(5\) 3.13735 1.40307 0.701533 0.712637i \(-0.252499\pi\)
0.701533 + 0.712637i \(0.252499\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 2.10811 0.702702
\(10\) 0 0
\(11\) −0.668990 −0.201708 −0.100854 0.994901i \(-0.532157\pi\)
−0.100854 + 0.994901i \(0.532157\pi\)
\(12\) 0 0
\(13\) −3.33818 1.36256i −0.925844 0.377907i
\(14\) 0 0
\(15\) 2.96292i 0.765022i
\(16\) 0 0
\(17\) −2.89622 −0.702436 −0.351218 0.936294i \(-0.614232\pi\)
−0.351218 + 0.936294i \(0.614232\pi\)
\(18\) 0 0
\(19\) 5.15356 1.18231 0.591154 0.806559i \(-0.298673\pi\)
0.591154 + 0.806559i \(0.298673\pi\)
\(20\) 0 0
\(21\) −0.944401 −0.206085
\(22\) 0 0
\(23\) 4.18873 0.873411 0.436705 0.899605i \(-0.356145\pi\)
0.436705 + 0.899605i \(0.356145\pi\)
\(24\) 0 0
\(25\) 4.84297 0.968594
\(26\) 0 0
\(27\) 4.82410i 0.928399i
\(28\) 0 0
\(29\) 2.22655i 0.413460i −0.978398 0.206730i \(-0.933718\pi\)
0.978398 0.206730i \(-0.0662821\pi\)
\(30\) 0 0
\(31\) 7.61759i 1.36816i −0.729408 0.684079i \(-0.760204\pi\)
0.729408 0.684079i \(-0.239796\pi\)
\(32\) 0 0
\(33\) 0.631795i 0.109981i
\(34\) 0 0
\(35\) 3.13735i 0.530309i
\(36\) 0 0
\(37\) 10.8069 1.77665 0.888326 0.459214i \(-0.151869\pi\)
0.888326 + 0.459214i \(0.151869\pi\)
\(38\) 0 0
\(39\) 1.28681 3.15258i 0.206054 0.504817i
\(40\) 0 0
\(41\) 11.2974i 1.76436i 0.470909 + 0.882182i \(0.343926\pi\)
−0.470909 + 0.882182i \(0.656074\pi\)
\(42\) 0 0
\(43\) 6.14812i 0.937580i 0.883310 + 0.468790i \(0.155310\pi\)
−0.883310 + 0.468790i \(0.844690\pi\)
\(44\) 0 0
\(45\) 6.61387 0.985938
\(46\) 0 0
\(47\) 11.4840i 1.67511i 0.546349 + 0.837557i \(0.316017\pi\)
−0.546349 + 0.837557i \(0.683983\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 2.73519i 0.383003i
\(52\) 0 0
\(53\) 3.09234i 0.424766i 0.977187 + 0.212383i \(0.0681224\pi\)
−0.977187 + 0.212383i \(0.931878\pi\)
\(54\) 0 0
\(55\) −2.09886 −0.283010
\(56\) 0 0
\(57\) 4.86703i 0.644654i
\(58\) 0 0
\(59\) 12.7056 1.65413 0.827067 0.562103i \(-0.190008\pi\)
0.827067 + 0.562103i \(0.190008\pi\)
\(60\) 0 0
\(61\) 11.0620i 1.41634i −0.706041 0.708171i \(-0.749520\pi\)
0.706041 0.708171i \(-0.250480\pi\)
\(62\) 0 0
\(63\) 2.10811i 0.265596i
\(64\) 0 0
\(65\) −10.4730 4.27484i −1.29902 0.530228i
\(66\) 0 0
\(67\) −6.94022 −0.847883 −0.423942 0.905690i \(-0.639354\pi\)
−0.423942 + 0.905690i \(0.639354\pi\)
\(68\) 0 0
\(69\) 3.95584i 0.476227i
\(70\) 0 0
\(71\) 7.81277i 0.927205i −0.886043 0.463602i \(-0.846557\pi\)
0.886043 0.463602i \(-0.153443\pi\)
\(72\) 0 0
\(73\) 10.3939i 1.21652i 0.793739 + 0.608259i \(0.208132\pi\)
−0.793739 + 0.608259i \(0.791868\pi\)
\(74\) 0 0
\(75\) 4.57371i 0.528126i
\(76\) 0 0
\(77\) 0.668990i 0.0762385i
\(78\) 0 0
\(79\) 13.1329 1.47757 0.738783 0.673944i \(-0.235401\pi\)
0.738783 + 0.673944i \(0.235401\pi\)
\(80\) 0 0
\(81\) 1.76843 0.196492
\(82\) 0 0
\(83\) −5.56860 −0.611233 −0.305617 0.952155i \(-0.598863\pi\)
−0.305617 + 0.952155i \(0.598863\pi\)
\(84\) 0 0
\(85\) −9.08645 −0.985564
\(86\) 0 0
\(87\) 2.10276 0.225439
\(88\) 0 0
\(89\) 0.496967i 0.0526784i 0.999653 + 0.0263392i \(0.00838500\pi\)
−0.999653 + 0.0263392i \(0.991615\pi\)
\(90\) 0 0
\(91\) 1.36256 3.33818i 0.142835 0.349936i
\(92\) 0 0
\(93\) 7.19406 0.745989
\(94\) 0 0
\(95\) 16.1685 1.65886
\(96\) 0 0
\(97\) 1.71943i 0.174582i 0.996183 + 0.0872911i \(0.0278210\pi\)
−0.996183 + 0.0872911i \(0.972179\pi\)
\(98\) 0 0
\(99\) −1.41030 −0.141741
\(100\) 0 0
\(101\) 19.5040i 1.94072i −0.241661 0.970361i \(-0.577692\pi\)
0.241661 0.970361i \(-0.422308\pi\)
\(102\) 0 0
\(103\) −8.67472 −0.854745 −0.427373 0.904076i \(-0.640561\pi\)
−0.427373 + 0.904076i \(0.640561\pi\)
\(104\) 0 0
\(105\) −2.96292 −0.289151
\(106\) 0 0
\(107\) 11.9973i 1.15982i −0.814681 0.579910i \(-0.803088\pi\)
0.814681 0.579910i \(-0.196912\pi\)
\(108\) 0 0
\(109\) −0.388646 −0.0372255 −0.0186128 0.999827i \(-0.505925\pi\)
−0.0186128 + 0.999827i \(0.505925\pi\)
\(110\) 0 0
\(111\) 10.2061i 0.968720i
\(112\) 0 0
\(113\) 4.53657 0.426764 0.213382 0.976969i \(-0.431552\pi\)
0.213382 + 0.976969i \(0.431552\pi\)
\(114\) 0 0
\(115\) 13.1415 1.22545
\(116\) 0 0
\(117\) −7.03723 2.87243i −0.650592 0.265556i
\(118\) 0 0
\(119\) 2.89622i 0.265496i
\(120\) 0 0
\(121\) −10.5525 −0.959314
\(122\) 0 0
\(123\) −10.6693 −0.962020
\(124\) 0 0
\(125\) −0.492652 −0.0440641
\(126\) 0 0
\(127\) −6.72796 −0.597010 −0.298505 0.954408i \(-0.596488\pi\)
−0.298505 + 0.954408i \(0.596488\pi\)
\(128\) 0 0
\(129\) −5.80629 −0.511216
\(130\) 0 0
\(131\) 2.37392i 0.207410i −0.994608 0.103705i \(-0.966930\pi\)
0.994608 0.103705i \(-0.0330698\pi\)
\(132\) 0 0
\(133\) 5.15356i 0.446870i
\(134\) 0 0
\(135\) 15.1349i 1.30260i
\(136\) 0 0
\(137\) 16.0179i 1.36850i 0.729246 + 0.684251i \(0.239871\pi\)
−0.729246 + 0.684251i \(0.760129\pi\)
\(138\) 0 0
\(139\) 0.193116i 0.0163798i 0.999966 + 0.00818992i \(0.00260696\pi\)
−0.999966 + 0.00818992i \(0.997393\pi\)
\(140\) 0 0
\(141\) −10.8455 −0.913357
\(142\) 0 0
\(143\) 2.23321 + 0.911540i 0.186750 + 0.0762268i
\(144\) 0 0
\(145\) 6.98547i 0.580111i
\(146\) 0 0
\(147\) 0.944401i 0.0778929i
\(148\) 0 0
\(149\) −13.1609 −1.07819 −0.539093 0.842246i \(-0.681233\pi\)
−0.539093 + 0.842246i \(0.681233\pi\)
\(150\) 0 0
\(151\) 22.8188i 1.85697i 0.371374 + 0.928483i \(0.378887\pi\)
−0.371374 + 0.928483i \(0.621113\pi\)
\(152\) 0 0
\(153\) −6.10553 −0.493603
\(154\) 0 0
\(155\) 23.8990i 1.91962i
\(156\) 0 0
\(157\) 6.81439i 0.543847i 0.962319 + 0.271924i \(0.0876598\pi\)
−0.962319 + 0.271924i \(0.912340\pi\)
\(158\) 0 0
\(159\) −2.92041 −0.231604
\(160\) 0 0
\(161\) 4.18873i 0.330118i
\(162\) 0 0
\(163\) 19.5692 1.53278 0.766390 0.642376i \(-0.222051\pi\)
0.766390 + 0.642376i \(0.222051\pi\)
\(164\) 0 0
\(165\) 1.98216i 0.154311i
\(166\) 0 0
\(167\) 12.6160i 0.976257i 0.872772 + 0.488129i \(0.162320\pi\)
−0.872772 + 0.488129i \(0.837680\pi\)
\(168\) 0 0
\(169\) 9.28685 + 9.09695i 0.714373 + 0.699765i
\(170\) 0 0
\(171\) 10.8643 0.830810
\(172\) 0 0
\(173\) 20.5720i 1.56406i −0.623239 0.782031i \(-0.714184\pi\)
0.623239 0.782031i \(-0.285816\pi\)
\(174\) 0 0
\(175\) 4.84297i 0.366094i
\(176\) 0 0
\(177\) 11.9992i 0.901917i
\(178\) 0 0
\(179\) 0.669511i 0.0500416i 0.999687 + 0.0250208i \(0.00796519\pi\)
−0.999687 + 0.0250208i \(0.992035\pi\)
\(180\) 0 0
\(181\) 6.65770i 0.494863i 0.968905 + 0.247432i \(0.0795865\pi\)
−0.968905 + 0.247432i \(0.920413\pi\)
\(182\) 0 0
\(183\) 10.4470 0.772261
\(184\) 0 0
\(185\) 33.9052 2.49276
\(186\) 0 0
\(187\) 1.93754 0.141687
\(188\) 0 0
\(189\) −4.82410 −0.350902
\(190\) 0 0
\(191\) −8.68661 −0.628541 −0.314271 0.949333i \(-0.601760\pi\)
−0.314271 + 0.949333i \(0.601760\pi\)
\(192\) 0 0
\(193\) 8.69805i 0.626099i −0.949737 0.313050i \(-0.898649\pi\)
0.949737 0.313050i \(-0.101351\pi\)
\(194\) 0 0
\(195\) 4.03716 9.89074i 0.289107 0.708291i
\(196\) 0 0
\(197\) 0.999335 0.0711997 0.0355999 0.999366i \(-0.488666\pi\)
0.0355999 + 0.999366i \(0.488666\pi\)
\(198\) 0 0
\(199\) −2.44311 −0.173187 −0.0865936 0.996244i \(-0.527598\pi\)
−0.0865936 + 0.996244i \(0.527598\pi\)
\(200\) 0 0
\(201\) 6.55435i 0.462309i
\(202\) 0 0
\(203\) 2.22655 0.156273
\(204\) 0 0
\(205\) 35.4440i 2.47552i
\(206\) 0 0
\(207\) 8.83029 0.613747
\(208\) 0 0
\(209\) −3.44768 −0.238481
\(210\) 0 0
\(211\) 4.07413i 0.280474i −0.990118 0.140237i \(-0.955213\pi\)
0.990118 0.140237i \(-0.0447865\pi\)
\(212\) 0 0
\(213\) 7.37839 0.505559
\(214\) 0 0
\(215\) 19.2888i 1.31549i
\(216\) 0 0
\(217\) 7.61759 0.517115
\(218\) 0 0
\(219\) −9.81605 −0.663307
\(220\) 0 0
\(221\) 9.66808 + 3.94627i 0.650345 + 0.265455i
\(222\) 0 0
\(223\) 15.4424i 1.03410i −0.855956 0.517049i \(-0.827030\pi\)
0.855956 0.517049i \(-0.172970\pi\)
\(224\) 0 0
\(225\) 10.2095 0.680633
\(226\) 0 0
\(227\) −18.8950 −1.25411 −0.627054 0.778976i \(-0.715739\pi\)
−0.627054 + 0.778976i \(0.715739\pi\)
\(228\) 0 0
\(229\) 15.5007 1.02432 0.512158 0.858891i \(-0.328846\pi\)
0.512158 + 0.858891i \(0.328846\pi\)
\(230\) 0 0
\(231\) 0.631795 0.0415690
\(232\) 0 0
\(233\) 11.3719 0.744995 0.372497 0.928033i \(-0.378502\pi\)
0.372497 + 0.928033i \(0.378502\pi\)
\(234\) 0 0
\(235\) 36.0294i 2.35030i
\(236\) 0 0
\(237\) 12.4027i 0.805643i
\(238\) 0 0
\(239\) 6.26097i 0.404989i 0.979283 + 0.202494i \(0.0649048\pi\)
−0.979283 + 0.202494i \(0.935095\pi\)
\(240\) 0 0
\(241\) 17.2558i 1.11155i −0.831334 0.555773i \(-0.812422\pi\)
0.831334 0.555773i \(-0.187578\pi\)
\(242\) 0 0
\(243\) 16.1424i 1.03554i
\(244\) 0 0
\(245\) −3.13735 −0.200438
\(246\) 0 0
\(247\) −17.2035 7.02205i −1.09463 0.446802i
\(248\) 0 0
\(249\) 5.25899i 0.333275i
\(250\) 0 0
\(251\) 0.276960i 0.0174816i −0.999962 0.00874078i \(-0.997218\pi\)
0.999962 0.00874078i \(-0.00278231\pi\)
\(252\) 0 0
\(253\) −2.80222 −0.176174
\(254\) 0 0
\(255\) 8.58125i 0.537379i
\(256\) 0 0
\(257\) 2.29506 0.143162 0.0715810 0.997435i \(-0.477196\pi\)
0.0715810 + 0.997435i \(0.477196\pi\)
\(258\) 0 0
\(259\) 10.8069i 0.671511i
\(260\) 0 0
\(261\) 4.69380i 0.290539i
\(262\) 0 0
\(263\) −17.5631 −1.08299 −0.541495 0.840704i \(-0.682142\pi\)
−0.541495 + 0.840704i \(0.682142\pi\)
\(264\) 0 0
\(265\) 9.70176i 0.595974i
\(266\) 0 0
\(267\) −0.469337 −0.0287229
\(268\) 0 0
\(269\) 14.8418i 0.904920i 0.891785 + 0.452460i \(0.149454\pi\)
−0.891785 + 0.452460i \(0.850546\pi\)
\(270\) 0 0
\(271\) 1.11711i 0.0678595i −0.999424 0.0339298i \(-0.989198\pi\)
0.999424 0.0339298i \(-0.0108022\pi\)
\(272\) 0 0
\(273\) 3.15258 + 1.28681i 0.190803 + 0.0778810i
\(274\) 0 0
\(275\) −3.23990 −0.195373
\(276\) 0 0
\(277\) 23.9638i 1.43985i −0.694053 0.719924i \(-0.744177\pi\)
0.694053 0.719924i \(-0.255823\pi\)
\(278\) 0 0
\(279\) 16.0587i 0.961408i
\(280\) 0 0
\(281\) 17.3694i 1.03617i 0.855329 + 0.518085i \(0.173355\pi\)
−0.855329 + 0.518085i \(0.826645\pi\)
\(282\) 0 0
\(283\) 11.8138i 0.702260i −0.936327 0.351130i \(-0.885798\pi\)
0.936327 0.351130i \(-0.114202\pi\)
\(284\) 0 0
\(285\) 15.2696i 0.904492i
\(286\) 0 0
\(287\) −11.2974 −0.666867
\(288\) 0 0
\(289\) −8.61193 −0.506584
\(290\) 0 0
\(291\) −1.62384 −0.0951910
\(292\) 0 0
\(293\) 2.89026 0.168851 0.0844253 0.996430i \(-0.473095\pi\)
0.0844253 + 0.996430i \(0.473095\pi\)
\(294\) 0 0
\(295\) 39.8621 2.32086
\(296\) 0 0
\(297\) 3.22727i 0.187265i
\(298\) 0 0
\(299\) −13.9827 5.70741i −0.808642 0.330068i
\(300\) 0 0
\(301\) −6.14812 −0.354372
\(302\) 0 0
\(303\) 18.4196 1.05818
\(304\) 0 0
\(305\) 34.7053i 1.98722i
\(306\) 0 0
\(307\) −5.74500 −0.327885 −0.163942 0.986470i \(-0.552421\pi\)
−0.163942 + 0.986470i \(0.552421\pi\)
\(308\) 0 0
\(309\) 8.19241i 0.466050i
\(310\) 0 0
\(311\) −25.1524 −1.42626 −0.713130 0.701032i \(-0.752723\pi\)
−0.713130 + 0.701032i \(0.752723\pi\)
\(312\) 0 0
\(313\) −16.8673 −0.953394 −0.476697 0.879068i \(-0.658166\pi\)
−0.476697 + 0.879068i \(0.658166\pi\)
\(314\) 0 0
\(315\) 6.61387i 0.372649i
\(316\) 0 0
\(317\) 33.6163 1.88808 0.944038 0.329835i \(-0.106993\pi\)
0.944038 + 0.329835i \(0.106993\pi\)
\(318\) 0 0
\(319\) 1.48954i 0.0833981i
\(320\) 0 0
\(321\) 11.3302 0.632392
\(322\) 0 0
\(323\) −14.9258 −0.830495
\(324\) 0 0
\(325\) −16.1667 6.59885i −0.896767 0.366038i
\(326\) 0 0
\(327\) 0.367038i 0.0202972i
\(328\) 0 0
\(329\) −11.4840 −0.633134
\(330\) 0 0
\(331\) −3.85492 −0.211885 −0.105943 0.994372i \(-0.533786\pi\)
−0.105943 + 0.994372i \(0.533786\pi\)
\(332\) 0 0
\(333\) 22.7822 1.24846
\(334\) 0 0
\(335\) −21.7739 −1.18964
\(336\) 0 0
\(337\) 21.3854 1.16494 0.582469 0.812853i \(-0.302087\pi\)
0.582469 + 0.812853i \(0.302087\pi\)
\(338\) 0 0
\(339\) 4.28434i 0.232693i
\(340\) 0 0
\(341\) 5.09609i 0.275969i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 12.4109i 0.668178i
\(346\) 0 0
\(347\) 12.0550i 0.647147i −0.946203 0.323574i \(-0.895116\pi\)
0.946203 0.323574i \(-0.104884\pi\)
\(348\) 0 0
\(349\) −6.05799 −0.324277 −0.162138 0.986768i \(-0.551839\pi\)
−0.162138 + 0.986768i \(0.551839\pi\)
\(350\) 0 0
\(351\) 6.57314 16.1037i 0.350848 0.859552i
\(352\) 0 0
\(353\) 24.1344i 1.28454i 0.766477 + 0.642272i \(0.222008\pi\)
−0.766477 + 0.642272i \(0.777992\pi\)
\(354\) 0 0
\(355\) 24.5114i 1.30093i
\(356\) 0 0
\(357\) 2.73519 0.144762
\(358\) 0 0
\(359\) 11.6331i 0.613972i −0.951714 0.306986i \(-0.900680\pi\)
0.951714 0.306986i \(-0.0993204\pi\)
\(360\) 0 0
\(361\) 7.55918 0.397852
\(362\) 0 0
\(363\) 9.96575i 0.523066i
\(364\) 0 0
\(365\) 32.6094i 1.70686i
\(366\) 0 0
\(367\) 25.1559 1.31313 0.656563 0.754271i \(-0.272010\pi\)
0.656563 + 0.754271i \(0.272010\pi\)
\(368\) 0 0
\(369\) 23.8162i 1.23982i
\(370\) 0 0
\(371\) −3.09234 −0.160546
\(372\) 0 0
\(373\) 2.65813i 0.137633i 0.997629 + 0.0688165i \(0.0219223\pi\)
−0.997629 + 0.0688165i \(0.978078\pi\)
\(374\) 0 0
\(375\) 0.465261i 0.0240260i
\(376\) 0 0
\(377\) −3.03381 + 7.43261i −0.156249 + 0.382799i
\(378\) 0 0
\(379\) −1.58415 −0.0813722 −0.0406861 0.999172i \(-0.512954\pi\)
−0.0406861 + 0.999172i \(0.512954\pi\)
\(380\) 0 0
\(381\) 6.35389i 0.325520i
\(382\) 0 0
\(383\) 1.72059i 0.0879183i −0.999033 0.0439591i \(-0.986003\pi\)
0.999033 0.0439591i \(-0.0139971\pi\)
\(384\) 0 0
\(385\) 2.09886i 0.106968i
\(386\) 0 0
\(387\) 12.9609i 0.658839i
\(388\) 0 0
\(389\) 1.96218i 0.0994865i −0.998762 0.0497433i \(-0.984160\pi\)
0.998762 0.0497433i \(-0.0158403\pi\)
\(390\) 0 0
\(391\) −12.1315 −0.613515
\(392\) 0 0
\(393\) 2.24193 0.113091
\(394\) 0 0
\(395\) 41.2025 2.07312
\(396\) 0 0
\(397\) 0.871142 0.0437214 0.0218607 0.999761i \(-0.493041\pi\)
0.0218607 + 0.999761i \(0.493041\pi\)
\(398\) 0 0
\(399\) −4.86703 −0.243656
\(400\) 0 0
\(401\) 26.9824i 1.34744i −0.738988 0.673718i \(-0.764696\pi\)
0.738988 0.673718i \(-0.235304\pi\)
\(402\) 0 0
\(403\) −10.3794 + 25.4288i −0.517036 + 1.26670i
\(404\) 0 0
\(405\) 5.54819 0.275692
\(406\) 0 0
\(407\) −7.22974 −0.358365
\(408\) 0 0
\(409\) 14.8879i 0.736158i −0.929794 0.368079i \(-0.880016\pi\)
0.929794 0.368079i \(-0.119984\pi\)
\(410\) 0 0
\(411\) −15.1273 −0.746177
\(412\) 0 0
\(413\) 12.7056i 0.625204i
\(414\) 0 0
\(415\) −17.4707 −0.857601
\(416\) 0 0
\(417\) −0.182379 −0.00893112
\(418\) 0 0
\(419\) 24.4546i 1.19468i −0.801987 0.597342i \(-0.796224\pi\)
0.801987 0.597342i \(-0.203776\pi\)
\(420\) 0 0
\(421\) −17.3706 −0.846591 −0.423296 0.905992i \(-0.639127\pi\)
−0.423296 + 0.905992i \(0.639127\pi\)
\(422\) 0 0
\(423\) 24.2095i 1.17711i
\(424\) 0 0
\(425\) −14.0263 −0.680375
\(426\) 0 0
\(427\) 11.0620 0.535327
\(428\) 0 0
\(429\) −0.860860 + 2.10904i −0.0415627 + 0.101826i
\(430\) 0 0
\(431\) 17.7177i 0.853430i 0.904386 + 0.426715i \(0.140329\pi\)
−0.904386 + 0.426715i \(0.859671\pi\)
\(432\) 0 0
\(433\) −29.4265 −1.41415 −0.707074 0.707140i \(-0.749985\pi\)
−0.707074 + 0.707140i \(0.749985\pi\)
\(434\) 0 0
\(435\) 6.59708 0.316306
\(436\) 0 0
\(437\) 21.5869 1.03264
\(438\) 0 0
\(439\) −24.2695 −1.15832 −0.579161 0.815213i \(-0.696620\pi\)
−0.579161 + 0.815213i \(0.696620\pi\)
\(440\) 0 0
\(441\) −2.10811 −0.100386
\(442\) 0 0
\(443\) 1.33868i 0.0636027i 0.999494 + 0.0318013i \(0.0101244\pi\)
−0.999494 + 0.0318013i \(0.989876\pi\)
\(444\) 0 0
\(445\) 1.55916i 0.0739113i
\(446\) 0 0
\(447\) 12.4292i 0.587881i
\(448\) 0 0
\(449\) 15.3626i 0.725007i −0.931982 0.362503i \(-0.881922\pi\)
0.931982 0.362503i \(-0.118078\pi\)
\(450\) 0 0
\(451\) 7.55787i 0.355886i
\(452\) 0 0
\(453\) −21.5501 −1.01251
\(454\) 0 0
\(455\) 4.27484 10.4730i 0.200407 0.490983i
\(456\) 0 0
\(457\) 27.7847i 1.29971i −0.760057 0.649856i \(-0.774829\pi\)
0.760057 0.649856i \(-0.225171\pi\)
\(458\) 0 0
\(459\) 13.9716i 0.652140i
\(460\) 0 0
\(461\) −12.3083 −0.573254 −0.286627 0.958042i \(-0.592534\pi\)
−0.286627 + 0.958042i \(0.592534\pi\)
\(462\) 0 0
\(463\) 6.36404i 0.295762i −0.989005 0.147881i \(-0.952755\pi\)
0.989005 0.147881i \(-0.0472453\pi\)
\(464\) 0 0
\(465\) 22.5703 1.04667
\(466\) 0 0
\(467\) 12.0882i 0.559377i 0.960091 + 0.279688i \(0.0902311\pi\)
−0.960091 + 0.279688i \(0.909769\pi\)
\(468\) 0 0
\(469\) 6.94022i 0.320470i
\(470\) 0 0
\(471\) −6.43552 −0.296533
\(472\) 0 0
\(473\) 4.11303i 0.189117i
\(474\) 0 0
\(475\) 24.9585 1.14518
\(476\) 0 0
\(477\) 6.51898i 0.298484i
\(478\) 0 0
\(479\) 27.3750i 1.25080i −0.780305 0.625399i \(-0.784936\pi\)
0.780305 0.625399i \(-0.215064\pi\)
\(480\) 0 0
\(481\) −36.0755 14.7251i −1.64490 0.671409i
\(482\) 0 0
\(483\) −3.95584 −0.179997
\(484\) 0 0
\(485\) 5.39447i 0.244950i
\(486\) 0 0
\(487\) 5.41381i 0.245323i 0.992449 + 0.122662i \(0.0391430\pi\)
−0.992449 + 0.122662i \(0.960857\pi\)
\(488\) 0 0
\(489\) 18.4812i 0.835749i
\(490\) 0 0
\(491\) 13.9327i 0.628774i −0.949295 0.314387i \(-0.898201\pi\)
0.949295 0.314387i \(-0.101799\pi\)
\(492\) 0 0
\(493\) 6.44857i 0.290429i
\(494\) 0 0
\(495\) −4.42461 −0.198871
\(496\) 0 0
\(497\) 7.81277 0.350451
\(498\) 0 0
\(499\) −31.8347 −1.42512 −0.712558 0.701613i \(-0.752464\pi\)
−0.712558 + 0.701613i \(0.752464\pi\)
\(500\) 0 0
\(501\) −11.9146 −0.532305
\(502\) 0 0
\(503\) 8.66521 0.386362 0.193181 0.981163i \(-0.438119\pi\)
0.193181 + 0.981163i \(0.438119\pi\)
\(504\) 0 0
\(505\) 61.1909i 2.72296i
\(506\) 0 0
\(507\) −8.59117 + 8.77051i −0.381547 + 0.389512i
\(508\) 0 0
\(509\) 25.7198 1.14001 0.570004 0.821642i \(-0.306942\pi\)
0.570004 + 0.821642i \(0.306942\pi\)
\(510\) 0 0
\(511\) −10.3939 −0.459801
\(512\) 0 0
\(513\) 24.8613i 1.09765i
\(514\) 0 0
\(515\) −27.2156 −1.19926
\(516\) 0 0
\(517\) 7.68268i 0.337884i
\(518\) 0 0
\(519\) 19.4282 0.852806
\(520\) 0 0
\(521\) 16.7303 0.732968 0.366484 0.930424i \(-0.380561\pi\)
0.366484 + 0.930424i \(0.380561\pi\)
\(522\) 0 0
\(523\) 0.415884i 0.0181853i −0.999959 0.00909267i \(-0.997106\pi\)
0.999959 0.00909267i \(-0.00289433\pi\)
\(524\) 0 0
\(525\) −4.57371 −0.199613
\(526\) 0 0
\(527\) 22.0622i 0.961043i
\(528\) 0 0
\(529\) −5.45454 −0.237154
\(530\) 0 0
\(531\) 26.7849 1.16236
\(532\) 0 0
\(533\) 15.3935 37.7128i 0.666765 1.63352i
\(534\) 0 0
\(535\) 37.6396i 1.62730i
\(536\) 0 0
\(537\) −0.632287 −0.0272852
\(538\) 0 0
\(539\) 0.668990 0.0288154
\(540\) 0 0
\(541\) 0.749319 0.0322158 0.0161079 0.999870i \(-0.494872\pi\)
0.0161079 + 0.999870i \(0.494872\pi\)
\(542\) 0 0
\(543\) −6.28754 −0.269824
\(544\) 0 0
\(545\) −1.21932 −0.0522299
\(546\) 0 0
\(547\) 17.6399i 0.754227i −0.926167 0.377114i \(-0.876917\pi\)
0.926167 0.377114i \(-0.123083\pi\)
\(548\) 0 0
\(549\) 23.3198i 0.995267i
\(550\) 0 0
\(551\) 11.4747i 0.488837i
\(552\) 0 0
\(553\) 13.1329i 0.558467i
\(554\) 0 0
\(555\) 32.0201i 1.35918i
\(556\) 0 0
\(557\) 17.7594 0.752491 0.376246 0.926520i \(-0.377215\pi\)
0.376246 + 0.926520i \(0.377215\pi\)
\(558\) 0 0
\(559\) 8.37720 20.5235i 0.354318 0.868052i
\(560\) 0 0
\(561\) 1.82981i 0.0772548i
\(562\) 0 0
\(563\) 8.32427i 0.350826i −0.984495 0.175413i \(-0.943874\pi\)
0.984495 0.175413i \(-0.0561261\pi\)
\(564\) 0 0
\(565\) 14.2328 0.598779
\(566\) 0 0
\(567\) 1.76843i 0.0742672i
\(568\) 0 0
\(569\) −0.240261 −0.0100723 −0.00503613 0.999987i \(-0.501603\pi\)
−0.00503613 + 0.999987i \(0.501603\pi\)
\(570\) 0 0
\(571\) 6.53041i 0.273289i 0.990620 + 0.136644i \(0.0436318\pi\)
−0.990620 + 0.136644i \(0.956368\pi\)
\(572\) 0 0
\(573\) 8.20365i 0.342712i
\(574\) 0 0
\(575\) 20.2859 0.845981
\(576\) 0 0
\(577\) 21.3879i 0.890391i −0.895433 0.445196i \(-0.853134\pi\)
0.895433 0.445196i \(-0.146866\pi\)
\(578\) 0 0
\(579\) 8.21445 0.341381
\(580\) 0 0
\(581\) 5.56860i 0.231025i
\(582\) 0 0
\(583\) 2.06874i 0.0856786i
\(584\) 0 0
\(585\) −22.0783 9.01181i −0.912824 0.372592i
\(586\) 0 0
\(587\) −21.3987 −0.883221 −0.441610 0.897207i \(-0.645593\pi\)
−0.441610 + 0.897207i \(0.645593\pi\)
\(588\) 0 0
\(589\) 39.2577i 1.61758i
\(590\) 0 0
\(591\) 0.943774i 0.0388217i
\(592\) 0 0
\(593\) 17.8910i 0.734695i 0.930084 + 0.367348i \(0.119734\pi\)
−0.930084 + 0.367348i \(0.880266\pi\)
\(594\) 0 0
\(595\) 9.08645i 0.372508i
\(596\) 0 0
\(597\) 2.30727i 0.0944304i
\(598\) 0 0
\(599\) 20.3457 0.831304 0.415652 0.909524i \(-0.363553\pi\)
0.415652 + 0.909524i \(0.363553\pi\)
\(600\) 0 0
\(601\) −6.96098 −0.283944 −0.141972 0.989871i \(-0.545344\pi\)
−0.141972 + 0.989871i \(0.545344\pi\)
\(602\) 0 0
\(603\) −14.6307 −0.595809
\(604\) 0 0
\(605\) −33.1067 −1.34598
\(606\) 0 0
\(607\) −16.4197 −0.666454 −0.333227 0.942847i \(-0.608138\pi\)
−0.333227 + 0.942847i \(0.608138\pi\)
\(608\) 0 0
\(609\) 2.10276i 0.0852079i
\(610\) 0 0
\(611\) 15.6477 38.3357i 0.633037 1.55089i
\(612\) 0 0
\(613\) −18.6762 −0.754324 −0.377162 0.926147i \(-0.623100\pi\)
−0.377162 + 0.926147i \(0.623100\pi\)
\(614\) 0 0
\(615\) −33.4734 −1.34978
\(616\) 0 0
\(617\) 23.3338i 0.939383i −0.882830 0.469692i \(-0.844365\pi\)
0.882830 0.469692i \(-0.155635\pi\)
\(618\) 0 0
\(619\) −16.9403 −0.680888 −0.340444 0.940265i \(-0.610577\pi\)
−0.340444 + 0.940265i \(0.610577\pi\)
\(620\) 0 0
\(621\) 20.2069i 0.810873i
\(622\) 0 0
\(623\) −0.496967 −0.0199106
\(624\) 0 0
\(625\) −25.7605 −1.03042
\(626\) 0 0
\(627\) 3.25599i 0.130032i
\(628\) 0 0
\(629\) −31.2993 −1.24798
\(630\) 0 0
\(631\) 18.3836i 0.731838i −0.930647 0.365919i \(-0.880755\pi\)
0.930647 0.365919i \(-0.119245\pi\)
\(632\) 0 0
\(633\) 3.84761 0.152929
\(634\) 0 0
\(635\) −21.1080 −0.837644
\(636\) 0 0
\(637\) 3.33818 + 1.36256i 0.132263 + 0.0539867i
\(638\) 0 0
\(639\) 16.4701i 0.651549i
\(640\) 0 0
\(641\) 36.6206 1.44643 0.723213 0.690625i \(-0.242665\pi\)
0.723213 + 0.690625i \(0.242665\pi\)
\(642\) 0 0
\(643\) 29.9927 1.18280 0.591399 0.806379i \(-0.298576\pi\)
0.591399 + 0.806379i \(0.298576\pi\)
\(644\) 0 0
\(645\) −18.2164 −0.717269
\(646\) 0 0
\(647\) −34.5613 −1.35875 −0.679373 0.733793i \(-0.737748\pi\)
−0.679373 + 0.733793i \(0.737748\pi\)
\(648\) 0 0
\(649\) −8.49995 −0.333652
\(650\) 0 0
\(651\) 7.19406i 0.281957i
\(652\) 0 0
\(653\) 33.2212i 1.30004i −0.759915 0.650022i \(-0.774760\pi\)
0.759915 0.650022i \(-0.225240\pi\)
\(654\) 0 0
\(655\) 7.44782i 0.291011i
\(656\) 0 0
\(657\) 21.9115i 0.854850i
\(658\) 0 0
\(659\) 2.56000i 0.0997233i −0.998756 0.0498616i \(-0.984122\pi\)
0.998756 0.0498616i \(-0.0158780\pi\)
\(660\) 0 0
\(661\) −33.5760 −1.30596 −0.652978 0.757377i \(-0.726481\pi\)
−0.652978 + 0.757377i \(0.726481\pi\)
\(662\) 0 0
\(663\) −3.72687 + 9.13055i −0.144740 + 0.354601i
\(664\) 0 0
\(665\) 16.1685i 0.626989i
\(666\) 0 0
\(667\) 9.32641i 0.361120i
\(668\) 0 0
\(669\) 14.5838 0.563843
\(670\) 0 0
\(671\) 7.40036i 0.285688i
\(672\) 0 0
\(673\) 12.7789 0.492590 0.246295 0.969195i \(-0.420787\pi\)
0.246295 + 0.969195i \(0.420787\pi\)
\(674\) 0 0
\(675\) 23.3630i 0.899242i
\(676\) 0 0
\(677\) 2.32427i 0.0893289i −0.999002 0.0446645i \(-0.985778\pi\)
0.999002 0.0446645i \(-0.0142219\pi\)
\(678\) 0 0
\(679\) −1.71943 −0.0659858
\(680\) 0 0
\(681\) 17.8445i 0.683802i
\(682\) 0 0
\(683\) −3.42642 −0.131108 −0.0655541 0.997849i \(-0.520881\pi\)
−0.0655541 + 0.997849i \(0.520881\pi\)
\(684\) 0 0
\(685\) 50.2538i 1.92010i
\(686\) 0 0
\(687\) 14.6389i 0.558509i
\(688\) 0 0
\(689\) 4.21351 10.3228i 0.160522 0.393267i
\(690\) 0 0
\(691\) 9.36666 0.356324 0.178162 0.984001i \(-0.442985\pi\)
0.178162 + 0.984001i \(0.442985\pi\)
\(692\) 0 0
\(693\) 1.41030i 0.0535729i
\(694\) 0 0
\(695\) 0.605871i 0.0229820i
\(696\) 0 0
\(697\) 32.7198i 1.23935i
\(698\) 0 0
\(699\) 10.7396i 0.406209i
\(700\) 0 0
\(701\) 28.0448i 1.05924i 0.848235 + 0.529619i \(0.177665\pi\)
−0.848235 + 0.529619i \(0.822335\pi\)
\(702\) 0 0
\(703\) 55.6943 2.10055
\(704\) 0 0
\(705\) −34.0262 −1.28150
\(706\) 0 0
\(707\) 19.5040 0.733524
\(708\) 0 0
\(709\) −18.6985 −0.702238 −0.351119 0.936331i \(-0.614199\pi\)
−0.351119 + 0.936331i \(0.614199\pi\)
\(710\) 0 0
\(711\) 27.6855 1.03829
\(712\) 0 0
\(713\) 31.9080i 1.19496i
\(714\) 0 0
\(715\) 7.00635 + 2.85982i 0.262023 + 0.106951i
\(716\) 0 0
\(717\) −5.91287 −0.220820
\(718\) 0 0
\(719\) −13.1469 −0.490298 −0.245149 0.969485i \(-0.578837\pi\)
−0.245149 + 0.969485i \(0.578837\pi\)
\(720\) 0 0
\(721\) 8.67472i 0.323063i
\(722\) 0 0
\(723\) 16.2964 0.606071
\(724\) 0 0
\(725\) 10.7831i 0.400475i
\(726\) 0 0
\(727\) −19.0751 −0.707458 −0.353729 0.935348i \(-0.615086\pi\)
−0.353729 + 0.935348i \(0.615086\pi\)
\(728\) 0 0
\(729\) −9.93962 −0.368134
\(730\) 0 0
\(731\) 17.8063i 0.658589i
\(732\) 0 0
\(733\) −26.4358 −0.976428 −0.488214 0.872724i \(-0.662352\pi\)
−0.488214 + 0.872724i \(0.662352\pi\)
\(734\) 0 0
\(735\) 2.96292i 0.109289i
\(736\) 0 0
\(737\) 4.64294 0.171025
\(738\) 0 0
\(739\) 12.9305 0.475658 0.237829 0.971307i \(-0.423564\pi\)
0.237829 + 0.971307i \(0.423564\pi\)
\(740\) 0 0
\(741\) 6.63163 16.2470i 0.243619 0.596848i
\(742\) 0 0
\(743\) 29.1976i 1.07116i −0.844485 0.535578i \(-0.820094\pi\)
0.844485 0.535578i \(-0.179906\pi\)
\(744\) 0 0
\(745\) −41.2905 −1.51277
\(746\) 0 0
\(747\) −11.7392 −0.429515
\(748\) 0 0
\(749\) 11.9973 0.438371
\(750\) 0 0
\(751\) −22.8429 −0.833548 −0.416774 0.909010i \(-0.636839\pi\)
−0.416774 + 0.909010i \(0.636839\pi\)
\(752\) 0 0
\(753\) 0.261561 0.00953182
\(754\) 0 0
\(755\) 71.5906i 2.60545i
\(756\) 0 0
\(757\) 47.2876i 1.71870i −0.511391 0.859348i \(-0.670870\pi\)
0.511391 0.859348i \(-0.329130\pi\)
\(758\) 0 0
\(759\) 2.64642i 0.0960589i
\(760\) 0 0
\(761\) 24.2034i 0.877371i −0.898641 0.438686i \(-0.855444\pi\)
0.898641 0.438686i \(-0.144556\pi\)
\(762\) 0 0
\(763\) 0.388646i 0.0140699i
\(764\) 0 0
\(765\) −19.1552 −0.692558
\(766\) 0 0
\(767\) −42.4137 17.3122i −1.53147 0.625109i
\(768\) 0 0
\(769\) 8.16082i 0.294287i −0.989115 0.147143i \(-0.952992\pi\)
0.989115 0.147143i \(-0.0470078\pi\)
\(770\) 0 0
\(771\) 2.16746i 0.0780591i
\(772\) 0 0
\(773\) −50.7014 −1.82360 −0.911801 0.410632i \(-0.865308\pi\)
−0.911801 + 0.410632i \(0.865308\pi\)
\(774\) 0 0
\(775\) 36.8918i 1.32519i
\(776\) 0 0
\(777\) −10.2061 −0.366142
\(778\) 0 0
\(779\) 58.2220i 2.08602i
\(780\) 0 0
\(781\) 5.22666i 0.187025i
\(782\) 0 0
\(783\) 10.7411 0.383856
\(784\) 0 0
\(785\) 21.3791i 0.763054i
\(786\) 0 0
\(787\) −14.8854 −0.530607 −0.265303 0.964165i \(-0.585472\pi\)
−0.265303 + 0.964165i \(0.585472\pi\)
\(788\) 0 0
\(789\) 16.5867i 0.590501i
\(790\) 0 0
\(791\) 4.53657i 0.161302i
\(792\) 0 0
\(793\) −15.0726 + 36.9269i −0.535245 + 1.31131i
\(794\) 0 0
\(795\) −9.16235 −0.324955
\(796\) 0 0
\(797\) 38.4832i 1.36315i 0.731750 + 0.681573i \(0.238704\pi\)
−0.731750 + 0.681573i \(0.761296\pi\)
\(798\) 0 0
\(799\) 33.2602i 1.17666i
\(800\) 0 0
\(801\) 1.04766i 0.0370173i
\(802\) 0 0
\(803\) 6.95344i 0.245381i
\(804\) 0 0
\(805\) 13.1415i 0.463178i
\(806\) 0 0
\(807\) −14.0166 −0.493408
\(808\) 0 0
\(809\) −50.7774 −1.78524 −0.892619 0.450812i \(-0.851134\pi\)
−0.892619 + 0.450812i \(0.851134\pi\)
\(810\) 0 0
\(811\) −2.26857 −0.0796604 −0.0398302 0.999206i \(-0.512682\pi\)
−0.0398302 + 0.999206i \(0.512682\pi\)
\(812\) 0 0
\(813\) 1.05500 0.0370004
\(814\) 0 0
\(815\) 61.3955 2.15059
\(816\) 0 0
\(817\) 31.6847i 1.10851i
\(818\) 0 0
\(819\) 2.87243 7.03723i 0.100371 0.245901i
\(820\) 0 0
\(821\) 48.9416 1.70808 0.854038 0.520211i \(-0.174147\pi\)
0.854038 + 0.520211i \(0.174147\pi\)
\(822\) 0 0
\(823\) 49.5972 1.72885 0.864425 0.502762i \(-0.167683\pi\)
0.864425 + 0.502762i \(0.167683\pi\)
\(824\) 0 0
\(825\) 3.05976i 0.106527i
\(826\) 0 0
\(827\) 37.1376 1.29140 0.645700 0.763591i \(-0.276566\pi\)
0.645700 + 0.763591i \(0.276566\pi\)
\(828\) 0 0
\(829\) 23.4998i 0.816181i 0.912942 + 0.408090i \(0.133805\pi\)
−0.912942 + 0.408090i \(0.866195\pi\)
\(830\) 0 0
\(831\) 22.6315 0.785078
\(832\) 0 0
\(833\) 2.89622 0.100348
\(834\) 0 0
\(835\) 39.5809i 1.36975i
\(836\) 0 0
\(837\) 36.7480 1.27020
\(838\) 0 0
\(839\) 3.01174i 0.103977i −0.998648 0.0519884i \(-0.983444\pi\)
0.998648 0.0519884i \(-0.0165559\pi\)
\(840\) 0 0
\(841\) 24.0425 0.829051
\(842\) 0 0
\(843\) −16.4036 −0.564971
\(844\) 0 0
\(845\) 29.1361 + 28.5403i 1.00231 + 0.981817i
\(846\) 0 0
\(847\) 10.5525i 0.362587i
\(848\) 0 0
\(849\) 11.1570 0.382907
\(850\) 0 0
\(851\) 45.2674 1.55175
\(852\) 0 0
\(853\) −32.8970 −1.12637 −0.563186 0.826330i \(-0.690424\pi\)
−0.563186 + 0.826330i \(0.690424\pi\)
\(854\) 0 0
\(855\) 34.0850 1.16568
\(856\) 0 0
\(857\) 31.4372 1.07388 0.536938 0.843622i \(-0.319581\pi\)
0.536938 + 0.843622i \(0.319581\pi\)
\(858\) 0 0
\(859\) 49.4426i 1.68696i 0.537162 + 0.843479i \(0.319496\pi\)
−0.537162 + 0.843479i \(0.680504\pi\)
\(860\) 0 0
\(861\) 10.6693i 0.363609i
\(862\) 0 0
\(863\) 45.5941i 1.55204i 0.630708 + 0.776020i \(0.282764\pi\)
−0.630708 + 0.776020i \(0.717236\pi\)
\(864\) 0 0
\(865\) 64.5417i 2.19448i
\(866\) 0 0
\(867\) 8.13312i 0.276215i
\(868\) 0 0
\(869\) −8.78577 −0.298037
\(870\) 0 0
\(871\) 23.1677 + 9.45649i 0.785007 + 0.320421i
\(872\) 0 0
\(873\) 3.62475i 0.122679i
\(874\) 0 0
\(875\) 0.492652i 0.0166547i
\(876\) 0 0
\(877\) −54.9310 −1.85489 −0.927444 0.373963i \(-0.877999\pi\)
−0.927444 + 0.373963i \(0.877999\pi\)
\(878\) 0 0
\(879\) 2.72956i 0.0920658i
\(880\) 0 0
\(881\) −24.5274 −0.826349 −0.413175 0.910652i \(-0.635580\pi\)
−0.413175 + 0.910652i \(0.635580\pi\)
\(882\) 0 0
\(883\) 1.66721i 0.0561060i 0.999606 + 0.0280530i \(0.00893072\pi\)
−0.999606 + 0.0280530i \(0.991069\pi\)
\(884\) 0 0
\(885\) 37.6458i 1.26545i
\(886\) 0 0
\(887\) −29.2746 −0.982946 −0.491473 0.870893i \(-0.663541\pi\)
−0.491473 + 0.870893i \(0.663541\pi\)
\(888\) 0 0
\(889\) 6.72796i 0.225649i
\(890\) 0 0
\(891\) −1.18306 −0.0396341
\(892\) 0 0
\(893\) 59.1835i 1.98050i
\(894\) 0 0
\(895\) 2.10049i 0.0702116i
\(896\) 0 0
\(897\) 5.39008 13.2053i 0.179970 0.440912i
\(898\) 0 0
\(899\) −16.9609 −0.565679
\(900\) 0 0
\(901\) 8.95609i 0.298371i
\(902\) 0 0
\(903\) 5.80629i 0.193221i
\(904\) 0 0
\(905\) 20.8875i 0.694325i
\(906\) 0 0
\(907\) 33.3296i 1.10669i −0.832951 0.553346i \(-0.813351\pi\)
0.832951 0.553346i \(-0.186649\pi\)
\(908\) 0 0
\(909\) 41.1165i 1.36375i
\(910\) 0 0
\(911\) 8.37641 0.277523 0.138761 0.990326i \(-0.455688\pi\)
0.138761 + 0.990326i \(0.455688\pi\)
\(912\) 0 0
\(913\) 3.72534 0.123291
\(914\) 0 0
\(915\) 32.7758 1.08353
\(916\) 0 0
\(917\) 2.37392 0.0783938
\(918\) 0 0
\(919\) −13.0688 −0.431099 −0.215549 0.976493i \(-0.569154\pi\)
−0.215549 + 0.976493i \(0.569154\pi\)
\(920\) 0 0
\(921\) 5.42559i 0.178779i
\(922\) 0 0
\(923\) −10.6454 + 26.0804i −0.350397 + 0.858447i
\(924\) 0 0
\(925\) 52.3378 1.72085
\(926\) 0 0
\(927\) −18.2872 −0.600631
\(928\) 0 0
\(929\) 6.02154i 0.197560i 0.995109 + 0.0987802i \(0.0314941\pi\)
−0.995109 + 0.0987802i \(0.968506\pi\)
\(930\) 0 0
\(931\) −5.15356 −0.168901
\(932\) 0 0
\(933\) 23.7539i 0.777668i
\(934\) 0 0
\(935\) 6.07874 0.198796
\(936\) 0 0
\(937\) −14.7717 −0.482571 −0.241285 0.970454i \(-0.577569\pi\)
−0.241285 + 0.970454i \(0.577569\pi\)
\(938\) 0 0
\(939\) 15.9295i 0.519838i
\(940\) 0 0
\(941\) −14.3166 −0.466706 −0.233353 0.972392i \(-0.574970\pi\)
−0.233353 + 0.972392i \(0.574970\pi\)
\(942\) 0 0
\(943\) 47.3219i 1.54101i
\(944\) 0 0
\(945\) −15.1349 −0.492338
\(946\) 0 0
\(947\) −3.61569 −0.117494 −0.0587470 0.998273i \(-0.518711\pi\)
−0.0587470 + 0.998273i \(0.518711\pi\)
\(948\) 0 0
\(949\) 14.1624 34.6968i 0.459731 1.12631i
\(950\) 0 0
\(951\) 31.7472i 1.02947i
\(952\) 0 0
\(953\) 47.7347 1.54628 0.773140 0.634236i \(-0.218685\pi\)
0.773140 + 0.634236i \(0.218685\pi\)
\(954\) 0 0
\(955\) −27.2529 −0.881885
\(956\) 0 0
\(957\) −1.40672 −0.0454729
\(958\) 0 0
\(959\) −16.0179 −0.517245
\(960\) 0 0
\(961\) −27.0276 −0.871858
\(962\) 0 0
\(963\) 25.2915i 0.815008i
\(964\) 0 0
\(965\) 27.2888i 0.878458i
\(966\) 0 0
\(967\) 47.2805i 1.52044i −0.649667 0.760219i \(-0.725092\pi\)
0.649667 0.760219i \(-0.274908\pi\)
\(968\) 0 0
\(969\) 14.0960i 0.452828i
\(970\) 0 0
\(971\) 22.2449i 0.713872i 0.934129 + 0.356936i \(0.116179\pi\)
−0.934129 + 0.356936i \(0.883821\pi\)
\(972\) 0 0
\(973\) −0.193116 −0.00619100
\(974\) 0 0
\(975\) 6.23196 15.2678i 0.199583 0.488962i
\(976\) 0 0
\(977\) 54.4866i 1.74318i 0.490235 + 0.871590i \(0.336911\pi\)
−0.490235 + 0.871590i \(0.663089\pi\)
\(978\) 0 0
\(979\) 0.332466i 0.0106257i
\(980\) 0 0
\(981\) −0.819307 −0.0261585
\(982\) 0 0
\(983\) 24.2235i 0.772608i 0.922371 + 0.386304i \(0.126249\pi\)
−0.922371 + 0.386304i \(0.873751\pi\)
\(984\) 0 0
\(985\) 3.13527 0.0998979
\(986\) 0 0
\(987\) 10.8455i 0.345216i
\(988\) 0 0
\(989\) 25.7528i 0.818892i
\(990\) 0 0
\(991\) −16.4289 −0.521882 −0.260941 0.965355i \(-0.584033\pi\)
−0.260941 + 0.965355i \(0.584033\pi\)
\(992\) 0 0
\(993\) 3.64059i 0.115531i
\(994\) 0 0
\(995\) −7.66488 −0.242993
\(996\) 0 0
\(997\) 3.87312i 0.122663i 0.998117 + 0.0613315i \(0.0195347\pi\)
−0.998117 + 0.0613315i \(0.980465\pi\)
\(998\) 0 0
\(999\) 52.1338i 1.64944i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.i.a.337.18 84
4.3 odd 2 728.2.i.a.701.74 yes 84
8.3 odd 2 728.2.i.a.701.12 yes 84
8.5 even 2 inner 2912.2.i.a.337.67 84
13.12 even 2 inner 2912.2.i.a.337.68 84
52.51 odd 2 728.2.i.a.701.11 84
104.51 odd 2 728.2.i.a.701.73 yes 84
104.77 even 2 inner 2912.2.i.a.337.17 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.11 84 52.51 odd 2
728.2.i.a.701.12 yes 84 8.3 odd 2
728.2.i.a.701.73 yes 84 104.51 odd 2
728.2.i.a.701.74 yes 84 4.3 odd 2
2912.2.i.a.337.17 84 104.77 even 2 inner
2912.2.i.a.337.18 84 1.1 even 1 trivial
2912.2.i.a.337.67 84 8.5 even 2 inner
2912.2.i.a.337.68 84 13.12 even 2 inner