Properties

Label 2900.2.cq
Level $2900$
Weight $2$
Character orbit 2900.cq
Rep. character $\chi_{2900}(73,\cdot)$
Character field $\Q(\zeta_{140})$
Dimension $3600$
Sturm bound $900$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.cq (of order \(140\) and degree \(48\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 725 \)
Character field: \(\Q(\zeta_{140})\)
Sturm bound: \(900\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2900, [\chi])\).

Total New Old
Modular forms 21888 3600 18288
Cusp forms 21312 3600 17712
Eisenstein series 576 0 576

Trace form

\( 3600 q - 150 q^{9} - 22 q^{13} + 14 q^{15} + 12 q^{17} - 20 q^{19} + 26 q^{25} - 138 q^{27} - 20 q^{29} + 20 q^{31} - 4 q^{33} - 40 q^{35} - 62 q^{37} - 20 q^{41} + 28 q^{43} - 20 q^{45} - 50 q^{47} - 152 q^{53}+ \cdots + 146 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2900, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1450, [\chi])\)\(^{\oplus 2}\)