Properties

Label 2912.2.b
Level $2912$
Weight $2$
Character orbit 2912.b
Rep. character $\chi_{2912}(1455,\cdot)$
Character field $\Q$
Dimension $108$
Sturm bound $896$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 728 \)
Character field: \(\Q\)
Sturm bound: \(896\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2912, [\chi])\).

Total New Old
Modular forms 464 116 348
Cusp forms 432 108 324
Eisenstein series 32 8 24

Trace form

\( 108 q - 108 q^{9} - 100 q^{25} - 16 q^{35} + 8 q^{43} + 12 q^{49} - 16 q^{51} + 16 q^{65} + 92 q^{81} - 52 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2912, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2912, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2912, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(728, [\chi])\)\(^{\oplus 3}\)