Properties

Label 2912.2.i.a.337.12
Level $2912$
Weight $2$
Character 2912.337
Analytic conductor $23.252$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(337,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.12
Character \(\chi\) \(=\) 2912.337
Dual form 2912.2.i.a.337.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.58847i q^{3} -3.12702 q^{5} -1.00000i q^{7} +0.476774 q^{9} -5.71492 q^{11} +(-0.942265 - 3.48025i) q^{13} -4.96717i q^{15} -2.06335 q^{17} +7.11418 q^{19} +1.58847 q^{21} +7.24092 q^{23} +4.77826 q^{25} +5.52274i q^{27} -1.66947i q^{29} -5.84705i q^{31} -9.07796i q^{33} +3.12702i q^{35} -9.75151 q^{37} +(5.52826 - 1.49676i) q^{39} +1.47733i q^{41} -2.72493i q^{43} -1.49088 q^{45} +13.5277i q^{47} -1.00000 q^{49} -3.27757i q^{51} +2.27021i q^{53} +17.8707 q^{55} +11.3006i q^{57} +8.38121 q^{59} +8.37594i q^{61} -0.476774i q^{63} +(2.94648 + 10.8828i) q^{65} +0.139962 q^{67} +11.5020i q^{69} +6.92315i q^{71} -2.08543i q^{73} +7.59011i q^{75} +5.71492i q^{77} +4.96160 q^{79} -7.34237 q^{81} +10.3016 q^{83} +6.45215 q^{85} +2.65190 q^{87} +9.56091i q^{89} +(-3.48025 + 0.942265i) q^{91} +9.28785 q^{93} -22.2462 q^{95} -1.34231i q^{97} -2.72472 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{17} + 24 q^{23} + 92 q^{25} + 24 q^{39} - 84 q^{49} - 32 q^{55} - 24 q^{65} + 40 q^{79} + 84 q^{81} + 48 q^{87} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.58847i 0.917102i 0.888668 + 0.458551i \(0.151631\pi\)
−0.888668 + 0.458551i \(0.848369\pi\)
\(4\) 0 0
\(5\) −3.12702 −1.39845 −0.699223 0.714903i \(-0.746471\pi\)
−0.699223 + 0.714903i \(0.746471\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 0.476774 0.158925
\(10\) 0 0
\(11\) −5.71492 −1.72311 −0.861556 0.507662i \(-0.830510\pi\)
−0.861556 + 0.507662i \(0.830510\pi\)
\(12\) 0 0
\(13\) −0.942265 3.48025i −0.261337 0.965248i
\(14\) 0 0
\(15\) 4.96717i 1.28252i
\(16\) 0 0
\(17\) −2.06335 −0.500437 −0.250218 0.968189i \(-0.580502\pi\)
−0.250218 + 0.968189i \(0.580502\pi\)
\(18\) 0 0
\(19\) 7.11418 1.63210 0.816052 0.577978i \(-0.196158\pi\)
0.816052 + 0.577978i \(0.196158\pi\)
\(20\) 0 0
\(21\) 1.58847 0.346632
\(22\) 0 0
\(23\) 7.24092 1.50984 0.754918 0.655819i \(-0.227676\pi\)
0.754918 + 0.655819i \(0.227676\pi\)
\(24\) 0 0
\(25\) 4.77826 0.955652
\(26\) 0 0
\(27\) 5.52274i 1.06285i
\(28\) 0 0
\(29\) 1.66947i 0.310013i −0.987913 0.155006i \(-0.950460\pi\)
0.987913 0.155006i \(-0.0495398\pi\)
\(30\) 0 0
\(31\) 5.84705i 1.05016i −0.851052 0.525081i \(-0.824035\pi\)
0.851052 0.525081i \(-0.175965\pi\)
\(32\) 0 0
\(33\) 9.07796i 1.58027i
\(34\) 0 0
\(35\) 3.12702i 0.528563i
\(36\) 0 0
\(37\) −9.75151 −1.60314 −0.801569 0.597902i \(-0.796001\pi\)
−0.801569 + 0.597902i \(0.796001\pi\)
\(38\) 0 0
\(39\) 5.52826 1.49676i 0.885230 0.239673i
\(40\) 0 0
\(41\) 1.47733i 0.230720i 0.993324 + 0.115360i \(0.0368022\pi\)
−0.993324 + 0.115360i \(0.963198\pi\)
\(42\) 0 0
\(43\) 2.72493i 0.415548i −0.978177 0.207774i \(-0.933378\pi\)
0.978177 0.207774i \(-0.0666218\pi\)
\(44\) 0 0
\(45\) −1.49088 −0.222248
\(46\) 0 0
\(47\) 13.5277i 1.97321i 0.163116 + 0.986607i \(0.447846\pi\)
−0.163116 + 0.986607i \(0.552154\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 3.27757i 0.458951i
\(52\) 0 0
\(53\) 2.27021i 0.311838i 0.987770 + 0.155919i \(0.0498339\pi\)
−0.987770 + 0.155919i \(0.950166\pi\)
\(54\) 0 0
\(55\) 17.8707 2.40968
\(56\) 0 0
\(57\) 11.3006i 1.49681i
\(58\) 0 0
\(59\) 8.38121 1.09114 0.545570 0.838065i \(-0.316313\pi\)
0.545570 + 0.838065i \(0.316313\pi\)
\(60\) 0 0
\(61\) 8.37594i 1.07243i 0.844082 + 0.536215i \(0.180146\pi\)
−0.844082 + 0.536215i \(0.819854\pi\)
\(62\) 0 0
\(63\) 0.476774i 0.0600679i
\(64\) 0 0
\(65\) 2.94648 + 10.8828i 0.365466 + 1.34985i
\(66\) 0 0
\(67\) 0.139962 0.0170991 0.00854956 0.999963i \(-0.497279\pi\)
0.00854956 + 0.999963i \(0.497279\pi\)
\(68\) 0 0
\(69\) 11.5020i 1.38467i
\(70\) 0 0
\(71\) 6.92315i 0.821627i 0.911719 + 0.410814i \(0.134755\pi\)
−0.911719 + 0.410814i \(0.865245\pi\)
\(72\) 0 0
\(73\) 2.08543i 0.244081i −0.992525 0.122040i \(-0.961056\pi\)
0.992525 0.122040i \(-0.0389438\pi\)
\(74\) 0 0
\(75\) 7.59011i 0.876430i
\(76\) 0 0
\(77\) 5.71492i 0.651275i
\(78\) 0 0
\(79\) 4.96160 0.558223 0.279112 0.960259i \(-0.409960\pi\)
0.279112 + 0.960259i \(0.409960\pi\)
\(80\) 0 0
\(81\) −7.34237 −0.815818
\(82\) 0 0
\(83\) 10.3016 1.13075 0.565374 0.824835i \(-0.308732\pi\)
0.565374 + 0.824835i \(0.308732\pi\)
\(84\) 0 0
\(85\) 6.45215 0.699834
\(86\) 0 0
\(87\) 2.65190 0.284313
\(88\) 0 0
\(89\) 9.56091i 1.01345i 0.862107 + 0.506727i \(0.169145\pi\)
−0.862107 + 0.506727i \(0.830855\pi\)
\(90\) 0 0
\(91\) −3.48025 + 0.942265i −0.364829 + 0.0987762i
\(92\) 0 0
\(93\) 9.28785 0.963105
\(94\) 0 0
\(95\) −22.2462 −2.28241
\(96\) 0 0
\(97\) 1.34231i 0.136291i −0.997675 0.0681455i \(-0.978292\pi\)
0.997675 0.0681455i \(-0.0217082\pi\)
\(98\) 0 0
\(99\) −2.72472 −0.273845
\(100\) 0 0
\(101\) 7.97650i 0.793692i −0.917885 0.396846i \(-0.870105\pi\)
0.917885 0.396846i \(-0.129895\pi\)
\(102\) 0 0
\(103\) −4.05005 −0.399063 −0.199531 0.979891i \(-0.563942\pi\)
−0.199531 + 0.979891i \(0.563942\pi\)
\(104\) 0 0
\(105\) −4.96717 −0.484746
\(106\) 0 0
\(107\) 11.3278i 1.09510i 0.836774 + 0.547548i \(0.184439\pi\)
−0.836774 + 0.547548i \(0.815561\pi\)
\(108\) 0 0
\(109\) −10.2168 −0.978588 −0.489294 0.872119i \(-0.662746\pi\)
−0.489294 + 0.872119i \(0.662746\pi\)
\(110\) 0 0
\(111\) 15.4900i 1.47024i
\(112\) 0 0
\(113\) 5.69472 0.535714 0.267857 0.963459i \(-0.413684\pi\)
0.267857 + 0.963459i \(0.413684\pi\)
\(114\) 0 0
\(115\) −22.6425 −2.11143
\(116\) 0 0
\(117\) −0.449247 1.65929i −0.0415329 0.153402i
\(118\) 0 0
\(119\) 2.06335i 0.189147i
\(120\) 0 0
\(121\) 21.6603 1.96912
\(122\) 0 0
\(123\) −2.34669 −0.211594
\(124\) 0 0
\(125\) 0.693378 0.0620176
\(126\) 0 0
\(127\) −15.2373 −1.35209 −0.676047 0.736859i \(-0.736308\pi\)
−0.676047 + 0.736859i \(0.736308\pi\)
\(128\) 0 0
\(129\) 4.32846 0.381099
\(130\) 0 0
\(131\) 9.35861i 0.817666i 0.912609 + 0.408833i \(0.134064\pi\)
−0.912609 + 0.408833i \(0.865936\pi\)
\(132\) 0 0
\(133\) 7.11418i 0.616878i
\(134\) 0 0
\(135\) 17.2697i 1.48634i
\(136\) 0 0
\(137\) 1.38971i 0.118731i −0.998236 0.0593655i \(-0.981092\pi\)
0.998236 0.0593655i \(-0.0189077\pi\)
\(138\) 0 0
\(139\) 3.04493i 0.258268i −0.991627 0.129134i \(-0.958780\pi\)
0.991627 0.129134i \(-0.0412197\pi\)
\(140\) 0 0
\(141\) −21.4883 −1.80964
\(142\) 0 0
\(143\) 5.38497 + 19.8893i 0.450314 + 1.66323i
\(144\) 0 0
\(145\) 5.22047i 0.433536i
\(146\) 0 0
\(147\) 1.58847i 0.131015i
\(148\) 0 0
\(149\) 3.72346 0.305038 0.152519 0.988301i \(-0.451262\pi\)
0.152519 + 0.988301i \(0.451262\pi\)
\(150\) 0 0
\(151\) 18.1030i 1.47320i −0.676328 0.736600i \(-0.736430\pi\)
0.676328 0.736600i \(-0.263570\pi\)
\(152\) 0 0
\(153\) −0.983753 −0.0795317
\(154\) 0 0
\(155\) 18.2839i 1.46859i
\(156\) 0 0
\(157\) 11.6727i 0.931583i 0.884894 + 0.465792i \(0.154230\pi\)
−0.884894 + 0.465792i \(0.845770\pi\)
\(158\) 0 0
\(159\) −3.60616 −0.285987
\(160\) 0 0
\(161\) 7.24092i 0.570665i
\(162\) 0 0
\(163\) 17.1521 1.34346 0.671730 0.740796i \(-0.265552\pi\)
0.671730 + 0.740796i \(0.265552\pi\)
\(164\) 0 0
\(165\) 28.3870i 2.20992i
\(166\) 0 0
\(167\) 13.2013i 1.02154i 0.859716 + 0.510772i \(0.170641\pi\)
−0.859716 + 0.510772i \(0.829359\pi\)
\(168\) 0 0
\(169\) −11.2243 + 6.55864i −0.863406 + 0.504510i
\(170\) 0 0
\(171\) 3.39186 0.259382
\(172\) 0 0
\(173\) 11.8696i 0.902430i 0.892415 + 0.451215i \(0.149009\pi\)
−0.892415 + 0.451215i \(0.850991\pi\)
\(174\) 0 0
\(175\) 4.77826i 0.361203i
\(176\) 0 0
\(177\) 13.3133i 1.00069i
\(178\) 0 0
\(179\) 3.07406i 0.229766i 0.993379 + 0.114883i \(0.0366493\pi\)
−0.993379 + 0.114883i \(0.963351\pi\)
\(180\) 0 0
\(181\) 0.896220i 0.0666155i 0.999445 + 0.0333078i \(0.0106041\pi\)
−0.999445 + 0.0333078i \(0.989396\pi\)
\(182\) 0 0
\(183\) −13.3049 −0.983527
\(184\) 0 0
\(185\) 30.4932 2.24190
\(186\) 0 0
\(187\) 11.7919 0.862309
\(188\) 0 0
\(189\) 5.52274 0.401720
\(190\) 0 0
\(191\) 9.06136 0.655657 0.327828 0.944737i \(-0.393683\pi\)
0.327828 + 0.944737i \(0.393683\pi\)
\(192\) 0 0
\(193\) 16.9037i 1.21676i −0.793647 0.608379i \(-0.791820\pi\)
0.793647 0.608379i \(-0.208180\pi\)
\(194\) 0 0
\(195\) −17.2870 + 4.68039i −1.23795 + 0.335170i
\(196\) 0 0
\(197\) 15.2870 1.08915 0.544575 0.838712i \(-0.316691\pi\)
0.544575 + 0.838712i \(0.316691\pi\)
\(198\) 0 0
\(199\) 18.3528 1.30100 0.650498 0.759508i \(-0.274560\pi\)
0.650498 + 0.759508i \(0.274560\pi\)
\(200\) 0 0
\(201\) 0.222325i 0.0156816i
\(202\) 0 0
\(203\) −1.66947 −0.117174
\(204\) 0 0
\(205\) 4.61964i 0.322650i
\(206\) 0 0
\(207\) 3.45228 0.239950
\(208\) 0 0
\(209\) −40.6570 −2.81230
\(210\) 0 0
\(211\) 18.2550i 1.25672i 0.777921 + 0.628362i \(0.216274\pi\)
−0.777921 + 0.628362i \(0.783726\pi\)
\(212\) 0 0
\(213\) −10.9972 −0.753516
\(214\) 0 0
\(215\) 8.52091i 0.581121i
\(216\) 0 0
\(217\) −5.84705 −0.396924
\(218\) 0 0
\(219\) 3.31263 0.223847
\(220\) 0 0
\(221\) 1.94423 + 7.18098i 0.130783 + 0.483045i
\(222\) 0 0
\(223\) 7.07767i 0.473956i 0.971515 + 0.236978i \(0.0761570\pi\)
−0.971515 + 0.236978i \(0.923843\pi\)
\(224\) 0 0
\(225\) 2.27815 0.151877
\(226\) 0 0
\(227\) −8.47553 −0.562541 −0.281270 0.959629i \(-0.590756\pi\)
−0.281270 + 0.959629i \(0.590756\pi\)
\(228\) 0 0
\(229\) 29.3790 1.94142 0.970709 0.240260i \(-0.0772327\pi\)
0.970709 + 0.240260i \(0.0772327\pi\)
\(230\) 0 0
\(231\) −9.07796 −0.597286
\(232\) 0 0
\(233\) 0.232073 0.0152036 0.00760180 0.999971i \(-0.497580\pi\)
0.00760180 + 0.999971i \(0.497580\pi\)
\(234\) 0 0
\(235\) 42.3013i 2.75943i
\(236\) 0 0
\(237\) 7.88133i 0.511947i
\(238\) 0 0
\(239\) 22.7221i 1.46977i 0.678193 + 0.734884i \(0.262763\pi\)
−0.678193 + 0.734884i \(0.737237\pi\)
\(240\) 0 0
\(241\) 6.78095i 0.436800i 0.975859 + 0.218400i \(0.0700837\pi\)
−0.975859 + 0.218400i \(0.929916\pi\)
\(242\) 0 0
\(243\) 4.90512i 0.314663i
\(244\) 0 0
\(245\) 3.12702 0.199778
\(246\) 0 0
\(247\) −6.70344 24.7591i −0.426530 1.57539i
\(248\) 0 0
\(249\) 16.3638i 1.03701i
\(250\) 0 0
\(251\) 3.20949i 0.202582i −0.994857 0.101291i \(-0.967703\pi\)
0.994857 0.101291i \(-0.0322972\pi\)
\(252\) 0 0
\(253\) −41.3813 −2.60162
\(254\) 0 0
\(255\) 10.2490i 0.641819i
\(256\) 0 0
\(257\) 13.4708 0.840288 0.420144 0.907457i \(-0.361980\pi\)
0.420144 + 0.907457i \(0.361980\pi\)
\(258\) 0 0
\(259\) 9.75151i 0.605929i
\(260\) 0 0
\(261\) 0.795960i 0.0492687i
\(262\) 0 0
\(263\) −17.7133 −1.09225 −0.546125 0.837704i \(-0.683897\pi\)
−0.546125 + 0.837704i \(0.683897\pi\)
\(264\) 0 0
\(265\) 7.09901i 0.436088i
\(266\) 0 0
\(267\) −15.1872 −0.929440
\(268\) 0 0
\(269\) 4.99183i 0.304357i −0.988353 0.152178i \(-0.951371\pi\)
0.988353 0.152178i \(-0.0486289\pi\)
\(270\) 0 0
\(271\) 21.5931i 1.31169i 0.754896 + 0.655845i \(0.227687\pi\)
−0.754896 + 0.655845i \(0.772313\pi\)
\(272\) 0 0
\(273\) −1.49676 5.52826i −0.0905878 0.334586i
\(274\) 0 0
\(275\) −27.3074 −1.64670
\(276\) 0 0
\(277\) 23.4358i 1.40812i 0.710139 + 0.704061i \(0.248632\pi\)
−0.710139 + 0.704061i \(0.751368\pi\)
\(278\) 0 0
\(279\) 2.78772i 0.166897i
\(280\) 0 0
\(281\) 16.9262i 1.00973i −0.863197 0.504867i \(-0.831541\pi\)
0.863197 0.504867i \(-0.168459\pi\)
\(282\) 0 0
\(283\) 8.33061i 0.495203i −0.968862 0.247602i \(-0.920358\pi\)
0.968862 0.247602i \(-0.0796425\pi\)
\(284\) 0 0
\(285\) 35.3373i 2.09320i
\(286\) 0 0
\(287\) 1.47733 0.0872041
\(288\) 0 0
\(289\) −12.7426 −0.749563
\(290\) 0 0
\(291\) 2.13222 0.124993
\(292\) 0 0
\(293\) 1.81142 0.105824 0.0529122 0.998599i \(-0.483150\pi\)
0.0529122 + 0.998599i \(0.483150\pi\)
\(294\) 0 0
\(295\) −26.2082 −1.52590
\(296\) 0 0
\(297\) 31.5620i 1.83141i
\(298\) 0 0
\(299\) −6.82287 25.2002i −0.394577 1.45737i
\(300\) 0 0
\(301\) −2.72493 −0.157062
\(302\) 0 0
\(303\) 12.6704 0.727896
\(304\) 0 0
\(305\) 26.1917i 1.49973i
\(306\) 0 0
\(307\) 33.0031 1.88359 0.941794 0.336192i \(-0.109139\pi\)
0.941794 + 0.336192i \(0.109139\pi\)
\(308\) 0 0
\(309\) 6.43336i 0.365981i
\(310\) 0 0
\(311\) 9.23137 0.523463 0.261732 0.965141i \(-0.415707\pi\)
0.261732 + 0.965141i \(0.415707\pi\)
\(312\) 0 0
\(313\) 20.1921 1.14133 0.570664 0.821184i \(-0.306686\pi\)
0.570664 + 0.821184i \(0.306686\pi\)
\(314\) 0 0
\(315\) 1.49088i 0.0840017i
\(316\) 0 0
\(317\) 4.03071 0.226387 0.113194 0.993573i \(-0.463892\pi\)
0.113194 + 0.993573i \(0.463892\pi\)
\(318\) 0 0
\(319\) 9.54089i 0.534187i
\(320\) 0 0
\(321\) −17.9938 −1.00431
\(322\) 0 0
\(323\) −14.6791 −0.816765
\(324\) 0 0
\(325\) −4.50239 16.6295i −0.249748 0.922441i
\(326\) 0 0
\(327\) 16.2290i 0.897465i
\(328\) 0 0
\(329\) 13.5277 0.745805
\(330\) 0 0
\(331\) 11.5976 0.637463 0.318731 0.947845i \(-0.396743\pi\)
0.318731 + 0.947845i \(0.396743\pi\)
\(332\) 0 0
\(333\) −4.64927 −0.254778
\(334\) 0 0
\(335\) −0.437665 −0.0239122
\(336\) 0 0
\(337\) −24.0032 −1.30754 −0.653769 0.756695i \(-0.726813\pi\)
−0.653769 + 0.756695i \(0.726813\pi\)
\(338\) 0 0
\(339\) 9.04588i 0.491305i
\(340\) 0 0
\(341\) 33.4154i 1.80955i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 35.9669i 1.93639i
\(346\) 0 0
\(347\) 33.8649i 1.81796i 0.416836 + 0.908982i \(0.363139\pi\)
−0.416836 + 0.908982i \(0.636861\pi\)
\(348\) 0 0
\(349\) 8.65554 0.463320 0.231660 0.972797i \(-0.425584\pi\)
0.231660 + 0.972797i \(0.425584\pi\)
\(350\) 0 0
\(351\) 19.2205 5.20388i 1.02591 0.277763i
\(352\) 0 0
\(353\) 18.6871i 0.994615i −0.867574 0.497308i \(-0.834322\pi\)
0.867574 0.497308i \(-0.165678\pi\)
\(354\) 0 0
\(355\) 21.6489i 1.14900i
\(356\) 0 0
\(357\) −3.27757 −0.173467
\(358\) 0 0
\(359\) 11.5291i 0.608485i −0.952595 0.304242i \(-0.901597\pi\)
0.952595 0.304242i \(-0.0984032\pi\)
\(360\) 0 0
\(361\) 31.6116 1.66377
\(362\) 0 0
\(363\) 34.4066i 1.80588i
\(364\) 0 0
\(365\) 6.52118i 0.341334i
\(366\) 0 0
\(367\) 23.7235 1.23836 0.619178 0.785250i \(-0.287466\pi\)
0.619178 + 0.785250i \(0.287466\pi\)
\(368\) 0 0
\(369\) 0.704353i 0.0366671i
\(370\) 0 0
\(371\) 2.27021 0.117864
\(372\) 0 0
\(373\) 0.110535i 0.00572327i 0.999996 + 0.00286163i \(0.000910888\pi\)
−0.999996 + 0.00286163i \(0.999089\pi\)
\(374\) 0 0
\(375\) 1.10141i 0.0568765i
\(376\) 0 0
\(377\) −5.81017 + 1.57308i −0.299239 + 0.0810180i
\(378\) 0 0
\(379\) −22.8948 −1.17603 −0.588014 0.808851i \(-0.700090\pi\)
−0.588014 + 0.808851i \(0.700090\pi\)
\(380\) 0 0
\(381\) 24.2040i 1.24001i
\(382\) 0 0
\(383\) 5.53185i 0.282664i −0.989962 0.141332i \(-0.954861\pi\)
0.989962 0.141332i \(-0.0451386\pi\)
\(384\) 0 0
\(385\) 17.8707i 0.910774i
\(386\) 0 0
\(387\) 1.29917i 0.0660408i
\(388\) 0 0
\(389\) 17.9481i 0.910005i −0.890490 0.455003i \(-0.849638\pi\)
0.890490 0.455003i \(-0.150362\pi\)
\(390\) 0 0
\(391\) −14.9406 −0.755578
\(392\) 0 0
\(393\) −14.8658 −0.749883
\(394\) 0 0
\(395\) −15.5150 −0.780645
\(396\) 0 0
\(397\) 27.2050 1.36538 0.682690 0.730708i \(-0.260810\pi\)
0.682690 + 0.730708i \(0.260810\pi\)
\(398\) 0 0
\(399\) 11.3006 0.565739
\(400\) 0 0
\(401\) 0.884157i 0.0441527i −0.999756 0.0220764i \(-0.992972\pi\)
0.999756 0.0220764i \(-0.00702769\pi\)
\(402\) 0 0
\(403\) −20.3492 + 5.50947i −1.01367 + 0.274446i
\(404\) 0 0
\(405\) 22.9597 1.14088
\(406\) 0 0
\(407\) 55.7291 2.76239
\(408\) 0 0
\(409\) 32.4864i 1.60635i 0.595744 + 0.803174i \(0.296857\pi\)
−0.595744 + 0.803174i \(0.703143\pi\)
\(410\) 0 0
\(411\) 2.20751 0.108888
\(412\) 0 0
\(413\) 8.38121i 0.412412i
\(414\) 0 0
\(415\) −32.2133 −1.58129
\(416\) 0 0
\(417\) 4.83678 0.236858
\(418\) 0 0
\(419\) 3.36137i 0.164214i −0.996624 0.0821068i \(-0.973835\pi\)
0.996624 0.0821068i \(-0.0261649\pi\)
\(420\) 0 0
\(421\) 1.18230 0.0576220 0.0288110 0.999585i \(-0.490828\pi\)
0.0288110 + 0.999585i \(0.490828\pi\)
\(422\) 0 0
\(423\) 6.44964i 0.313592i
\(424\) 0 0
\(425\) −9.85924 −0.478244
\(426\) 0 0
\(427\) 8.37594 0.405340
\(428\) 0 0
\(429\) −31.5936 + 8.55384i −1.52535 + 0.412983i
\(430\) 0 0
\(431\) 6.88144i 0.331467i −0.986171 0.165734i \(-0.947001\pi\)
0.986171 0.165734i \(-0.0529992\pi\)
\(432\) 0 0
\(433\) 13.0548 0.627371 0.313686 0.949527i \(-0.398436\pi\)
0.313686 + 0.949527i \(0.398436\pi\)
\(434\) 0 0
\(435\) −8.29254 −0.397597
\(436\) 0 0
\(437\) 51.5132 2.46421
\(438\) 0 0
\(439\) −11.1615 −0.532712 −0.266356 0.963875i \(-0.585820\pi\)
−0.266356 + 0.963875i \(0.585820\pi\)
\(440\) 0 0
\(441\) −0.476774 −0.0227035
\(442\) 0 0
\(443\) 37.5895i 1.78593i −0.450123 0.892966i \(-0.648620\pi\)
0.450123 0.892966i \(-0.351380\pi\)
\(444\) 0 0
\(445\) 29.8972i 1.41726i
\(446\) 0 0
\(447\) 5.91459i 0.279751i
\(448\) 0 0
\(449\) 22.7894i 1.07550i 0.843105 + 0.537749i \(0.180725\pi\)
−0.843105 + 0.537749i \(0.819275\pi\)
\(450\) 0 0
\(451\) 8.44282i 0.397557i
\(452\) 0 0
\(453\) 28.7560 1.35107
\(454\) 0 0
\(455\) 10.8828 2.94648i 0.510194 0.138133i
\(456\) 0 0
\(457\) 35.4078i 1.65630i −0.560503 0.828152i \(-0.689392\pi\)
0.560503 0.828152i \(-0.310608\pi\)
\(458\) 0 0
\(459\) 11.3954i 0.531890i
\(460\) 0 0
\(461\) 6.70049 0.312073 0.156036 0.987751i \(-0.450128\pi\)
0.156036 + 0.987751i \(0.450128\pi\)
\(462\) 0 0
\(463\) 13.1048i 0.609033i −0.952507 0.304517i \(-0.901505\pi\)
0.952507 0.304517i \(-0.0984949\pi\)
\(464\) 0 0
\(465\) −29.0433 −1.34685
\(466\) 0 0
\(467\) 36.0468i 1.66805i −0.551730 0.834023i \(-0.686032\pi\)
0.551730 0.834023i \(-0.313968\pi\)
\(468\) 0 0
\(469\) 0.139962i 0.00646286i
\(470\) 0 0
\(471\) −18.5417 −0.854356
\(472\) 0 0
\(473\) 15.5727i 0.716035i
\(474\) 0 0
\(475\) 33.9934 1.55972
\(476\) 0 0
\(477\) 1.08238i 0.0495587i
\(478\) 0 0
\(479\) 21.1536i 0.966532i 0.875474 + 0.483266i \(0.160550\pi\)
−0.875474 + 0.483266i \(0.839450\pi\)
\(480\) 0 0
\(481\) 9.18851 + 33.9377i 0.418960 + 1.54743i
\(482\) 0 0
\(483\) 11.5020 0.523358
\(484\) 0 0
\(485\) 4.19744i 0.190596i
\(486\) 0 0
\(487\) 35.8876i 1.62622i 0.582110 + 0.813110i \(0.302227\pi\)
−0.582110 + 0.813110i \(0.697773\pi\)
\(488\) 0 0
\(489\) 27.2456i 1.23209i
\(490\) 0 0
\(491\) 29.6539i 1.33826i −0.743145 0.669130i \(-0.766667\pi\)
0.743145 0.669130i \(-0.233333\pi\)
\(492\) 0 0
\(493\) 3.44471i 0.155142i
\(494\) 0 0
\(495\) 8.52027 0.382958
\(496\) 0 0
\(497\) 6.92315 0.310546
\(498\) 0 0
\(499\) 10.4844 0.469346 0.234673 0.972074i \(-0.424598\pi\)
0.234673 + 0.972074i \(0.424598\pi\)
\(500\) 0 0
\(501\) −20.9698 −0.936860
\(502\) 0 0
\(503\) −0.831971 −0.0370958 −0.0185479 0.999828i \(-0.505904\pi\)
−0.0185479 + 0.999828i \(0.505904\pi\)
\(504\) 0 0
\(505\) 24.9427i 1.10994i
\(506\) 0 0
\(507\) −10.4182 17.8294i −0.462687 0.791831i
\(508\) 0 0
\(509\) 6.83338 0.302884 0.151442 0.988466i \(-0.451608\pi\)
0.151442 + 0.988466i \(0.451608\pi\)
\(510\) 0 0
\(511\) −2.08543 −0.0922539
\(512\) 0 0
\(513\) 39.2898i 1.73469i
\(514\) 0 0
\(515\) 12.6646 0.558068
\(516\) 0 0
\(517\) 77.3095i 3.40007i
\(518\) 0 0
\(519\) −18.8545 −0.827620
\(520\) 0 0
\(521\) −15.0251 −0.658260 −0.329130 0.944285i \(-0.606755\pi\)
−0.329130 + 0.944285i \(0.606755\pi\)
\(522\) 0 0
\(523\) 39.8747i 1.74360i 0.489861 + 0.871800i \(0.337047\pi\)
−0.489861 + 0.871800i \(0.662953\pi\)
\(524\) 0 0
\(525\) 7.59011 0.331260
\(526\) 0 0
\(527\) 12.0645i 0.525539i
\(528\) 0 0
\(529\) 29.4310 1.27961
\(530\) 0 0
\(531\) 3.99594 0.173409
\(532\) 0 0
\(533\) 5.14148 1.39204i 0.222702 0.0602958i
\(534\) 0 0
\(535\) 35.4222i 1.53143i
\(536\) 0 0
\(537\) −4.88304 −0.210719
\(538\) 0 0
\(539\) 5.71492 0.246159
\(540\) 0 0
\(541\) 20.3026 0.872879 0.436439 0.899734i \(-0.356239\pi\)
0.436439 + 0.899734i \(0.356239\pi\)
\(542\) 0 0
\(543\) −1.42362 −0.0610932
\(544\) 0 0
\(545\) 31.9480 1.36850
\(546\) 0 0
\(547\) 13.5144i 0.577833i −0.957354 0.288916i \(-0.906705\pi\)
0.957354 0.288916i \(-0.0932949\pi\)
\(548\) 0 0
\(549\) 3.99343i 0.170435i
\(550\) 0 0
\(551\) 11.8769i 0.505974i
\(552\) 0 0
\(553\) 4.96160i 0.210989i
\(554\) 0 0
\(555\) 48.4374i 2.05605i
\(556\) 0 0
\(557\) −27.9302 −1.18344 −0.591720 0.806144i \(-0.701551\pi\)
−0.591720 + 0.806144i \(0.701551\pi\)
\(558\) 0 0
\(559\) −9.48343 + 2.56761i −0.401106 + 0.108598i
\(560\) 0 0
\(561\) 18.7310i 0.790825i
\(562\) 0 0
\(563\) 17.8687i 0.753076i 0.926401 + 0.376538i \(0.122886\pi\)
−0.926401 + 0.376538i \(0.877114\pi\)
\(564\) 0 0
\(565\) −17.8075 −0.749168
\(566\) 0 0
\(567\) 7.34237i 0.308350i
\(568\) 0 0
\(569\) −7.97207 −0.334207 −0.167103 0.985939i \(-0.553441\pi\)
−0.167103 + 0.985939i \(0.553441\pi\)
\(570\) 0 0
\(571\) 35.3020i 1.47734i −0.674065 0.738672i \(-0.735453\pi\)
0.674065 0.738672i \(-0.264547\pi\)
\(572\) 0 0
\(573\) 14.3937i 0.601304i
\(574\) 0 0
\(575\) 34.5990 1.44288
\(576\) 0 0
\(577\) 3.82990i 0.159441i 0.996817 + 0.0797204i \(0.0254027\pi\)
−0.996817 + 0.0797204i \(0.974597\pi\)
\(578\) 0 0
\(579\) 26.8510 1.11589
\(580\) 0 0
\(581\) 10.3016i 0.427382i
\(582\) 0 0
\(583\) 12.9741i 0.537332i
\(584\) 0 0
\(585\) 1.40481 + 5.18864i 0.0580816 + 0.214524i
\(586\) 0 0
\(587\) −32.9822 −1.36132 −0.680661 0.732599i \(-0.738307\pi\)
−0.680661 + 0.732599i \(0.738307\pi\)
\(588\) 0 0
\(589\) 41.5970i 1.71397i
\(590\) 0 0
\(591\) 24.2828i 0.998861i
\(592\) 0 0
\(593\) 9.15921i 0.376124i −0.982157 0.188062i \(-0.939779\pi\)
0.982157 0.188062i \(-0.0602205\pi\)
\(594\) 0 0
\(595\) 6.45215i 0.264512i
\(596\) 0 0
\(597\) 29.1528i 1.19315i
\(598\) 0 0
\(599\) −28.6067 −1.16884 −0.584419 0.811452i \(-0.698678\pi\)
−0.584419 + 0.811452i \(0.698678\pi\)
\(600\) 0 0
\(601\) 23.6133 0.963205 0.481603 0.876390i \(-0.340055\pi\)
0.481603 + 0.876390i \(0.340055\pi\)
\(602\) 0 0
\(603\) 0.0667304 0.00271747
\(604\) 0 0
\(605\) −67.7322 −2.75370
\(606\) 0 0
\(607\) −1.91438 −0.0777025 −0.0388512 0.999245i \(-0.512370\pi\)
−0.0388512 + 0.999245i \(0.512370\pi\)
\(608\) 0 0
\(609\) 2.65190i 0.107460i
\(610\) 0 0
\(611\) 47.0797 12.7467i 1.90464 0.515674i
\(612\) 0 0
\(613\) 5.37235 0.216987 0.108494 0.994097i \(-0.465397\pi\)
0.108494 + 0.994097i \(0.465397\pi\)
\(614\) 0 0
\(615\) 7.33815 0.295903
\(616\) 0 0
\(617\) 8.91871i 0.359054i 0.983753 + 0.179527i \(0.0574567\pi\)
−0.983753 + 0.179527i \(0.942543\pi\)
\(618\) 0 0
\(619\) −27.5206 −1.10614 −0.553072 0.833133i \(-0.686545\pi\)
−0.553072 + 0.833133i \(0.686545\pi\)
\(620\) 0 0
\(621\) 39.9897i 1.60473i
\(622\) 0 0
\(623\) 9.56091 0.383050
\(624\) 0 0
\(625\) −26.0595 −1.04238
\(626\) 0 0
\(627\) 64.5822i 2.57917i
\(628\) 0 0
\(629\) 20.1208 0.802269
\(630\) 0 0
\(631\) 28.3172i 1.12729i 0.826017 + 0.563645i \(0.190601\pi\)
−0.826017 + 0.563645i \(0.809399\pi\)
\(632\) 0 0
\(633\) −28.9974 −1.15254
\(634\) 0 0
\(635\) 47.6474 1.89083
\(636\) 0 0
\(637\) 0.942265 + 3.48025i 0.0373339 + 0.137893i
\(638\) 0 0
\(639\) 3.30078i 0.130577i
\(640\) 0 0
\(641\) −9.42420 −0.372234 −0.186117 0.982528i \(-0.559590\pi\)
−0.186117 + 0.982528i \(0.559590\pi\)
\(642\) 0 0
\(643\) −7.56475 −0.298325 −0.149162 0.988813i \(-0.547658\pi\)
−0.149162 + 0.988813i \(0.547658\pi\)
\(644\) 0 0
\(645\) −13.5352 −0.532947
\(646\) 0 0
\(647\) 3.76754 0.148117 0.0740586 0.997254i \(-0.476405\pi\)
0.0740586 + 0.997254i \(0.476405\pi\)
\(648\) 0 0
\(649\) −47.8979 −1.88016
\(650\) 0 0
\(651\) 9.28785i 0.364019i
\(652\) 0 0
\(653\) 13.6124i 0.532694i −0.963877 0.266347i \(-0.914183\pi\)
0.963877 0.266347i \(-0.0858166\pi\)
\(654\) 0 0
\(655\) 29.2646i 1.14346i
\(656\) 0 0
\(657\) 0.994278i 0.0387905i
\(658\) 0 0
\(659\) 24.9897i 0.973461i −0.873552 0.486731i \(-0.838189\pi\)
0.873552 0.486731i \(-0.161811\pi\)
\(660\) 0 0
\(661\) 3.69054 0.143545 0.0717726 0.997421i \(-0.477134\pi\)
0.0717726 + 0.997421i \(0.477134\pi\)
\(662\) 0 0
\(663\) −11.4068 + 3.08834i −0.443002 + 0.119941i
\(664\) 0 0
\(665\) 22.2462i 0.862670i
\(666\) 0 0
\(667\) 12.0885i 0.468069i
\(668\) 0 0
\(669\) −11.2426 −0.434666
\(670\) 0 0
\(671\) 47.8678i 1.84792i
\(672\) 0 0
\(673\) −22.8132 −0.879385 −0.439693 0.898148i \(-0.644913\pi\)
−0.439693 + 0.898148i \(0.644913\pi\)
\(674\) 0 0
\(675\) 26.3891i 1.01572i
\(676\) 0 0
\(677\) 28.7882i 1.10642i 0.833042 + 0.553210i \(0.186597\pi\)
−0.833042 + 0.553210i \(0.813403\pi\)
\(678\) 0 0
\(679\) −1.34231 −0.0515132
\(680\) 0 0
\(681\) 13.4631i 0.515907i
\(682\) 0 0
\(683\) 13.8519 0.530030 0.265015 0.964244i \(-0.414623\pi\)
0.265015 + 0.964244i \(0.414623\pi\)
\(684\) 0 0
\(685\) 4.34565i 0.166039i
\(686\) 0 0
\(687\) 46.6675i 1.78048i
\(688\) 0 0
\(689\) 7.90091 2.13914i 0.301001 0.0814949i
\(690\) 0 0
\(691\) −2.49342 −0.0948544 −0.0474272 0.998875i \(-0.515102\pi\)
−0.0474272 + 0.998875i \(0.515102\pi\)
\(692\) 0 0
\(693\) 2.72472i 0.103504i
\(694\) 0 0
\(695\) 9.52158i 0.361174i
\(696\) 0 0
\(697\) 3.04825i 0.115461i
\(698\) 0 0
\(699\) 0.368640i 0.0139432i
\(700\) 0 0
\(701\) 27.1472i 1.02534i −0.858587 0.512668i \(-0.828657\pi\)
0.858587 0.512668i \(-0.171343\pi\)
\(702\) 0 0
\(703\) −69.3740 −2.61649
\(704\) 0 0
\(705\) 67.1942 2.53068
\(706\) 0 0
\(707\) −7.97650 −0.299987
\(708\) 0 0
\(709\) 17.4367 0.654848 0.327424 0.944878i \(-0.393820\pi\)
0.327424 + 0.944878i \(0.393820\pi\)
\(710\) 0 0
\(711\) 2.36556 0.0887154
\(712\) 0 0
\(713\) 42.3380i 1.58557i
\(714\) 0 0
\(715\) −16.8389 62.1944i −0.629740 2.32594i
\(716\) 0 0
\(717\) −36.0932 −1.34793
\(718\) 0 0
\(719\) −8.99987 −0.335639 −0.167819 0.985818i \(-0.553673\pi\)
−0.167819 + 0.985818i \(0.553673\pi\)
\(720\) 0 0
\(721\) 4.05005i 0.150832i
\(722\) 0 0
\(723\) −10.7713 −0.400590
\(724\) 0 0
\(725\) 7.97717i 0.296265i
\(726\) 0 0
\(727\) 17.6410 0.654269 0.327135 0.944978i \(-0.393917\pi\)
0.327135 + 0.944978i \(0.393917\pi\)
\(728\) 0 0
\(729\) −29.8187 −1.10440
\(730\) 0 0
\(731\) 5.62249i 0.207955i
\(732\) 0 0
\(733\) −18.9500 −0.699933 −0.349967 0.936762i \(-0.613807\pi\)
−0.349967 + 0.936762i \(0.613807\pi\)
\(734\) 0 0
\(735\) 4.96717i 0.183217i
\(736\) 0 0
\(737\) −0.799873 −0.0294637
\(738\) 0 0
\(739\) 45.9766 1.69128 0.845638 0.533756i \(-0.179220\pi\)
0.845638 + 0.533756i \(0.179220\pi\)
\(740\) 0 0
\(741\) 39.3290 10.6482i 1.44479 0.391171i
\(742\) 0 0
\(743\) 19.1217i 0.701508i 0.936468 + 0.350754i \(0.114075\pi\)
−0.936468 + 0.350754i \(0.885925\pi\)
\(744\) 0 0
\(745\) −11.6433 −0.426579
\(746\) 0 0
\(747\) 4.91153 0.179704
\(748\) 0 0
\(749\) 11.3278 0.413908
\(750\) 0 0
\(751\) −18.2696 −0.666667 −0.333333 0.942809i \(-0.608174\pi\)
−0.333333 + 0.942809i \(0.608174\pi\)
\(752\) 0 0
\(753\) 5.09818 0.185788
\(754\) 0 0
\(755\) 56.6084i 2.06019i
\(756\) 0 0
\(757\) 20.9226i 0.760446i −0.924895 0.380223i \(-0.875847\pi\)
0.924895 0.380223i \(-0.124153\pi\)
\(758\) 0 0
\(759\) 65.7328i 2.38595i
\(760\) 0 0
\(761\) 11.7957i 0.427595i 0.976878 + 0.213798i \(0.0685833\pi\)
−0.976878 + 0.213798i \(0.931417\pi\)
\(762\) 0 0
\(763\) 10.2168i 0.369872i
\(764\) 0 0
\(765\) 3.07622 0.111221
\(766\) 0 0
\(767\) −7.89732 29.1687i −0.285156 1.05322i
\(768\) 0 0
\(769\) 20.0712i 0.723785i 0.932220 + 0.361892i \(0.117869\pi\)
−0.932220 + 0.361892i \(0.882131\pi\)
\(770\) 0 0
\(771\) 21.3980i 0.770630i
\(772\) 0 0
\(773\) −2.21427 −0.0796419 −0.0398210 0.999207i \(-0.512679\pi\)
−0.0398210 + 0.999207i \(0.512679\pi\)
\(774\) 0 0
\(775\) 27.9387i 1.00359i
\(776\) 0 0
\(777\) −15.4900 −0.555699
\(778\) 0 0
\(779\) 10.5100i 0.376560i
\(780\) 0 0
\(781\) 39.5653i 1.41576i
\(782\) 0 0
\(783\) 9.22005 0.329498
\(784\) 0 0
\(785\) 36.5008i 1.30277i
\(786\) 0 0
\(787\) 20.3879 0.726751 0.363376 0.931643i \(-0.381624\pi\)
0.363376 + 0.931643i \(0.381624\pi\)
\(788\) 0 0
\(789\) 28.1370i 1.00170i
\(790\) 0 0
\(791\) 5.69472i 0.202481i
\(792\) 0 0
\(793\) 29.1504 7.89236i 1.03516 0.280266i
\(794\) 0 0
\(795\) 11.2765 0.399937
\(796\) 0 0
\(797\) 16.3765i 0.580085i −0.957014 0.290043i \(-0.906331\pi\)
0.957014 0.290043i \(-0.0936695\pi\)
\(798\) 0 0
\(799\) 27.9124i 0.987469i
\(800\) 0 0
\(801\) 4.55839i 0.161063i
\(802\) 0 0
\(803\) 11.9180i 0.420579i
\(804\) 0 0
\(805\) 22.6425i 0.798044i
\(806\) 0 0
\(807\) 7.92935 0.279126
\(808\) 0 0
\(809\) 25.7490 0.905286 0.452643 0.891692i \(-0.350481\pi\)
0.452643 + 0.891692i \(0.350481\pi\)
\(810\) 0 0
\(811\) 16.1352 0.566583 0.283292 0.959034i \(-0.408574\pi\)
0.283292 + 0.959034i \(0.408574\pi\)
\(812\) 0 0
\(813\) −34.3000 −1.20295
\(814\) 0 0
\(815\) −53.6351 −1.87876
\(816\) 0 0
\(817\) 19.3856i 0.678217i
\(818\) 0 0
\(819\) −1.65929 + 0.449247i −0.0579804 + 0.0156980i
\(820\) 0 0
\(821\) 2.63810 0.0920704 0.0460352 0.998940i \(-0.485341\pi\)
0.0460352 + 0.998940i \(0.485341\pi\)
\(822\) 0 0
\(823\) 50.7066 1.76752 0.883760 0.467940i \(-0.155004\pi\)
0.883760 + 0.467940i \(0.155004\pi\)
\(824\) 0 0
\(825\) 43.3769i 1.51019i
\(826\) 0 0
\(827\) −14.2904 −0.496924 −0.248462 0.968642i \(-0.579925\pi\)
−0.248462 + 0.968642i \(0.579925\pi\)
\(828\) 0 0
\(829\) 45.1542i 1.56827i −0.620591 0.784134i \(-0.713107\pi\)
0.620591 0.784134i \(-0.286893\pi\)
\(830\) 0 0
\(831\) −37.2270 −1.29139
\(832\) 0 0
\(833\) 2.06335 0.0714910
\(834\) 0 0
\(835\) 41.2806i 1.42858i
\(836\) 0 0
\(837\) 32.2917 1.11617
\(838\) 0 0
\(839\) 23.2329i 0.802090i −0.916058 0.401045i \(-0.868647\pi\)
0.916058 0.401045i \(-0.131353\pi\)
\(840\) 0 0
\(841\) 26.2129 0.903892
\(842\) 0 0
\(843\) 26.8868 0.926029
\(844\) 0 0
\(845\) 35.0985 20.5090i 1.20743 0.705531i
\(846\) 0 0
\(847\) 21.6603i 0.744256i
\(848\) 0 0
\(849\) 13.2329 0.454152
\(850\) 0 0
\(851\) −70.6099 −2.42048
\(852\) 0 0
\(853\) −31.4442 −1.07663 −0.538315 0.842744i \(-0.680939\pi\)
−0.538315 + 0.842744i \(0.680939\pi\)
\(854\) 0 0
\(855\) −10.6064 −0.362731
\(856\) 0 0
\(857\) −31.3725 −1.07166 −0.535832 0.844324i \(-0.680002\pi\)
−0.535832 + 0.844324i \(0.680002\pi\)
\(858\) 0 0
\(859\) 3.80519i 0.129831i −0.997891 0.0649157i \(-0.979322\pi\)
0.997891 0.0649157i \(-0.0206778\pi\)
\(860\) 0 0
\(861\) 2.34669i 0.0799750i
\(862\) 0 0
\(863\) 23.0017i 0.782987i 0.920181 + 0.391494i \(0.128042\pi\)
−0.920181 + 0.391494i \(0.871958\pi\)
\(864\) 0 0
\(865\) 37.1165i 1.26200i
\(866\) 0 0
\(867\) 20.2412i 0.687426i
\(868\) 0 0
\(869\) −28.3551 −0.961881
\(870\) 0 0
\(871\) −0.131882 0.487104i −0.00446864 0.0165049i
\(872\) 0 0
\(873\) 0.639979i 0.0216600i
\(874\) 0 0
\(875\) 0.693378i 0.0234405i
\(876\) 0 0
\(877\) −18.4131 −0.621766 −0.310883 0.950448i \(-0.600625\pi\)
−0.310883 + 0.950448i \(0.600625\pi\)
\(878\) 0 0
\(879\) 2.87738i 0.0970518i
\(880\) 0 0
\(881\) 50.2962 1.69452 0.847261 0.531177i \(-0.178250\pi\)
0.847261 + 0.531177i \(0.178250\pi\)
\(882\) 0 0
\(883\) 6.05996i 0.203934i 0.994788 + 0.101967i \(0.0325136\pi\)
−0.994788 + 0.101967i \(0.967486\pi\)
\(884\) 0 0
\(885\) 41.6309i 1.39941i
\(886\) 0 0
\(887\) 8.11875 0.272601 0.136301 0.990668i \(-0.456479\pi\)
0.136301 + 0.990668i \(0.456479\pi\)
\(888\) 0 0
\(889\) 15.2373i 0.511043i
\(890\) 0 0
\(891\) 41.9610 1.40575
\(892\) 0 0
\(893\) 96.2383i 3.22049i
\(894\) 0 0
\(895\) 9.61264i 0.321315i
\(896\) 0 0
\(897\) 40.0297 10.8379i 1.33655 0.361867i
\(898\) 0 0
\(899\) −9.76148 −0.325564
\(900\) 0 0
\(901\) 4.68425i 0.156055i
\(902\) 0 0
\(903\) 4.32846i 0.144042i
\(904\) 0 0
\(905\) 2.80250i 0.0931582i
\(906\) 0 0
\(907\) 47.5887i 1.58016i 0.613006 + 0.790078i \(0.289960\pi\)
−0.613006 + 0.790078i \(0.710040\pi\)
\(908\) 0 0
\(909\) 3.80299i 0.126137i
\(910\) 0 0
\(911\) 40.4216 1.33923 0.669613 0.742710i \(-0.266460\pi\)
0.669613 + 0.742710i \(0.266460\pi\)
\(912\) 0 0
\(913\) −58.8728 −1.94841
\(914\) 0 0
\(915\) 41.6047 1.37541
\(916\) 0 0
\(917\) 9.35861 0.309049
\(918\) 0 0
\(919\) 5.01405 0.165398 0.0826991 0.996575i \(-0.473646\pi\)
0.0826991 + 0.996575i \(0.473646\pi\)
\(920\) 0 0
\(921\) 52.4243i 1.72744i
\(922\) 0 0
\(923\) 24.0943 6.52345i 0.793074 0.214722i
\(924\) 0 0
\(925\) −46.5953 −1.53204
\(926\) 0 0
\(927\) −1.93096 −0.0634209
\(928\) 0 0
\(929\) 56.9403i 1.86815i −0.357075 0.934076i \(-0.616226\pi\)
0.357075 0.934076i \(-0.383774\pi\)
\(930\) 0 0
\(931\) −7.11418 −0.233158
\(932\) 0 0
\(933\) 14.6637i 0.480069i
\(934\) 0 0
\(935\) −36.8735 −1.20589
\(936\) 0 0
\(937\) −14.0722 −0.459718 −0.229859 0.973224i \(-0.573826\pi\)
−0.229859 + 0.973224i \(0.573826\pi\)
\(938\) 0 0
\(939\) 32.0745i 1.04671i
\(940\) 0 0
\(941\) −36.9952 −1.20601 −0.603005 0.797737i \(-0.706030\pi\)
−0.603005 + 0.797737i \(0.706030\pi\)
\(942\) 0 0
\(943\) 10.6972i 0.348350i
\(944\) 0 0
\(945\) −17.2697 −0.561784
\(946\) 0 0
\(947\) −34.5738 −1.12350 −0.561748 0.827308i \(-0.689871\pi\)
−0.561748 + 0.827308i \(0.689871\pi\)
\(948\) 0 0
\(949\) −7.25781 + 1.96503i −0.235598 + 0.0637874i
\(950\) 0 0
\(951\) 6.40264i 0.207620i
\(952\) 0 0
\(953\) −55.5958 −1.80093 −0.900463 0.434933i \(-0.856772\pi\)
−0.900463 + 0.434933i \(0.856772\pi\)
\(954\) 0 0
\(955\) −28.3351 −0.916901
\(956\) 0 0
\(957\) −15.1554 −0.489904
\(958\) 0 0
\(959\) −1.38971 −0.0448761
\(960\) 0 0
\(961\) −3.18801 −0.102839
\(962\) 0 0
\(963\) 5.40078i 0.174038i
\(964\) 0 0
\(965\) 52.8584i 1.70157i
\(966\) 0 0
\(967\) 33.2862i 1.07041i 0.844722 + 0.535206i \(0.179766\pi\)
−0.844722 + 0.535206i \(0.820234\pi\)
\(968\) 0 0
\(969\) 23.3172i 0.749057i
\(970\) 0 0
\(971\) 36.4853i 1.17087i 0.810719 + 0.585435i \(0.199076\pi\)
−0.810719 + 0.585435i \(0.800924\pi\)
\(972\) 0 0
\(973\) −3.04493 −0.0976161
\(974\) 0 0
\(975\) 26.4155 7.15190i 0.845972 0.229044i
\(976\) 0 0
\(977\) 38.7164i 1.23865i 0.785136 + 0.619323i \(0.212593\pi\)
−0.785136 + 0.619323i \(0.787407\pi\)
\(978\) 0 0
\(979\) 54.6398i 1.74630i
\(980\) 0 0
\(981\) −4.87109 −0.155522
\(982\) 0 0
\(983\) 12.2739i 0.391478i 0.980656 + 0.195739i \(0.0627105\pi\)
−0.980656 + 0.195739i \(0.937289\pi\)
\(984\) 0 0
\(985\) −47.8026 −1.52312
\(986\) 0 0
\(987\) 21.4883i 0.683979i
\(988\) 0 0
\(989\) 19.7310i 0.627409i
\(990\) 0 0
\(991\) 6.99246 0.222123 0.111061 0.993814i \(-0.464575\pi\)
0.111061 + 0.993814i \(0.464575\pi\)
\(992\) 0 0
\(993\) 18.4224i 0.584618i
\(994\) 0 0
\(995\) −57.3896 −1.81937
\(996\) 0 0
\(997\) 24.7971i 0.785333i 0.919681 + 0.392666i \(0.128447\pi\)
−0.919681 + 0.392666i \(0.871553\pi\)
\(998\) 0 0
\(999\) 53.8551i 1.70390i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.i.a.337.12 84
4.3 odd 2 728.2.i.a.701.36 yes 84
8.3 odd 2 728.2.i.a.701.50 yes 84
8.5 even 2 inner 2912.2.i.a.337.73 84
13.12 even 2 inner 2912.2.i.a.337.74 84
52.51 odd 2 728.2.i.a.701.49 yes 84
104.51 odd 2 728.2.i.a.701.35 84
104.77 even 2 inner 2912.2.i.a.337.11 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.35 84 104.51 odd 2
728.2.i.a.701.36 yes 84 4.3 odd 2
728.2.i.a.701.49 yes 84 52.51 odd 2
728.2.i.a.701.50 yes 84 8.3 odd 2
2912.2.i.a.337.11 84 104.77 even 2 inner
2912.2.i.a.337.12 84 1.1 even 1 trivial
2912.2.i.a.337.73 84 8.5 even 2 inner
2912.2.i.a.337.74 84 13.12 even 2 inner