Properties

Label 2900.2.ch
Level $2900$
Weight $2$
Character orbit 2900.ch
Rep. character $\chi_{2900}(657,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $540$
Sturm bound $900$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.ch (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q(\zeta_{28})\)
Sturm bound: \(900\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2900, [\chi])\).

Total New Old
Modular forms 5616 540 5076
Cusp forms 5184 540 4644
Eisenstein series 432 0 432

Trace form

\( 540 q + 74 q^{9} - 8 q^{11} - 22 q^{13} + 12 q^{17} - 64 q^{21} + 42 q^{27} - 64 q^{31} - 4 q^{33} - 42 q^{37} + 24 q^{39} - 10 q^{41} + 28 q^{43} + 168 q^{49} + 38 q^{53} - 24 q^{57} - 14 q^{61} + 88 q^{63}+ \cdots + 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2900, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(290, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1450, [\chi])\)\(^{\oplus 2}\)