Properties

Label 2900.2.x
Level $2900$
Weight $2$
Character orbit 2900.x
Rep. character $\chi_{2900}(289,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $304$
Sturm bound $900$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.x (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 725 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(900\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2900, [\chi])\).

Total New Old
Modular forms 1824 304 1520
Cusp forms 1776 304 1472
Eisenstein series 48 0 48

Trace form

\( 304 q + 2 q^{5} - 80 q^{9} + 20 q^{23} - 30 q^{25} - 20 q^{33} - 12 q^{35} - 10 q^{45} - 344 q^{49} - 52 q^{51} + 30 q^{53} - 12 q^{59} + 66 q^{65} - 40 q^{67} + 18 q^{71} - 124 q^{81} + 5 q^{87} + 56 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2900, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1450, [\chi])\)\(^{\oplus 2}\)