Defining parameters
| Level: | \( N \) | \(=\) | \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2900.cq (of order \(140\) and degree \(48\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 725 \) |
| Character field: | \(\Q(\zeta_{140})\) | ||
| Sturm bound: | \(900\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2900, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 21888 | 3600 | 18288 |
| Cusp forms | 21312 | 3600 | 17712 |
| Eisenstein series | 576 | 0 | 576 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2900, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2900, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1450, [\chi])\)\(^{\oplus 2}\)