Properties

Label 2912.2.i.a.337.10
Level $2912$
Weight $2$
Character 2912.337
Analytic conductor $23.252$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(337,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.10
Character \(\chi\) \(=\) 2912.337
Dual form 2912.2.i.a.337.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.39926i q^{3} +2.48834 q^{5} -1.00000i q^{7} -8.55495 q^{9} +4.88409 q^{11} +(-2.21870 - 2.84207i) q^{13} +8.45851i q^{15} +5.61904 q^{17} +5.49683 q^{19} +3.39926 q^{21} +5.27964 q^{23} +1.19184 q^{25} -18.8827i q^{27} -3.18688i q^{29} +2.54576i q^{31} +16.6023i q^{33} -2.48834i q^{35} +3.21861 q^{37} +(9.66094 - 7.54192i) q^{39} -4.30478i q^{41} +7.45874i q^{43} -21.2876 q^{45} -0.0608216i q^{47} -1.00000 q^{49} +19.1006i q^{51} -2.00045i q^{53} +12.1533 q^{55} +18.6851i q^{57} -0.469731 q^{59} +2.65509i q^{61} +8.55495i q^{63} +(-5.52087 - 7.07205i) q^{65} +1.22805 q^{67} +17.9469i q^{69} +4.67427i q^{71} +4.82978i q^{73} +4.05137i q^{75} -4.88409i q^{77} +4.24575 q^{79} +38.5223 q^{81} -4.65004 q^{83} +13.9821 q^{85} +10.8330 q^{87} -9.17987i q^{89} +(-2.84207 + 2.21870i) q^{91} -8.65371 q^{93} +13.6780 q^{95} +13.3230i q^{97} -41.7832 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 84 q^{9} + 8 q^{17} + 24 q^{23} + 92 q^{25} + 24 q^{39} - 84 q^{49} - 32 q^{55} - 24 q^{65} + 40 q^{79} + 84 q^{81} + 48 q^{87} + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.39926i 1.96256i 0.192581 + 0.981281i \(0.438314\pi\)
−0.192581 + 0.981281i \(0.561686\pi\)
\(4\) 0 0
\(5\) 2.48834 1.11282 0.556410 0.830908i \(-0.312178\pi\)
0.556410 + 0.830908i \(0.312178\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −8.55495 −2.85165
\(10\) 0 0
\(11\) 4.88409 1.47261 0.736304 0.676650i \(-0.236569\pi\)
0.736304 + 0.676650i \(0.236569\pi\)
\(12\) 0 0
\(13\) −2.21870 2.84207i −0.615356 0.788249i
\(14\) 0 0
\(15\) 8.45851i 2.18398i
\(16\) 0 0
\(17\) 5.61904 1.36282 0.681408 0.731904i \(-0.261368\pi\)
0.681408 + 0.731904i \(0.261368\pi\)
\(18\) 0 0
\(19\) 5.49683 1.26106 0.630530 0.776165i \(-0.282838\pi\)
0.630530 + 0.776165i \(0.282838\pi\)
\(20\) 0 0
\(21\) 3.39926 0.741779
\(22\) 0 0
\(23\) 5.27964 1.10088 0.550441 0.834874i \(-0.314460\pi\)
0.550441 + 0.834874i \(0.314460\pi\)
\(24\) 0 0
\(25\) 1.19184 0.238368
\(26\) 0 0
\(27\) 18.8827i 3.63398i
\(28\) 0 0
\(29\) 3.18688i 0.591789i −0.955221 0.295894i \(-0.904382\pi\)
0.955221 0.295894i \(-0.0956176\pi\)
\(30\) 0 0
\(31\) 2.54576i 0.457233i 0.973517 + 0.228616i \(0.0734201\pi\)
−0.973517 + 0.228616i \(0.926580\pi\)
\(32\) 0 0
\(33\) 16.6023i 2.89009i
\(34\) 0 0
\(35\) 2.48834i 0.420606i
\(36\) 0 0
\(37\) 3.21861 0.529137 0.264568 0.964367i \(-0.414770\pi\)
0.264568 + 0.964367i \(0.414770\pi\)
\(38\) 0 0
\(39\) 9.66094 7.54192i 1.54699 1.20767i
\(40\) 0 0
\(41\) 4.30478i 0.672294i −0.941809 0.336147i \(-0.890876\pi\)
0.941809 0.336147i \(-0.109124\pi\)
\(42\) 0 0
\(43\) 7.45874i 1.13745i 0.822529 + 0.568724i \(0.192563\pi\)
−0.822529 + 0.568724i \(0.807437\pi\)
\(44\) 0 0
\(45\) −21.2876 −3.17337
\(46\) 0 0
\(47\) 0.0608216i 0.00887175i −0.999990 0.00443587i \(-0.998588\pi\)
0.999990 0.00443587i \(-0.00141199\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 19.1006i 2.67461i
\(52\) 0 0
\(53\) 2.00045i 0.274782i −0.990517 0.137391i \(-0.956128\pi\)
0.990517 0.137391i \(-0.0438717\pi\)
\(54\) 0 0
\(55\) 12.1533 1.63875
\(56\) 0 0
\(57\) 18.6851i 2.47491i
\(58\) 0 0
\(59\) −0.469731 −0.0611538 −0.0305769 0.999532i \(-0.509734\pi\)
−0.0305769 + 0.999532i \(0.509734\pi\)
\(60\) 0 0
\(61\) 2.65509i 0.339950i 0.985448 + 0.169975i \(0.0543686\pi\)
−0.985448 + 0.169975i \(0.945631\pi\)
\(62\) 0 0
\(63\) 8.55495i 1.07782i
\(64\) 0 0
\(65\) −5.52087 7.07205i −0.684780 0.877179i
\(66\) 0 0
\(67\) 1.22805 0.150030 0.0750150 0.997182i \(-0.476100\pi\)
0.0750150 + 0.997182i \(0.476100\pi\)
\(68\) 0 0
\(69\) 17.9469i 2.16055i
\(70\) 0 0
\(71\) 4.67427i 0.554734i 0.960764 + 0.277367i \(0.0894618\pi\)
−0.960764 + 0.277367i \(0.910538\pi\)
\(72\) 0 0
\(73\) 4.82978i 0.565283i 0.959226 + 0.282642i \(0.0912107\pi\)
−0.959226 + 0.282642i \(0.908789\pi\)
\(74\) 0 0
\(75\) 4.05137i 0.467812i
\(76\) 0 0
\(77\) 4.88409i 0.556594i
\(78\) 0 0
\(79\) 4.24575 0.477684 0.238842 0.971058i \(-0.423232\pi\)
0.238842 + 0.971058i \(0.423232\pi\)
\(80\) 0 0
\(81\) 38.5223 4.28026
\(82\) 0 0
\(83\) −4.65004 −0.510408 −0.255204 0.966887i \(-0.582143\pi\)
−0.255204 + 0.966887i \(0.582143\pi\)
\(84\) 0 0
\(85\) 13.9821 1.51657
\(86\) 0 0
\(87\) 10.8330 1.16142
\(88\) 0 0
\(89\) 9.17987i 0.973065i −0.873663 0.486532i \(-0.838262\pi\)
0.873663 0.486532i \(-0.161738\pi\)
\(90\) 0 0
\(91\) −2.84207 + 2.21870i −0.297930 + 0.232583i
\(92\) 0 0
\(93\) −8.65371 −0.897348
\(94\) 0 0
\(95\) 13.6780 1.40333
\(96\) 0 0
\(97\) 13.3230i 1.35275i 0.736558 + 0.676374i \(0.236450\pi\)
−0.736558 + 0.676374i \(0.763550\pi\)
\(98\) 0 0
\(99\) −41.7832 −4.19937
\(100\) 0 0
\(101\) 4.36260i 0.434095i −0.976161 0.217047i \(-0.930357\pi\)
0.976161 0.217047i \(-0.0696426\pi\)
\(102\) 0 0
\(103\) −18.1093 −1.78437 −0.892183 0.451674i \(-0.850827\pi\)
−0.892183 + 0.451674i \(0.850827\pi\)
\(104\) 0 0
\(105\) 8.45851 0.825466
\(106\) 0 0
\(107\) 2.62320i 0.253594i −0.991929 0.126797i \(-0.959530\pi\)
0.991929 0.126797i \(-0.0404697\pi\)
\(108\) 0 0
\(109\) −0.526525 −0.0504320 −0.0252160 0.999682i \(-0.508027\pi\)
−0.0252160 + 0.999682i \(0.508027\pi\)
\(110\) 0 0
\(111\) 10.9409i 1.03846i
\(112\) 0 0
\(113\) −2.26619 −0.213185 −0.106593 0.994303i \(-0.533994\pi\)
−0.106593 + 0.994303i \(0.533994\pi\)
\(114\) 0 0
\(115\) 13.1375 1.22508
\(116\) 0 0
\(117\) 18.9808 + 24.3138i 1.75478 + 2.24781i
\(118\) 0 0
\(119\) 5.61904i 0.515096i
\(120\) 0 0
\(121\) 12.8543 1.16858
\(122\) 0 0
\(123\) 14.6331 1.31942
\(124\) 0 0
\(125\) −9.47600 −0.847559
\(126\) 0 0
\(127\) 4.76216 0.422573 0.211287 0.977424i \(-0.432235\pi\)
0.211287 + 0.977424i \(0.432235\pi\)
\(128\) 0 0
\(129\) −25.3542 −2.23231
\(130\) 0 0
\(131\) 1.91457i 0.167277i 0.996496 + 0.0836384i \(0.0266541\pi\)
−0.996496 + 0.0836384i \(0.973346\pi\)
\(132\) 0 0
\(133\) 5.49683i 0.476636i
\(134\) 0 0
\(135\) 46.9866i 4.04396i
\(136\) 0 0
\(137\) 13.8145i 1.18025i −0.807311 0.590127i \(-0.799078\pi\)
0.807311 0.590127i \(-0.200922\pi\)
\(138\) 0 0
\(139\) 7.88775i 0.669030i 0.942390 + 0.334515i \(0.108573\pi\)
−0.942390 + 0.334515i \(0.891427\pi\)
\(140\) 0 0
\(141\) 0.206748 0.0174114
\(142\) 0 0
\(143\) −10.8363 13.8809i −0.906179 1.16078i
\(144\) 0 0
\(145\) 7.93004i 0.658554i
\(146\) 0 0
\(147\) 3.39926i 0.280366i
\(148\) 0 0
\(149\) 0.0267996 0.00219551 0.00109776 0.999999i \(-0.499651\pi\)
0.00109776 + 0.999999i \(0.499651\pi\)
\(150\) 0 0
\(151\) 4.49589i 0.365871i −0.983125 0.182935i \(-0.941440\pi\)
0.983125 0.182935i \(-0.0585599\pi\)
\(152\) 0 0
\(153\) −48.0706 −3.88628
\(154\) 0 0
\(155\) 6.33473i 0.508818i
\(156\) 0 0
\(157\) 21.7850i 1.73863i −0.494258 0.869315i \(-0.664560\pi\)
0.494258 0.869315i \(-0.335440\pi\)
\(158\) 0 0
\(159\) 6.80003 0.539277
\(160\) 0 0
\(161\) 5.27964i 0.416094i
\(162\) 0 0
\(163\) −14.6923 −1.15079 −0.575393 0.817877i \(-0.695151\pi\)
−0.575393 + 0.817877i \(0.695151\pi\)
\(164\) 0 0
\(165\) 41.3121i 3.21615i
\(166\) 0 0
\(167\) 20.2389i 1.56613i 0.621938 + 0.783066i \(0.286345\pi\)
−0.621938 + 0.783066i \(0.713655\pi\)
\(168\) 0 0
\(169\) −3.15476 + 12.6114i −0.242674 + 0.970108i
\(170\) 0 0
\(171\) −47.0251 −3.59610
\(172\) 0 0
\(173\) 20.8335i 1.58394i −0.610559 0.791970i \(-0.709055\pi\)
0.610559 0.791970i \(-0.290945\pi\)
\(174\) 0 0
\(175\) 1.19184i 0.0900946i
\(176\) 0 0
\(177\) 1.59674i 0.120018i
\(178\) 0 0
\(179\) 6.49084i 0.485148i −0.970133 0.242574i \(-0.922008\pi\)
0.970133 0.242574i \(-0.0779918\pi\)
\(180\) 0 0
\(181\) 8.85796i 0.658407i 0.944259 + 0.329204i \(0.106780\pi\)
−0.944259 + 0.329204i \(0.893220\pi\)
\(182\) 0 0
\(183\) −9.02534 −0.667172
\(184\) 0 0
\(185\) 8.00901 0.588834
\(186\) 0 0
\(187\) 27.4439 2.00690
\(188\) 0 0
\(189\) −18.8827 −1.37352
\(190\) 0 0
\(191\) −4.33544 −0.313701 −0.156851 0.987622i \(-0.550134\pi\)
−0.156851 + 0.987622i \(0.550134\pi\)
\(192\) 0 0
\(193\) 9.14057i 0.657952i 0.944338 + 0.328976i \(0.106704\pi\)
−0.944338 + 0.328976i \(0.893296\pi\)
\(194\) 0 0
\(195\) 24.0397 18.7669i 1.72152 1.34392i
\(196\) 0 0
\(197\) −21.5709 −1.53686 −0.768431 0.639933i \(-0.778962\pi\)
−0.768431 + 0.639933i \(0.778962\pi\)
\(198\) 0 0
\(199\) −18.4078 −1.30490 −0.652448 0.757833i \(-0.726258\pi\)
−0.652448 + 0.757833i \(0.726258\pi\)
\(200\) 0 0
\(201\) 4.17445i 0.294443i
\(202\) 0 0
\(203\) −3.18688 −0.223675
\(204\) 0 0
\(205\) 10.7118i 0.748142i
\(206\) 0 0
\(207\) −45.1671 −3.13933
\(208\) 0 0
\(209\) 26.8470 1.85705
\(210\) 0 0
\(211\) 9.58863i 0.660109i −0.943962 0.330054i \(-0.892933\pi\)
0.943962 0.330054i \(-0.107067\pi\)
\(212\) 0 0
\(213\) −15.8890 −1.08870
\(214\) 0 0
\(215\) 18.5599i 1.26577i
\(216\) 0 0
\(217\) 2.54576 0.172818
\(218\) 0 0
\(219\) −16.4177 −1.10940
\(220\) 0 0
\(221\) −12.4669 15.9697i −0.838617 1.07424i
\(222\) 0 0
\(223\) 0.955307i 0.0639721i −0.999488 0.0319860i \(-0.989817\pi\)
0.999488 0.0319860i \(-0.0101832\pi\)
\(224\) 0 0
\(225\) −10.1961 −0.679742
\(226\) 0 0
\(227\) 1.00765 0.0668803 0.0334401 0.999441i \(-0.489354\pi\)
0.0334401 + 0.999441i \(0.489354\pi\)
\(228\) 0 0
\(229\) 18.3736 1.21416 0.607082 0.794639i \(-0.292340\pi\)
0.607082 + 0.794639i \(0.292340\pi\)
\(230\) 0 0
\(231\) 16.6023 1.09235
\(232\) 0 0
\(233\) 23.8268 1.56095 0.780474 0.625188i \(-0.214978\pi\)
0.780474 + 0.625188i \(0.214978\pi\)
\(234\) 0 0
\(235\) 0.151345i 0.00987266i
\(236\) 0 0
\(237\) 14.4324i 0.937485i
\(238\) 0 0
\(239\) 1.27550i 0.0825052i 0.999149 + 0.0412526i \(0.0131348\pi\)
−0.999149 + 0.0412526i \(0.986865\pi\)
\(240\) 0 0
\(241\) 8.67754i 0.558970i 0.960150 + 0.279485i \(0.0901637\pi\)
−0.960150 + 0.279485i \(0.909836\pi\)
\(242\) 0 0
\(243\) 74.2992i 4.76630i
\(244\) 0 0
\(245\) −2.48834 −0.158974
\(246\) 0 0
\(247\) −12.1958 15.6224i −0.776001 0.994030i
\(248\) 0 0
\(249\) 15.8067i 1.00171i
\(250\) 0 0
\(251\) 21.5737i 1.36172i 0.732415 + 0.680859i \(0.238393\pi\)
−0.732415 + 0.680859i \(0.761607\pi\)
\(252\) 0 0
\(253\) 25.7863 1.62117
\(254\) 0 0
\(255\) 47.5287i 2.97636i
\(256\) 0 0
\(257\) 15.2113 0.948858 0.474429 0.880294i \(-0.342655\pi\)
0.474429 + 0.880294i \(0.342655\pi\)
\(258\) 0 0
\(259\) 3.21861i 0.199995i
\(260\) 0 0
\(261\) 27.2636i 1.68757i
\(262\) 0 0
\(263\) 12.2626 0.756146 0.378073 0.925776i \(-0.376587\pi\)
0.378073 + 0.925776i \(0.376587\pi\)
\(264\) 0 0
\(265\) 4.97779i 0.305783i
\(266\) 0 0
\(267\) 31.2047 1.90970
\(268\) 0 0
\(269\) 32.2178i 1.96436i 0.187951 + 0.982178i \(0.439815\pi\)
−0.187951 + 0.982178i \(0.560185\pi\)
\(270\) 0 0
\(271\) 18.0540i 1.09670i 0.836248 + 0.548351i \(0.184744\pi\)
−0.836248 + 0.548351i \(0.815256\pi\)
\(272\) 0 0
\(273\) −7.54192 9.66094i −0.456458 0.584707i
\(274\) 0 0
\(275\) 5.82105 0.351023
\(276\) 0 0
\(277\) 21.9458i 1.31860i −0.751881 0.659299i \(-0.770853\pi\)
0.751881 0.659299i \(-0.229147\pi\)
\(278\) 0 0
\(279\) 21.7789i 1.30387i
\(280\) 0 0
\(281\) 4.51449i 0.269312i 0.990892 + 0.134656i \(0.0429929\pi\)
−0.990892 + 0.134656i \(0.957007\pi\)
\(282\) 0 0
\(283\) 4.07681i 0.242341i 0.992632 + 0.121171i \(0.0386648\pi\)
−0.992632 + 0.121171i \(0.961335\pi\)
\(284\) 0 0
\(285\) 46.4950i 2.75413i
\(286\) 0 0
\(287\) −4.30478 −0.254103
\(288\) 0 0
\(289\) 14.5736 0.857269
\(290\) 0 0
\(291\) −45.2884 −2.65485
\(292\) 0 0
\(293\) −28.4951 −1.66470 −0.832352 0.554247i \(-0.813006\pi\)
−0.832352 + 0.554247i \(0.813006\pi\)
\(294\) 0 0
\(295\) −1.16885 −0.0680532
\(296\) 0 0
\(297\) 92.2249i 5.35143i
\(298\) 0 0
\(299\) −11.7139 15.0051i −0.677434 0.867769i
\(300\) 0 0
\(301\) 7.45874 0.429915
\(302\) 0 0
\(303\) 14.8296 0.851938
\(304\) 0 0
\(305\) 6.60677i 0.378303i
\(306\) 0 0
\(307\) 16.6161 0.948329 0.474165 0.880436i \(-0.342750\pi\)
0.474165 + 0.880436i \(0.342750\pi\)
\(308\) 0 0
\(309\) 61.5583i 3.50193i
\(310\) 0 0
\(311\) 20.3578 1.15439 0.577194 0.816607i \(-0.304148\pi\)
0.577194 + 0.816607i \(0.304148\pi\)
\(312\) 0 0
\(313\) −23.6818 −1.33857 −0.669287 0.743004i \(-0.733400\pi\)
−0.669287 + 0.743004i \(0.733400\pi\)
\(314\) 0 0
\(315\) 21.2876i 1.19942i
\(316\) 0 0
\(317\) −12.5799 −0.706556 −0.353278 0.935518i \(-0.614933\pi\)
−0.353278 + 0.935518i \(0.614933\pi\)
\(318\) 0 0
\(319\) 15.5650i 0.871473i
\(320\) 0 0
\(321\) 8.91694 0.497695
\(322\) 0 0
\(323\) 30.8869 1.71859
\(324\) 0 0
\(325\) −2.64433 3.38729i −0.146681 0.187893i
\(326\) 0 0
\(327\) 1.78980i 0.0989759i
\(328\) 0 0
\(329\) −0.0608216 −0.00335321
\(330\) 0 0
\(331\) −27.4135 −1.50678 −0.753391 0.657573i \(-0.771583\pi\)
−0.753391 + 0.657573i \(0.771583\pi\)
\(332\) 0 0
\(333\) −27.5351 −1.50891
\(334\) 0 0
\(335\) 3.05580 0.166956
\(336\) 0 0
\(337\) −23.9384 −1.30401 −0.652005 0.758215i \(-0.726072\pi\)
−0.652005 + 0.758215i \(0.726072\pi\)
\(338\) 0 0
\(339\) 7.70336i 0.418389i
\(340\) 0 0
\(341\) 12.4337i 0.673325i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 44.6579i 2.40430i
\(346\) 0 0
\(347\) 5.17536i 0.277828i −0.990304 0.138914i \(-0.955639\pi\)
0.990304 0.138914i \(-0.0443612\pi\)
\(348\) 0 0
\(349\) 0.707224 0.0378568 0.0189284 0.999821i \(-0.493975\pi\)
0.0189284 + 0.999821i \(0.493975\pi\)
\(350\) 0 0
\(351\) −53.6661 + 41.8950i −2.86448 + 2.23619i
\(352\) 0 0
\(353\) 13.1447i 0.699620i −0.936821 0.349810i \(-0.886246\pi\)
0.936821 0.349810i \(-0.113754\pi\)
\(354\) 0 0
\(355\) 11.6312i 0.617319i
\(356\) 0 0
\(357\) 19.1006 1.01091
\(358\) 0 0
\(359\) 26.7771i 1.41324i 0.707594 + 0.706620i \(0.249781\pi\)
−0.707594 + 0.706620i \(0.750219\pi\)
\(360\) 0 0
\(361\) 11.2152 0.590272
\(362\) 0 0
\(363\) 43.6952i 2.29341i
\(364\) 0 0
\(365\) 12.0181i 0.629058i
\(366\) 0 0
\(367\) 3.74105 0.195281 0.0976406 0.995222i \(-0.468870\pi\)
0.0976406 + 0.995222i \(0.468870\pi\)
\(368\) 0 0
\(369\) 36.8272i 1.91715i
\(370\) 0 0
\(371\) −2.00045 −0.103858
\(372\) 0 0
\(373\) 1.41745i 0.0733926i 0.999326 + 0.0366963i \(0.0116834\pi\)
−0.999326 + 0.0366963i \(0.988317\pi\)
\(374\) 0 0
\(375\) 32.2114i 1.66339i
\(376\) 0 0
\(377\) −9.05735 + 7.07072i −0.466477 + 0.364161i
\(378\) 0 0
\(379\) −22.6988 −1.16596 −0.582980 0.812487i \(-0.698113\pi\)
−0.582980 + 0.812487i \(0.698113\pi\)
\(380\) 0 0
\(381\) 16.1878i 0.829326i
\(382\) 0 0
\(383\) 12.5483i 0.641190i 0.947216 + 0.320595i \(0.103883\pi\)
−0.947216 + 0.320595i \(0.896117\pi\)
\(384\) 0 0
\(385\) 12.1533i 0.619389i
\(386\) 0 0
\(387\) 63.8092i 3.24360i
\(388\) 0 0
\(389\) 31.8205i 1.61336i −0.590985 0.806682i \(-0.701261\pi\)
0.590985 0.806682i \(-0.298739\pi\)
\(390\) 0 0
\(391\) 29.6665 1.50030
\(392\) 0 0
\(393\) −6.50811 −0.328291
\(394\) 0 0
\(395\) 10.5649 0.531576
\(396\) 0 0
\(397\) −30.5830 −1.53491 −0.767457 0.641100i \(-0.778478\pi\)
−0.767457 + 0.641100i \(0.778478\pi\)
\(398\) 0 0
\(399\) 18.6851 0.935427
\(400\) 0 0
\(401\) 14.1076i 0.704500i 0.935906 + 0.352250i \(0.114583\pi\)
−0.935906 + 0.352250i \(0.885417\pi\)
\(402\) 0 0
\(403\) 7.23525 5.64828i 0.360413 0.281361i
\(404\) 0 0
\(405\) 95.8567 4.76316
\(406\) 0 0
\(407\) 15.7200 0.779212
\(408\) 0 0
\(409\) 18.0342i 0.891731i 0.895100 + 0.445866i \(0.147104\pi\)
−0.895100 + 0.445866i \(0.852896\pi\)
\(410\) 0 0
\(411\) 46.9591 2.31632
\(412\) 0 0
\(413\) 0.469731i 0.0231140i
\(414\) 0 0
\(415\) −11.5709 −0.567992
\(416\) 0 0
\(417\) −26.8125 −1.31301
\(418\) 0 0
\(419\) 11.8975i 0.581229i −0.956840 0.290614i \(-0.906140\pi\)
0.956840 0.290614i \(-0.0938597\pi\)
\(420\) 0 0
\(421\) −12.4939 −0.608915 −0.304457 0.952526i \(-0.598475\pi\)
−0.304457 + 0.952526i \(0.598475\pi\)
\(422\) 0 0
\(423\) 0.520326i 0.0252991i
\(424\) 0 0
\(425\) 6.69699 0.324852
\(426\) 0 0
\(427\) 2.65509 0.128489
\(428\) 0 0
\(429\) 47.1849 36.8354i 2.27811 1.77843i
\(430\) 0 0
\(431\) 30.9521i 1.49091i 0.666556 + 0.745455i \(0.267768\pi\)
−0.666556 + 0.745455i \(0.732232\pi\)
\(432\) 0 0
\(433\) 25.7199 1.23602 0.618010 0.786171i \(-0.287939\pi\)
0.618010 + 0.786171i \(0.287939\pi\)
\(434\) 0 0
\(435\) 26.9563 1.29245
\(436\) 0 0
\(437\) 29.0213 1.38828
\(438\) 0 0
\(439\) −33.4146 −1.59479 −0.797395 0.603457i \(-0.793789\pi\)
−0.797395 + 0.603457i \(0.793789\pi\)
\(440\) 0 0
\(441\) 8.55495 0.407379
\(442\) 0 0
\(443\) 3.57603i 0.169902i −0.996385 0.0849512i \(-0.972927\pi\)
0.996385 0.0849512i \(-0.0270734\pi\)
\(444\) 0 0
\(445\) 22.8426i 1.08285i
\(446\) 0 0
\(447\) 0.0910988i 0.00430883i
\(448\) 0 0
\(449\) 32.7121i 1.54378i −0.635758 0.771889i \(-0.719312\pi\)
0.635758 0.771889i \(-0.280688\pi\)
\(450\) 0 0
\(451\) 21.0250i 0.990026i
\(452\) 0 0
\(453\) 15.2827 0.718044
\(454\) 0 0
\(455\) −7.07205 + 5.52087i −0.331543 + 0.258823i
\(456\) 0 0
\(457\) 3.22486i 0.150852i 0.997151 + 0.0754262i \(0.0240317\pi\)
−0.997151 + 0.0754262i \(0.975968\pi\)
\(458\) 0 0
\(459\) 106.103i 4.95245i
\(460\) 0 0
\(461\) 7.54106 0.351222 0.175611 0.984460i \(-0.443810\pi\)
0.175611 + 0.984460i \(0.443810\pi\)
\(462\) 0 0
\(463\) 11.3168i 0.525937i 0.964804 + 0.262969i \(0.0847016\pi\)
−0.964804 + 0.262969i \(0.915298\pi\)
\(464\) 0 0
\(465\) −21.5334 −0.998586
\(466\) 0 0
\(467\) 29.2127i 1.35180i −0.736992 0.675901i \(-0.763755\pi\)
0.736992 0.675901i \(-0.236245\pi\)
\(468\) 0 0
\(469\) 1.22805i 0.0567060i
\(470\) 0 0
\(471\) 74.0528 3.41217
\(472\) 0 0
\(473\) 36.4292i 1.67501i
\(474\) 0 0
\(475\) 6.55134 0.300596
\(476\) 0 0
\(477\) 17.1137i 0.783583i
\(478\) 0 0
\(479\) 11.3774i 0.519845i −0.965630 0.259922i \(-0.916303\pi\)
0.965630 0.259922i \(-0.0836970\pi\)
\(480\) 0 0
\(481\) −7.14113 9.14754i −0.325608 0.417092i
\(482\) 0 0
\(483\) 17.9469 0.816611
\(484\) 0 0
\(485\) 33.1522i 1.50536i
\(486\) 0 0
\(487\) 0.437374i 0.0198193i −0.999951 0.00990966i \(-0.996846\pi\)
0.999951 0.00990966i \(-0.00315440\pi\)
\(488\) 0 0
\(489\) 49.9428i 2.25849i
\(490\) 0 0
\(491\) 10.5045i 0.474061i −0.971502 0.237031i \(-0.923826\pi\)
0.971502 0.237031i \(-0.0761741\pi\)
\(492\) 0 0
\(493\) 17.9072i 0.806499i
\(494\) 0 0
\(495\) −103.971 −4.67314
\(496\) 0 0
\(497\) 4.67427 0.209670
\(498\) 0 0
\(499\) 44.4934 1.99180 0.995899 0.0904684i \(-0.0288364\pi\)
0.995899 + 0.0904684i \(0.0288364\pi\)
\(500\) 0 0
\(501\) −68.7972 −3.07363
\(502\) 0 0
\(503\) 0.704814 0.0314261 0.0157130 0.999877i \(-0.494998\pi\)
0.0157130 + 0.999877i \(0.494998\pi\)
\(504\) 0 0
\(505\) 10.8556i 0.483069i
\(506\) 0 0
\(507\) −42.8694 10.7239i −1.90390 0.476263i
\(508\) 0 0
\(509\) 38.6299 1.71224 0.856119 0.516779i \(-0.172869\pi\)
0.856119 + 0.516779i \(0.172869\pi\)
\(510\) 0 0
\(511\) 4.82978 0.213657
\(512\) 0 0
\(513\) 103.795i 4.58267i
\(514\) 0 0
\(515\) −45.0622 −1.98568
\(516\) 0 0
\(517\) 0.297058i 0.0130646i
\(518\) 0 0
\(519\) 70.8184 3.10858
\(520\) 0 0
\(521\) 3.38542 0.148318 0.0741589 0.997246i \(-0.476373\pi\)
0.0741589 + 0.997246i \(0.476373\pi\)
\(522\) 0 0
\(523\) 24.9139i 1.08941i −0.838627 0.544705i \(-0.816641\pi\)
0.838627 0.544705i \(-0.183359\pi\)
\(524\) 0 0
\(525\) 4.05137 0.176816
\(526\) 0 0
\(527\) 14.3047i 0.623124i
\(528\) 0 0
\(529\) 4.87463 0.211940
\(530\) 0 0
\(531\) 4.01853 0.174389
\(532\) 0 0
\(533\) −12.2345 + 9.55101i −0.529935 + 0.413700i
\(534\) 0 0
\(535\) 6.52742i 0.282205i
\(536\) 0 0
\(537\) 22.0640 0.952134
\(538\) 0 0
\(539\) −4.88409 −0.210373
\(540\) 0 0
\(541\) 16.3916 0.704728 0.352364 0.935863i \(-0.385378\pi\)
0.352364 + 0.935863i \(0.385378\pi\)
\(542\) 0 0
\(543\) −30.1105 −1.29217
\(544\) 0 0
\(545\) −1.31017 −0.0561217
\(546\) 0 0
\(547\) 38.7606i 1.65728i −0.559779 0.828642i \(-0.689114\pi\)
0.559779 0.828642i \(-0.310886\pi\)
\(548\) 0 0
\(549\) 22.7142i 0.969417i
\(550\) 0 0
\(551\) 17.5177i 0.746281i
\(552\) 0 0
\(553\) 4.24575i 0.180548i
\(554\) 0 0
\(555\) 27.2247i 1.15562i
\(556\) 0 0
\(557\) 34.2544 1.45141 0.725704 0.688007i \(-0.241514\pi\)
0.725704 + 0.688007i \(0.241514\pi\)
\(558\) 0 0
\(559\) 21.1983 16.5487i 0.896592 0.699935i
\(560\) 0 0
\(561\) 93.2888i 3.93866i
\(562\) 0 0
\(563\) 4.27510i 0.180174i 0.995934 + 0.0900870i \(0.0287145\pi\)
−0.995934 + 0.0900870i \(0.971285\pi\)
\(564\) 0 0
\(565\) −5.63905 −0.237237
\(566\) 0 0
\(567\) 38.5223i 1.61779i
\(568\) 0 0
\(569\) −3.19970 −0.134138 −0.0670692 0.997748i \(-0.521365\pi\)
−0.0670692 + 0.997748i \(0.521365\pi\)
\(570\) 0 0
\(571\) 0.311853i 0.0130506i −0.999979 0.00652532i \(-0.997923\pi\)
0.999979 0.00652532i \(-0.00207709\pi\)
\(572\) 0 0
\(573\) 14.7373i 0.615658i
\(574\) 0 0
\(575\) 6.29248 0.262415
\(576\) 0 0
\(577\) 13.0169i 0.541902i 0.962593 + 0.270951i \(0.0873382\pi\)
−0.962593 + 0.270951i \(0.912662\pi\)
\(578\) 0 0
\(579\) −31.0711 −1.29127
\(580\) 0 0
\(581\) 4.65004i 0.192916i
\(582\) 0 0
\(583\) 9.77036i 0.404647i
\(584\) 0 0
\(585\) 47.2308 + 60.5010i 1.95275 + 2.50141i
\(586\) 0 0
\(587\) −4.46455 −0.184272 −0.0921358 0.995746i \(-0.529369\pi\)
−0.0921358 + 0.995746i \(0.529369\pi\)
\(588\) 0 0
\(589\) 13.9936i 0.576598i
\(590\) 0 0
\(591\) 73.3250i 3.01619i
\(592\) 0 0
\(593\) 40.5531i 1.66532i 0.553787 + 0.832658i \(0.313182\pi\)
−0.553787 + 0.832658i \(0.686818\pi\)
\(594\) 0 0
\(595\) 13.9821i 0.573209i
\(596\) 0 0
\(597\) 62.5730i 2.56094i
\(598\) 0 0
\(599\) −28.6311 −1.16984 −0.584918 0.811093i \(-0.698873\pi\)
−0.584918 + 0.811093i \(0.698873\pi\)
\(600\) 0 0
\(601\) −23.9824 −0.978263 −0.489132 0.872210i \(-0.662686\pi\)
−0.489132 + 0.872210i \(0.662686\pi\)
\(602\) 0 0
\(603\) −10.5059 −0.427833
\(604\) 0 0
\(605\) 31.9860 1.30042
\(606\) 0 0
\(607\) 19.2320 0.780604 0.390302 0.920687i \(-0.372371\pi\)
0.390302 + 0.920687i \(0.372371\pi\)
\(608\) 0 0
\(609\) 10.8330i 0.438976i
\(610\) 0 0
\(611\) −0.172860 + 0.134945i −0.00699315 + 0.00545928i
\(612\) 0 0
\(613\) −12.8640 −0.519571 −0.259786 0.965666i \(-0.583652\pi\)
−0.259786 + 0.965666i \(0.583652\pi\)
\(614\) 0 0
\(615\) 36.4121 1.46828
\(616\) 0 0
\(617\) 5.54831i 0.223367i 0.993744 + 0.111683i \(0.0356242\pi\)
−0.993744 + 0.111683i \(0.964376\pi\)
\(618\) 0 0
\(619\) 47.5803 1.91242 0.956208 0.292690i \(-0.0945502\pi\)
0.956208 + 0.292690i \(0.0945502\pi\)
\(620\) 0 0
\(621\) 99.6940i 4.00058i
\(622\) 0 0
\(623\) −9.17987 −0.367784
\(624\) 0 0
\(625\) −29.5387 −1.18155
\(626\) 0 0
\(627\) 91.2600i 3.64457i
\(628\) 0 0
\(629\) 18.0855 0.721117
\(630\) 0 0
\(631\) 40.7801i 1.62343i −0.584053 0.811715i \(-0.698534\pi\)
0.584053 0.811715i \(-0.301466\pi\)
\(632\) 0 0
\(633\) 32.5942 1.29550
\(634\) 0 0
\(635\) 11.8499 0.470248
\(636\) 0 0
\(637\) 2.21870 + 2.84207i 0.0879080 + 0.112607i
\(638\) 0 0
\(639\) 39.9882i 1.58191i
\(640\) 0 0
\(641\) 28.1404 1.11148 0.555740 0.831356i \(-0.312435\pi\)
0.555740 + 0.831356i \(0.312435\pi\)
\(642\) 0 0
\(643\) 16.4631 0.649240 0.324620 0.945845i \(-0.394764\pi\)
0.324620 + 0.945845i \(0.394764\pi\)
\(644\) 0 0
\(645\) −63.0898 −2.48416
\(646\) 0 0
\(647\) −8.16848 −0.321136 −0.160568 0.987025i \(-0.551333\pi\)
−0.160568 + 0.987025i \(0.551333\pi\)
\(648\) 0 0
\(649\) −2.29421 −0.0900557
\(650\) 0 0
\(651\) 8.65371i 0.339166i
\(652\) 0 0
\(653\) 20.4490i 0.800231i 0.916465 + 0.400115i \(0.131030\pi\)
−0.916465 + 0.400115i \(0.868970\pi\)
\(654\) 0 0
\(655\) 4.76410i 0.186149i
\(656\) 0 0
\(657\) 41.3186i 1.61199i
\(658\) 0 0
\(659\) 8.24531i 0.321192i 0.987020 + 0.160596i \(0.0513415\pi\)
−0.987020 + 0.160596i \(0.948658\pi\)
\(660\) 0 0
\(661\) −29.5133 −1.14793 −0.573967 0.818878i \(-0.694596\pi\)
−0.573967 + 0.818878i \(0.694596\pi\)
\(662\) 0 0
\(663\) 54.2852 42.3783i 2.10826 1.64584i
\(664\) 0 0
\(665\) 13.6780i 0.530410i
\(666\) 0 0
\(667\) 16.8256i 0.651489i
\(668\) 0 0
\(669\) 3.24733 0.125549
\(670\) 0 0
\(671\) 12.9677i 0.500613i
\(672\) 0 0
\(673\) 29.8930 1.15229 0.576145 0.817348i \(-0.304556\pi\)
0.576145 + 0.817348i \(0.304556\pi\)
\(674\) 0 0
\(675\) 22.5052i 0.866224i
\(676\) 0 0
\(677\) 4.73631i 0.182031i 0.995849 + 0.0910156i \(0.0290113\pi\)
−0.995849 + 0.0910156i \(0.970989\pi\)
\(678\) 0 0
\(679\) 13.3230 0.511291
\(680\) 0 0
\(681\) 3.42527i 0.131257i
\(682\) 0 0
\(683\) 15.3781 0.588426 0.294213 0.955740i \(-0.404942\pi\)
0.294213 + 0.955740i \(0.404942\pi\)
\(684\) 0 0
\(685\) 34.3752i 1.31341i
\(686\) 0 0
\(687\) 62.4567i 2.38287i
\(688\) 0 0
\(689\) −5.68541 + 4.43838i −0.216597 + 0.169089i
\(690\) 0 0
\(691\) 36.6063 1.39257 0.696285 0.717766i \(-0.254835\pi\)
0.696285 + 0.717766i \(0.254835\pi\)
\(692\) 0 0
\(693\) 41.7832i 1.58721i
\(694\) 0 0
\(695\) 19.6274i 0.744510i
\(696\) 0 0
\(697\) 24.1887i 0.916214i
\(698\) 0 0
\(699\) 80.9936i 3.06346i
\(700\) 0 0
\(701\) 30.7609i 1.16182i −0.813966 0.580912i \(-0.802696\pi\)
0.813966 0.580912i \(-0.197304\pi\)
\(702\) 0 0
\(703\) 17.6922 0.667273
\(704\) 0 0
\(705\) 0.514460 0.0193757
\(706\) 0 0
\(707\) −4.36260 −0.164072
\(708\) 0 0
\(709\) 31.7436 1.19216 0.596079 0.802926i \(-0.296725\pi\)
0.596079 + 0.802926i \(0.296725\pi\)
\(710\) 0 0
\(711\) −36.3222 −1.36219
\(712\) 0 0
\(713\) 13.4407i 0.503359i
\(714\) 0 0
\(715\) −26.9645 34.5405i −1.00841 1.29174i
\(716\) 0 0
\(717\) −4.33575 −0.161922
\(718\) 0 0
\(719\) −16.7479 −0.624591 −0.312296 0.949985i \(-0.601098\pi\)
−0.312296 + 0.949985i \(0.601098\pi\)
\(720\) 0 0
\(721\) 18.1093i 0.674427i
\(722\) 0 0
\(723\) −29.4972 −1.09701
\(724\) 0 0
\(725\) 3.79825i 0.141063i
\(726\) 0 0
\(727\) −34.5134 −1.28003 −0.640016 0.768362i \(-0.721072\pi\)
−0.640016 + 0.768362i \(0.721072\pi\)
\(728\) 0 0
\(729\) −136.995 −5.07390
\(730\) 0 0
\(731\) 41.9109i 1.55013i
\(732\) 0 0
\(733\) −24.9136 −0.920206 −0.460103 0.887865i \(-0.652188\pi\)
−0.460103 + 0.887865i \(0.652188\pi\)
\(734\) 0 0
\(735\) 8.45851i 0.311997i
\(736\) 0 0
\(737\) 5.99790 0.220935
\(738\) 0 0
\(739\) −19.1504 −0.704458 −0.352229 0.935914i \(-0.614576\pi\)
−0.352229 + 0.935914i \(0.614576\pi\)
\(740\) 0 0
\(741\) 53.1046 41.4567i 1.95084 1.52295i
\(742\) 0 0
\(743\) 32.5014i 1.19236i 0.802851 + 0.596180i \(0.203315\pi\)
−0.802851 + 0.596180i \(0.796685\pi\)
\(744\) 0 0
\(745\) 0.0666866 0.00244321
\(746\) 0 0
\(747\) 39.7809 1.45551
\(748\) 0 0
\(749\) −2.62320 −0.0958497
\(750\) 0 0
\(751\) 11.7010 0.426977 0.213489 0.976946i \(-0.431517\pi\)
0.213489 + 0.976946i \(0.431517\pi\)
\(752\) 0 0
\(753\) −73.3344 −2.67246
\(754\) 0 0
\(755\) 11.1873i 0.407148i
\(756\) 0 0
\(757\) 45.3763i 1.64923i 0.565694 + 0.824615i \(0.308608\pi\)
−0.565694 + 0.824615i \(0.691392\pi\)
\(758\) 0 0
\(759\) 87.6541i 3.18164i
\(760\) 0 0
\(761\) 6.62817i 0.240271i −0.992758 0.120135i \(-0.961667\pi\)
0.992758 0.120135i \(-0.0383329\pi\)
\(762\) 0 0
\(763\) 0.526525i 0.0190615i
\(764\) 0 0
\(765\) −119.616 −4.32473
\(766\) 0 0
\(767\) 1.04219 + 1.33501i 0.0376314 + 0.0482045i
\(768\) 0 0
\(769\) 33.5163i 1.20863i 0.796746 + 0.604314i \(0.206553\pi\)
−0.796746 + 0.604314i \(0.793447\pi\)
\(770\) 0 0
\(771\) 51.7073i 1.86219i
\(772\) 0 0
\(773\) −4.22323 −0.151899 −0.0759496 0.997112i \(-0.524199\pi\)
−0.0759496 + 0.997112i \(0.524199\pi\)
\(774\) 0 0
\(775\) 3.03414i 0.108990i
\(776\) 0 0
\(777\) 10.9409 0.392503
\(778\) 0 0
\(779\) 23.6627i 0.847803i
\(780\) 0 0
\(781\) 22.8296i 0.816906i
\(782\) 0 0
\(783\) −60.1769 −2.15055
\(784\) 0 0
\(785\) 54.2085i 1.93478i
\(786\) 0 0
\(787\) 16.4820 0.587519 0.293759 0.955879i \(-0.405094\pi\)
0.293759 + 0.955879i \(0.405094\pi\)
\(788\) 0 0
\(789\) 41.6838i 1.48398i
\(790\) 0 0
\(791\) 2.26619i 0.0805764i
\(792\) 0 0
\(793\) 7.54596 5.89084i 0.267965 0.209190i
\(794\) 0 0
\(795\) 16.9208 0.600118
\(796\) 0 0
\(797\) 21.4662i 0.760371i −0.924910 0.380185i \(-0.875860\pi\)
0.924910 0.380185i \(-0.124140\pi\)
\(798\) 0 0
\(799\) 0.341759i 0.0120906i
\(800\) 0 0
\(801\) 78.5334i 2.77484i
\(802\) 0 0
\(803\) 23.5891i 0.832441i
\(804\) 0 0
\(805\) 13.1375i 0.463038i
\(806\) 0 0
\(807\) −109.517 −3.85517
\(808\) 0 0
\(809\) 26.7118 0.939137 0.469569 0.882896i \(-0.344409\pi\)
0.469569 + 0.882896i \(0.344409\pi\)
\(810\) 0 0
\(811\) −28.1149 −0.987247 −0.493624 0.869676i \(-0.664328\pi\)
−0.493624 + 0.869676i \(0.664328\pi\)
\(812\) 0 0
\(813\) −61.3702 −2.15235
\(814\) 0 0
\(815\) −36.5593 −1.28062
\(816\) 0 0
\(817\) 40.9994i 1.43439i
\(818\) 0 0
\(819\) 24.3138 18.9808i 0.849593 0.663245i
\(820\) 0 0
\(821\) 16.9544 0.591713 0.295856 0.955232i \(-0.404395\pi\)
0.295856 + 0.955232i \(0.404395\pi\)
\(822\) 0 0
\(823\) −27.1070 −0.944892 −0.472446 0.881360i \(-0.656629\pi\)
−0.472446 + 0.881360i \(0.656629\pi\)
\(824\) 0 0
\(825\) 19.7872i 0.688904i
\(826\) 0 0
\(827\) −55.9469 −1.94547 −0.972733 0.231928i \(-0.925497\pi\)
−0.972733 + 0.231928i \(0.925497\pi\)
\(828\) 0 0
\(829\) 8.15802i 0.283340i −0.989914 0.141670i \(-0.954753\pi\)
0.989914 0.141670i \(-0.0452471\pi\)
\(830\) 0 0
\(831\) 74.5995 2.58783
\(832\) 0 0
\(833\) −5.61904 −0.194688
\(834\) 0 0
\(835\) 50.3613i 1.74282i
\(836\) 0 0
\(837\) 48.0709 1.66157
\(838\) 0 0
\(839\) 12.7688i 0.440827i −0.975407 0.220413i \(-0.929259\pi\)
0.975407 0.220413i \(-0.0707406\pi\)
\(840\) 0 0
\(841\) 18.8438 0.649786
\(842\) 0 0
\(843\) −15.3459 −0.528541
\(844\) 0 0
\(845\) −7.85013 + 31.3815i −0.270053 + 1.07956i
\(846\) 0 0
\(847\) 12.8543i 0.441681i
\(848\) 0 0
\(849\) −13.8581 −0.475610
\(850\) 0 0
\(851\) 16.9931 0.582517
\(852\) 0 0
\(853\) 32.3618 1.10805 0.554024 0.832501i \(-0.313092\pi\)
0.554024 + 0.832501i \(0.313092\pi\)
\(854\) 0 0
\(855\) −117.015 −4.00181
\(856\) 0 0
\(857\) −24.0898 −0.822892 −0.411446 0.911434i \(-0.634976\pi\)
−0.411446 + 0.911434i \(0.634976\pi\)
\(858\) 0 0
\(859\) 13.5553i 0.462499i −0.972894 0.231250i \(-0.925719\pi\)
0.972894 0.231250i \(-0.0742814\pi\)
\(860\) 0 0
\(861\) 14.6331i 0.498694i
\(862\) 0 0
\(863\) 40.3911i 1.37493i −0.726219 0.687464i \(-0.758724\pi\)
0.726219 0.687464i \(-0.241276\pi\)
\(864\) 0 0
\(865\) 51.8408i 1.76264i
\(866\) 0 0
\(867\) 49.5393i 1.68244i
\(868\) 0 0
\(869\) 20.7366 0.703442
\(870\) 0 0
\(871\) −2.72467 3.49020i −0.0923218 0.118261i
\(872\) 0 0
\(873\) 113.978i 3.85756i
\(874\) 0 0
\(875\) 9.47600i 0.320347i
\(876\) 0 0
\(877\) −32.2942 −1.09050 −0.545249 0.838274i \(-0.683565\pi\)
−0.545249 + 0.838274i \(0.683565\pi\)
\(878\) 0 0
\(879\) 96.8623i 3.26709i
\(880\) 0 0
\(881\) −23.2019 −0.781693 −0.390847 0.920456i \(-0.627818\pi\)
−0.390847 + 0.920456i \(0.627818\pi\)
\(882\) 0 0
\(883\) 28.3774i 0.954975i −0.878638 0.477488i \(-0.841548\pi\)
0.878638 0.477488i \(-0.158452\pi\)
\(884\) 0 0
\(885\) 3.97323i 0.133559i
\(886\) 0 0
\(887\) 22.3269 0.749663 0.374832 0.927093i \(-0.377701\pi\)
0.374832 + 0.927093i \(0.377701\pi\)
\(888\) 0 0
\(889\) 4.76216i 0.159718i
\(890\) 0 0
\(891\) 188.147 6.30315
\(892\) 0 0
\(893\) 0.334326i 0.0111878i
\(894\) 0 0
\(895\) 16.1514i 0.539883i
\(896\) 0 0
\(897\) 51.0063 39.8187i 1.70305 1.32951i
\(898\) 0 0
\(899\) 8.11304 0.270585
\(900\) 0 0
\(901\) 11.2406i 0.374478i
\(902\) 0 0
\(903\) 25.3542i 0.843734i
\(904\) 0 0
\(905\) 22.0416i 0.732689i
\(906\) 0 0
\(907\) 6.22187i 0.206594i −0.994651 0.103297i \(-0.967061\pi\)
0.994651 0.103297i \(-0.0329392\pi\)
\(908\) 0 0
\(909\) 37.3218i 1.23789i
\(910\) 0 0
\(911\) −7.49278 −0.248247 −0.124123 0.992267i \(-0.539612\pi\)
−0.124123 + 0.992267i \(0.539612\pi\)
\(912\) 0 0
\(913\) −22.7112 −0.751631
\(914\) 0 0
\(915\) −22.4581 −0.742442
\(916\) 0 0
\(917\) 1.91457 0.0632247
\(918\) 0 0
\(919\) 32.3931 1.06855 0.534274 0.845311i \(-0.320585\pi\)
0.534274 + 0.845311i \(0.320585\pi\)
\(920\) 0 0
\(921\) 56.4823i 1.86115i
\(922\) 0 0
\(923\) 13.2846 10.3708i 0.437269 0.341359i
\(924\) 0 0
\(925\) 3.83607 0.126129
\(926\) 0 0
\(927\) 154.925 5.08839
\(928\) 0 0
\(929\) 27.9010i 0.915402i −0.889106 0.457701i \(-0.848673\pi\)
0.889106 0.457701i \(-0.151327\pi\)
\(930\) 0 0
\(931\) −5.49683 −0.180151
\(932\) 0 0
\(933\) 69.2015i 2.26556i
\(934\) 0 0
\(935\) 68.2897 2.23331
\(936\) 0 0
\(937\) −33.7720 −1.10328 −0.551642 0.834081i \(-0.685998\pi\)
−0.551642 + 0.834081i \(0.685998\pi\)
\(938\) 0 0
\(939\) 80.5005i 2.62703i
\(940\) 0 0
\(941\) 13.5402 0.441397 0.220699 0.975342i \(-0.429166\pi\)
0.220699 + 0.975342i \(0.429166\pi\)
\(942\) 0 0
\(943\) 22.7277i 0.740116i
\(944\) 0 0
\(945\) −46.9866 −1.52847
\(946\) 0 0
\(947\) −23.6453 −0.768370 −0.384185 0.923256i \(-0.625517\pi\)
−0.384185 + 0.923256i \(0.625517\pi\)
\(948\) 0 0
\(949\) 13.7266 10.7158i 0.445584 0.347850i
\(950\) 0 0
\(951\) 42.7622i 1.38666i
\(952\) 0 0
\(953\) −33.5262 −1.08602 −0.543010 0.839726i \(-0.682715\pi\)
−0.543010 + 0.839726i \(0.682715\pi\)
\(954\) 0 0
\(955\) −10.7880 −0.349093
\(956\) 0 0
\(957\) 52.9095 1.71032
\(958\) 0 0
\(959\) −13.8145 −0.446094
\(960\) 0 0
\(961\) 24.5191 0.790938
\(962\) 0 0
\(963\) 22.4414i 0.723163i
\(964\) 0 0
\(965\) 22.7448i 0.732182i
\(966\) 0 0
\(967\) 11.8782i 0.381978i −0.981592 0.190989i \(-0.938830\pi\)
0.981592 0.190989i \(-0.0611695\pi\)
\(968\) 0 0
\(969\) 104.993i 3.37285i
\(970\) 0 0
\(971\) 14.2021i 0.455767i −0.973688 0.227884i \(-0.926819\pi\)
0.973688 0.227884i \(-0.0731806\pi\)
\(972\) 0 0
\(973\) 7.88775 0.252870
\(974\) 0 0
\(975\) 11.5143 8.98876i 0.368752 0.287871i
\(976\) 0 0
\(977\) 4.25156i 0.136019i 0.997685 + 0.0680097i \(0.0216649\pi\)
−0.997685 + 0.0680097i \(0.978335\pi\)
\(978\) 0 0
\(979\) 44.8353i 1.43294i
\(980\) 0 0
\(981\) 4.50440 0.143814
\(982\) 0 0
\(983\) 55.0157i 1.75473i 0.479824 + 0.877365i \(0.340701\pi\)
−0.479824 + 0.877365i \(0.659299\pi\)
\(984\) 0 0
\(985\) −53.6757 −1.71025
\(986\) 0 0
\(987\) 0.206748i 0.00658087i
\(988\) 0 0
\(989\) 39.3795i 1.25219i
\(990\) 0 0
\(991\) −2.83231 −0.0899714 −0.0449857 0.998988i \(-0.514324\pi\)
−0.0449857 + 0.998988i \(0.514324\pi\)
\(992\) 0 0
\(993\) 93.1855i 2.95715i
\(994\) 0 0
\(995\) −45.8050 −1.45211
\(996\) 0 0
\(997\) 30.7479i 0.973796i −0.873459 0.486898i \(-0.838128\pi\)
0.873459 0.486898i \(-0.161872\pi\)
\(998\) 0 0
\(999\) 60.7762i 1.92287i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.i.a.337.10 84
4.3 odd 2 728.2.i.a.701.26 yes 84
8.3 odd 2 728.2.i.a.701.60 yes 84
8.5 even 2 inner 2912.2.i.a.337.75 84
13.12 even 2 inner 2912.2.i.a.337.76 84
52.51 odd 2 728.2.i.a.701.59 yes 84
104.51 odd 2 728.2.i.a.701.25 84
104.77 even 2 inner 2912.2.i.a.337.9 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.i.a.701.25 84 104.51 odd 2
728.2.i.a.701.26 yes 84 4.3 odd 2
728.2.i.a.701.59 yes 84 52.51 odd 2
728.2.i.a.701.60 yes 84 8.3 odd 2
2912.2.i.a.337.9 84 104.77 even 2 inner
2912.2.i.a.337.10 84 1.1 even 1 trivial
2912.2.i.a.337.75 84 8.5 even 2 inner
2912.2.i.a.337.76 84 13.12 even 2 inner