Properties

Label 2900.2.u
Level $2900$
Weight $2$
Character orbit 2900.u
Rep. character $\chi_{2900}(581,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $280$
Sturm bound $900$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.u (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(900\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2900, [\chi])\).

Total New Old
Modular forms 1824 280 1544
Cusp forms 1776 280 1496
Eisenstein series 48 0 48

Trace form

\( 280 q - 4 q^{3} + 6 q^{5} - 4 q^{7} - 74 q^{9} + 10 q^{11} - 30 q^{15} + 6 q^{17} + 4 q^{19} + 8 q^{21} + 30 q^{25} + 50 q^{27} + 6 q^{29} - 12 q^{31} + 38 q^{33} + 14 q^{35} + 4 q^{37} - 44 q^{39} + 16 q^{41}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2900, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1450, [\chi])\)\(^{\oplus 2}\)