Properties

Label 2900.2.c.f.349.2
Level $2900$
Weight $2$
Character 2900.349
Analytic conductor $23.157$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2900,2,Mod(349,2900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2900.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1566165862\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 580)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.2
Root \(-1.33641 + 1.33641i\) of defining polynomial
Character \(\chi\) \(=\) 2900.349
Dual form 2900.2.c.f.349.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.67282i q^{3} +4.67282i q^{7} -4.14399 q^{9} -0.672824 q^{11} -1.14399i q^{13} -3.52884i q^{17} -5.52884 q^{19} +12.4896 q^{21} -3.81681i q^{23} +3.05767i q^{27} +1.00000 q^{29} -1.52884 q^{31} +1.79834i q^{33} -7.16246i q^{37} -3.05767 q^{39} +2.85601 q^{41} +8.96080i q^{43} +6.67282i q^{47} -14.8353 q^{49} -9.43196 q^{51} +10.4896i q^{53} +14.7776i q^{57} -10.7776 q^{59} -14.4896 q^{61} -19.3641i q^{63} +7.81681i q^{67} -10.2017 q^{69} +4.48963 q^{71} -4.96080i q^{73} -3.14399i q^{77} -2.38485 q^{79} -4.25934 q^{81} +14.0185i q^{83} -2.67282i q^{87} +1.63362 q^{89} +5.34565 q^{91} +4.08631i q^{93} +9.32718i q^{97} +2.78817 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 22 q^{9} + 16 q^{11} - 16 q^{19} + 32 q^{21} + 6 q^{29} + 8 q^{31} + 16 q^{39} + 20 q^{41} - 6 q^{49} - 48 q^{51} - 16 q^{59} - 44 q^{61} - 24 q^{69} - 16 q^{71} + 46 q^{81} - 36 q^{89} - 8 q^{91}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2900\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\) \(1451\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.67282i − 1.54316i −0.636135 0.771578i \(-0.719468\pi\)
0.636135 0.771578i \(-0.280532\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.67282i 1.76616i 0.469221 + 0.883081i \(0.344535\pi\)
−0.469221 + 0.883081i \(0.655465\pi\)
\(8\) 0 0
\(9\) −4.14399 −1.38133
\(10\) 0 0
\(11\) −0.672824 −0.202864 −0.101432 0.994842i \(-0.532342\pi\)
−0.101432 + 0.994842i \(0.532342\pi\)
\(12\) 0 0
\(13\) − 1.14399i − 0.317285i −0.987336 0.158642i \(-0.949288\pi\)
0.987336 0.158642i \(-0.0507117\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.52884i − 0.855869i −0.903810 0.427934i \(-0.859241\pi\)
0.903810 0.427934i \(-0.140759\pi\)
\(18\) 0 0
\(19\) −5.52884 −1.26840 −0.634201 0.773168i \(-0.718671\pi\)
−0.634201 + 0.773168i \(0.718671\pi\)
\(20\) 0 0
\(21\) 12.4896 2.72546
\(22\) 0 0
\(23\) − 3.81681i − 0.795860i −0.917416 0.397930i \(-0.869729\pi\)
0.917416 0.397930i \(-0.130271\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.05767i 0.588450i
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −1.52884 −0.274587 −0.137294 0.990530i \(-0.543840\pi\)
−0.137294 + 0.990530i \(0.543840\pi\)
\(32\) 0 0
\(33\) 1.79834i 0.313051i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 7.16246i − 1.17750i −0.808315 0.588750i \(-0.799620\pi\)
0.808315 0.588750i \(-0.200380\pi\)
\(38\) 0 0
\(39\) −3.05767 −0.489620
\(40\) 0 0
\(41\) 2.85601 0.446034 0.223017 0.974815i \(-0.428409\pi\)
0.223017 + 0.974815i \(0.428409\pi\)
\(42\) 0 0
\(43\) 8.96080i 1.36651i 0.730180 + 0.683254i \(0.239436\pi\)
−0.730180 + 0.683254i \(0.760564\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.67282i 0.973331i 0.873588 + 0.486666i \(0.161787\pi\)
−0.873588 + 0.486666i \(0.838213\pi\)
\(48\) 0 0
\(49\) −14.8353 −2.11933
\(50\) 0 0
\(51\) −9.43196 −1.32074
\(52\) 0 0
\(53\) 10.4896i 1.44086i 0.693527 + 0.720431i \(0.256056\pi\)
−0.693527 + 0.720431i \(0.743944\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 14.7776i 1.95734i
\(58\) 0 0
\(59\) −10.7776 −1.40312 −0.701562 0.712608i \(-0.747514\pi\)
−0.701562 + 0.712608i \(0.747514\pi\)
\(60\) 0 0
\(61\) −14.4896 −1.85521 −0.927604 0.373566i \(-0.878135\pi\)
−0.927604 + 0.373566i \(0.878135\pi\)
\(62\) 0 0
\(63\) − 19.3641i − 2.43965i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.81681i 0.954975i 0.878638 + 0.477488i \(0.158452\pi\)
−0.878638 + 0.477488i \(0.841548\pi\)
\(68\) 0 0
\(69\) −10.2017 −1.22814
\(70\) 0 0
\(71\) 4.48963 0.532822 0.266411 0.963860i \(-0.414162\pi\)
0.266411 + 0.963860i \(0.414162\pi\)
\(72\) 0 0
\(73\) − 4.96080i − 0.580617i −0.956933 0.290309i \(-0.906242\pi\)
0.956933 0.290309i \(-0.0937580\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 3.14399i − 0.358291i
\(78\) 0 0
\(79\) −2.38485 −0.268317 −0.134158 0.990960i \(-0.542833\pi\)
−0.134158 + 0.990960i \(0.542833\pi\)
\(80\) 0 0
\(81\) −4.25934 −0.473259
\(82\) 0 0
\(83\) 14.0185i 1.53873i 0.638811 + 0.769364i \(0.279427\pi\)
−0.638811 + 0.769364i \(0.720573\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 2.67282i − 0.286557i
\(88\) 0 0
\(89\) 1.63362 0.173163 0.0865817 0.996245i \(-0.472406\pi\)
0.0865817 + 0.996245i \(0.472406\pi\)
\(90\) 0 0
\(91\) 5.34565 0.560376
\(92\) 0 0
\(93\) 4.08631i 0.423731i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.32718i 0.947031i 0.880785 + 0.473516i \(0.157015\pi\)
−0.880785 + 0.473516i \(0.842985\pi\)
\(98\) 0 0
\(99\) 2.78817 0.280222
\(100\) 0 0
\(101\) −16.3249 −1.62439 −0.812195 0.583386i \(-0.801727\pi\)
−0.812195 + 0.583386i \(0.801727\pi\)
\(102\) 0 0
\(103\) − 13.5288i − 1.33304i −0.745489 0.666518i \(-0.767784\pi\)
0.745489 0.666518i \(-0.232216\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 0.672824i − 0.0650443i −0.999471 0.0325222i \(-0.989646\pi\)
0.999471 0.0325222i \(-0.0103540\pi\)
\(108\) 0 0
\(109\) −13.5473 −1.29760 −0.648798 0.760960i \(-0.724728\pi\)
−0.648798 + 0.760960i \(0.724728\pi\)
\(110\) 0 0
\(111\) −19.1440 −1.81707
\(112\) 0 0
\(113\) 20.0185i 1.88318i 0.336762 + 0.941590i \(0.390668\pi\)
−0.336762 + 0.941590i \(0.609332\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.74066i 0.438275i
\(118\) 0 0
\(119\) 16.4896 1.51160
\(120\) 0 0
\(121\) −10.5473 −0.958846
\(122\) 0 0
\(123\) − 7.63362i − 0.688300i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.03920i 0.269686i 0.990867 + 0.134843i \(0.0430530\pi\)
−0.990867 + 0.134843i \(0.956947\pi\)
\(128\) 0 0
\(129\) 23.9506 2.10874
\(130\) 0 0
\(131\) −3.81681 −0.333476 −0.166738 0.986001i \(-0.553323\pi\)
−0.166738 + 0.986001i \(0.553323\pi\)
\(132\) 0 0
\(133\) − 25.8353i − 2.24020i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 16.1048i − 1.37592i −0.725746 0.687962i \(-0.758505\pi\)
0.725746 0.687962i \(-0.241495\pi\)
\(138\) 0 0
\(139\) −3.05767 −0.259349 −0.129674 0.991557i \(-0.541393\pi\)
−0.129674 + 0.991557i \(0.541393\pi\)
\(140\) 0 0
\(141\) 17.8353 1.50200
\(142\) 0 0
\(143\) 0.769701i 0.0643657i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 39.6521i 3.27045i
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 6.77761 0.551554 0.275777 0.961222i \(-0.411065\pi\)
0.275777 + 0.961222i \(0.411065\pi\)
\(152\) 0 0
\(153\) 14.6235i 1.18224i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 8.96080i − 0.715149i −0.933885 0.357575i \(-0.883604\pi\)
0.933885 0.357575i \(-0.116396\pi\)
\(158\) 0 0
\(159\) 28.0369 2.22347
\(160\) 0 0
\(161\) 17.8353 1.40562
\(162\) 0 0
\(163\) − 6.30644i − 0.493959i −0.969021 0.246979i \(-0.920562\pi\)
0.969021 0.246979i \(-0.0794380\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 12.7961i − 0.990190i −0.868839 0.495095i \(-0.835133\pi\)
0.868839 0.495095i \(-0.164867\pi\)
\(168\) 0 0
\(169\) 11.6913 0.899330
\(170\) 0 0
\(171\) 22.9114 1.75208
\(172\) 0 0
\(173\) 18.1233i 1.37789i 0.724816 + 0.688943i \(0.241925\pi\)
−0.724816 + 0.688943i \(0.758075\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 28.8066i 2.16524i
\(178\) 0 0
\(179\) −6.28797 −0.469985 −0.234993 0.971997i \(-0.575507\pi\)
−0.234993 + 0.971997i \(0.575507\pi\)
\(180\) 0 0
\(181\) 4.56804 0.339540 0.169770 0.985484i \(-0.445698\pi\)
0.169770 + 0.985484i \(0.445698\pi\)
\(182\) 0 0
\(183\) 38.7282i 2.86287i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.37429i 0.173625i
\(188\) 0 0
\(189\) −14.2880 −1.03930
\(190\) 0 0
\(191\) 21.6521 1.56669 0.783345 0.621587i \(-0.213512\pi\)
0.783345 + 0.621587i \(0.213512\pi\)
\(192\) 0 0
\(193\) − 13.2409i − 0.953098i −0.879148 0.476549i \(-0.841887\pi\)
0.879148 0.476549i \(-0.158113\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 7.34565i − 0.523356i −0.965155 0.261678i \(-0.915724\pi\)
0.965155 0.261678i \(-0.0842758\pi\)
\(198\) 0 0
\(199\) −18.7776 −1.33111 −0.665555 0.746349i \(-0.731805\pi\)
−0.665555 + 0.746349i \(0.731805\pi\)
\(200\) 0 0
\(201\) 20.8930 1.47368
\(202\) 0 0
\(203\) 4.67282i 0.327968i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 15.8168i 1.09934i
\(208\) 0 0
\(209\) 3.71993 0.257313
\(210\) 0 0
\(211\) 17.6521 1.21522 0.607610 0.794235i \(-0.292128\pi\)
0.607610 + 0.794235i \(0.292128\pi\)
\(212\) 0 0
\(213\) − 12.0000i − 0.822226i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 7.14399i − 0.484965i
\(218\) 0 0
\(219\) −13.2593 −0.895983
\(220\) 0 0
\(221\) −4.03694 −0.271554
\(222\) 0 0
\(223\) 7.45043i 0.498918i 0.968385 + 0.249459i \(0.0802527\pi\)
−0.968385 + 0.249459i \(0.919747\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.2201i 1.60755i 0.594936 + 0.803773i \(0.297178\pi\)
−0.594936 + 0.803773i \(0.702822\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) −8.40332 −0.552898
\(232\) 0 0
\(233\) − 0.287973i − 0.0188657i −0.999956 0.00943287i \(-0.996997\pi\)
0.999956 0.00943287i \(-0.00300262\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6.37429i 0.414054i
\(238\) 0 0
\(239\) −7.51037 −0.485805 −0.242903 0.970051i \(-0.578100\pi\)
−0.242903 + 0.970051i \(0.578100\pi\)
\(240\) 0 0
\(241\) −21.6706 −1.39592 −0.697962 0.716135i \(-0.745909\pi\)
−0.697962 + 0.716135i \(0.745909\pi\)
\(242\) 0 0
\(243\) 20.5575i 1.31876i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.32492i 0.402445i
\(248\) 0 0
\(249\) 37.4689 2.37450
\(250\) 0 0
\(251\) −12.6728 −0.799902 −0.399951 0.916537i \(-0.630973\pi\)
−0.399951 + 0.916537i \(0.630973\pi\)
\(252\) 0 0
\(253\) 2.56804i 0.161451i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 16.9714i − 1.05864i −0.848421 0.529322i \(-0.822446\pi\)
0.848421 0.529322i \(-0.177554\pi\)
\(258\) 0 0
\(259\) 33.4689 2.07966
\(260\) 0 0
\(261\) −4.14399 −0.256506
\(262\) 0 0
\(263\) 5.90312i 0.364002i 0.983298 + 0.182001i \(0.0582574\pi\)
−0.983298 + 0.182001i \(0.941743\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 4.36638i − 0.267218i
\(268\) 0 0
\(269\) 14.8560 0.905787 0.452894 0.891565i \(-0.350392\pi\)
0.452894 + 0.891565i \(0.350392\pi\)
\(270\) 0 0
\(271\) 22.5944 1.37251 0.686257 0.727360i \(-0.259253\pi\)
0.686257 + 0.727360i \(0.259253\pi\)
\(272\) 0 0
\(273\) − 14.2880i − 0.864747i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 27.4689i − 1.65045i −0.564807 0.825223i \(-0.691049\pi\)
0.564807 0.825223i \(-0.308951\pi\)
\(278\) 0 0
\(279\) 6.33548 0.379295
\(280\) 0 0
\(281\) 17.5473 1.04678 0.523392 0.852092i \(-0.324666\pi\)
0.523392 + 0.852092i \(0.324666\pi\)
\(282\) 0 0
\(283\) 26.5081i 1.57574i 0.615839 + 0.787872i \(0.288817\pi\)
−0.615839 + 0.787872i \(0.711183\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.3456i 0.787769i
\(288\) 0 0
\(289\) 4.54731 0.267489
\(290\) 0 0
\(291\) 24.9299 1.46142
\(292\) 0 0
\(293\) − 22.7098i − 1.32672i −0.748301 0.663359i \(-0.769130\pi\)
0.748301 0.663359i \(-0.230870\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 2.05728i − 0.119375i
\(298\) 0 0
\(299\) −4.36638 −0.252514
\(300\) 0 0
\(301\) −41.8722 −2.41347
\(302\) 0 0
\(303\) 43.6336i 2.50669i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 20.9608i − 1.19630i −0.801386 0.598148i \(-0.795904\pi\)
0.801386 0.598148i \(-0.204096\pi\)
\(308\) 0 0
\(309\) −36.1602 −2.05708
\(310\) 0 0
\(311\) −27.4874 −1.55867 −0.779333 0.626610i \(-0.784442\pi\)
−0.779333 + 0.626610i \(0.784442\pi\)
\(312\) 0 0
\(313\) − 18.8560i − 1.06580i −0.846177 0.532902i \(-0.821101\pi\)
0.846177 0.532902i \(-0.178899\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 29.4504i − 1.65410i −0.562128 0.827050i \(-0.690017\pi\)
0.562128 0.827050i \(-0.309983\pi\)
\(318\) 0 0
\(319\) −0.672824 −0.0376709
\(320\) 0 0
\(321\) −1.79834 −0.100374
\(322\) 0 0
\(323\) 19.5104i 1.08559i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 36.2096i 2.00239i
\(328\) 0 0
\(329\) −31.1809 −1.71906
\(330\) 0 0
\(331\) 3.60724 0.198272 0.0991360 0.995074i \(-0.468392\pi\)
0.0991360 + 0.995074i \(0.468392\pi\)
\(332\) 0 0
\(333\) 29.6811i 1.62652i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.3064i 0.997216i 0.866828 + 0.498608i \(0.166155\pi\)
−0.866828 + 0.498608i \(0.833845\pi\)
\(338\) 0 0
\(339\) 53.5058 2.90604
\(340\) 0 0
\(341\) 1.02864 0.0557039
\(342\) 0 0
\(343\) − 36.6129i − 1.97691i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 6.38485i − 0.342757i −0.985205 0.171378i \(-0.945178\pi\)
0.985205 0.171378i \(-0.0548221\pi\)
\(348\) 0 0
\(349\) −17.2672 −0.924294 −0.462147 0.886803i \(-0.652921\pi\)
−0.462147 + 0.886803i \(0.652921\pi\)
\(350\) 0 0
\(351\) 3.49794 0.186706
\(352\) 0 0
\(353\) − 9.91369i − 0.527652i −0.964570 0.263826i \(-0.915015\pi\)
0.964570 0.263826i \(-0.0849845\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 44.0739i − 2.33264i
\(358\) 0 0
\(359\) 3.81681 0.201444 0.100722 0.994915i \(-0.467885\pi\)
0.100722 + 0.994915i \(0.467885\pi\)
\(360\) 0 0
\(361\) 11.5680 0.608844
\(362\) 0 0
\(363\) 28.1911i 1.47965i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 7.98153i 0.416632i 0.978062 + 0.208316i \(0.0667983\pi\)
−0.978062 + 0.208316i \(0.933202\pi\)
\(368\) 0 0
\(369\) −11.8353 −0.616120
\(370\) 0 0
\(371\) −49.0162 −2.54479
\(372\) 0 0
\(373\) − 26.0369i − 1.34814i −0.738667 0.674071i \(-0.764544\pi\)
0.738667 0.674071i \(-0.235456\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1.14399i − 0.0589183i
\(378\) 0 0
\(379\) −28.8824 −1.48359 −0.741794 0.670627i \(-0.766025\pi\)
−0.741794 + 0.670627i \(0.766025\pi\)
\(380\) 0 0
\(381\) 8.12325 0.416167
\(382\) 0 0
\(383\) 0.0968776i 0.00495021i 0.999997 + 0.00247511i \(0.000787851\pi\)
−0.999997 + 0.00247511i \(0.999212\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 37.1334i − 1.88760i
\(388\) 0 0
\(389\) 0.740665 0.0375532 0.0187766 0.999824i \(-0.494023\pi\)
0.0187766 + 0.999824i \(0.494023\pi\)
\(390\) 0 0
\(391\) −13.4689 −0.681152
\(392\) 0 0
\(393\) 10.2017i 0.514606i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 23.9216i 1.20059i 0.799779 + 0.600295i \(0.204950\pi\)
−0.799779 + 0.600295i \(0.795050\pi\)
\(398\) 0 0
\(399\) −69.0532 −3.45698
\(400\) 0 0
\(401\) −5.54731 −0.277019 −0.138510 0.990361i \(-0.544231\pi\)
−0.138510 + 0.990361i \(0.544231\pi\)
\(402\) 0 0
\(403\) 1.74897i 0.0871224i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.81907i 0.238872i
\(408\) 0 0
\(409\) 34.8930 1.72535 0.862673 0.505762i \(-0.168789\pi\)
0.862673 + 0.505762i \(0.168789\pi\)
\(410\) 0 0
\(411\) −43.0452 −2.12327
\(412\) 0 0
\(413\) − 50.3619i − 2.47814i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.17262i 0.400215i
\(418\) 0 0
\(419\) −12.1233 −0.592260 −0.296130 0.955148i \(-0.595696\pi\)
−0.296130 + 0.955148i \(0.595696\pi\)
\(420\) 0 0
\(421\) 19.0656 0.929200 0.464600 0.885521i \(-0.346198\pi\)
0.464600 + 0.885521i \(0.346198\pi\)
\(422\) 0 0
\(423\) − 27.6521i − 1.34449i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 67.7075i − 3.27660i
\(428\) 0 0
\(429\) 2.05728 0.0993262
\(430\) 0 0
\(431\) 2.69129 0.129635 0.0648176 0.997897i \(-0.479353\pi\)
0.0648176 + 0.997897i \(0.479353\pi\)
\(432\) 0 0
\(433\) 17.4874i 0.840390i 0.907434 + 0.420195i \(0.138038\pi\)
−0.907434 + 0.420195i \(0.861962\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21.1025i 1.00947i
\(438\) 0 0
\(439\) 4.45269 0.212515 0.106258 0.994339i \(-0.466113\pi\)
0.106258 + 0.994339i \(0.466113\pi\)
\(440\) 0 0
\(441\) 61.4772 2.92749
\(442\) 0 0
\(443\) 11.6151i 0.551852i 0.961179 + 0.275926i \(0.0889845\pi\)
−0.961179 + 0.275926i \(0.911015\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 48.1108i 2.27556i
\(448\) 0 0
\(449\) 9.91369 0.467856 0.233928 0.972254i \(-0.424842\pi\)
0.233928 + 0.972254i \(0.424842\pi\)
\(450\) 0 0
\(451\) −1.92159 −0.0904843
\(452\) 0 0
\(453\) − 18.1153i − 0.851133i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 32.6050i − 1.52520i −0.646872 0.762598i \(-0.723923\pi\)
0.646872 0.762598i \(-0.276077\pi\)
\(458\) 0 0
\(459\) 10.7900 0.503636
\(460\) 0 0
\(461\) 5.23030 0.243599 0.121800 0.992555i \(-0.461133\pi\)
0.121800 + 0.992555i \(0.461133\pi\)
\(462\) 0 0
\(463\) − 35.0841i − 1.63049i −0.579113 0.815247i \(-0.696601\pi\)
0.579113 0.815247i \(-0.303399\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 21.3641i − 0.988614i −0.869288 0.494307i \(-0.835422\pi\)
0.869288 0.494307i \(-0.164578\pi\)
\(468\) 0 0
\(469\) −36.5266 −1.68664
\(470\) 0 0
\(471\) −23.9506 −1.10359
\(472\) 0 0
\(473\) − 6.02904i − 0.277215i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 43.4689i − 1.99030i
\(478\) 0 0
\(479\) −5.03920 −0.230247 −0.115124 0.993351i \(-0.536726\pi\)
−0.115124 + 0.993351i \(0.536726\pi\)
\(480\) 0 0
\(481\) −8.19376 −0.373603
\(482\) 0 0
\(483\) − 47.6706i − 2.16909i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 28.8824i − 1.30879i −0.756155 0.654393i \(-0.772924\pi\)
0.756155 0.654393i \(-0.227076\pi\)
\(488\) 0 0
\(489\) −16.8560 −0.762255
\(490\) 0 0
\(491\) 5.16246 0.232978 0.116489 0.993192i \(-0.462836\pi\)
0.116489 + 0.993192i \(0.462836\pi\)
\(492\) 0 0
\(493\) − 3.52884i − 0.158931i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20.9793i 0.941049i
\(498\) 0 0
\(499\) 27.0946 1.21292 0.606461 0.795113i \(-0.292589\pi\)
0.606461 + 0.795113i \(0.292589\pi\)
\(500\) 0 0
\(501\) −34.2017 −1.52802
\(502\) 0 0
\(503\) 25.7305i 1.14727i 0.819112 + 0.573633i \(0.194466\pi\)
−0.819112 + 0.573633i \(0.805534\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 31.2488i − 1.38781i
\(508\) 0 0
\(509\) −11.8353 −0.524590 −0.262295 0.964988i \(-0.584479\pi\)
−0.262295 + 0.964988i \(0.584479\pi\)
\(510\) 0 0
\(511\) 23.1809 1.02546
\(512\) 0 0
\(513\) − 16.9054i − 0.746391i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 4.48963i − 0.197454i
\(518\) 0 0
\(519\) 48.4403 2.12629
\(520\) 0 0
\(521\) −0.164719 −0.00721646 −0.00360823 0.999993i \(-0.501149\pi\)
−0.00360823 + 0.999993i \(0.501149\pi\)
\(522\) 0 0
\(523\) − 11.6072i − 0.507549i −0.967263 0.253775i \(-0.918328\pi\)
0.967263 0.253775i \(-0.0816722\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.39502i 0.235011i
\(528\) 0 0
\(529\) 8.43196 0.366607
\(530\) 0 0
\(531\) 44.6623 1.93818
\(532\) 0 0
\(533\) − 3.26724i − 0.141520i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 16.8066i 0.725260i
\(538\) 0 0
\(539\) 9.98153 0.429935
\(540\) 0 0
\(541\) −35.5922 −1.53023 −0.765113 0.643896i \(-0.777317\pi\)
−0.765113 + 0.643896i \(0.777317\pi\)
\(542\) 0 0
\(543\) − 12.2096i − 0.523963i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 44.3803i 1.89757i 0.315929 + 0.948783i \(0.397684\pi\)
−0.315929 + 0.948783i \(0.602316\pi\)
\(548\) 0 0
\(549\) 60.0448 2.56265
\(550\) 0 0
\(551\) −5.52884 −0.235536
\(552\) 0 0
\(553\) − 11.1440i − 0.473891i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.0739i 1.10479i 0.833584 + 0.552393i \(0.186285\pi\)
−0.833584 + 0.552393i \(0.813715\pi\)
\(558\) 0 0
\(559\) 10.2510 0.433572
\(560\) 0 0
\(561\) 6.34605 0.267930
\(562\) 0 0
\(563\) − 16.4218i − 0.692096i −0.938217 0.346048i \(-0.887523\pi\)
0.938217 0.346048i \(-0.112477\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 19.9031i − 0.835853i
\(568\) 0 0
\(569\) 7.79834 0.326923 0.163462 0.986550i \(-0.447734\pi\)
0.163462 + 0.986550i \(0.447734\pi\)
\(570\) 0 0
\(571\) −33.3826 −1.39702 −0.698509 0.715601i \(-0.746153\pi\)
−0.698509 + 0.715601i \(0.746153\pi\)
\(572\) 0 0
\(573\) − 57.8722i − 2.41765i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.10478i 0.337407i 0.985667 + 0.168703i \(0.0539580\pi\)
−0.985667 + 0.168703i \(0.946042\pi\)
\(578\) 0 0
\(579\) −35.3905 −1.47078
\(580\) 0 0
\(581\) −65.5058 −2.71764
\(582\) 0 0
\(583\) − 7.05767i − 0.292299i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 28.5865i − 1.17989i −0.807443 0.589946i \(-0.799149\pi\)
0.807443 0.589946i \(-0.200851\pi\)
\(588\) 0 0
\(589\) 8.45269 0.348287
\(590\) 0 0
\(591\) −19.6336 −0.807619
\(592\) 0 0
\(593\) 22.4896i 0.923539i 0.887000 + 0.461769i \(0.152785\pi\)
−0.887000 + 0.461769i \(0.847215\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 50.1892i 2.05411i
\(598\) 0 0
\(599\) 31.7305 1.29647 0.648237 0.761439i \(-0.275507\pi\)
0.648237 + 0.761439i \(0.275507\pi\)
\(600\) 0 0
\(601\) 4.56804 0.186334 0.0931671 0.995650i \(-0.470301\pi\)
0.0931671 + 0.995650i \(0.470301\pi\)
\(602\) 0 0
\(603\) − 32.3928i − 1.31914i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.7882i 0.519056i 0.965736 + 0.259528i \(0.0835670\pi\)
−0.965736 + 0.259528i \(0.916433\pi\)
\(608\) 0 0
\(609\) 12.4896 0.506106
\(610\) 0 0
\(611\) 7.63362 0.308823
\(612\) 0 0
\(613\) − 6.97927i − 0.281890i −0.990017 0.140945i \(-0.954986\pi\)
0.990017 0.140945i \(-0.0450141\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 30.9193i − 1.24477i −0.782713 0.622383i \(-0.786165\pi\)
0.782713 0.622383i \(-0.213835\pi\)
\(618\) 0 0
\(619\) 20.7098 0.832396 0.416198 0.909274i \(-0.363362\pi\)
0.416198 + 0.909274i \(0.363362\pi\)
\(620\) 0 0
\(621\) 11.6706 0.468324
\(622\) 0 0
\(623\) 7.63362i 0.305835i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 9.94272i − 0.397074i
\(628\) 0 0
\(629\) −25.2751 −1.00779
\(630\) 0 0
\(631\) 9.67508 0.385159 0.192580 0.981281i \(-0.438315\pi\)
0.192580 + 0.981281i \(0.438315\pi\)
\(632\) 0 0
\(633\) − 47.1809i − 1.87527i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 16.9714i 0.672430i
\(638\) 0 0
\(639\) −18.6050 −0.736002
\(640\) 0 0
\(641\) 23.5058 0.928425 0.464213 0.885724i \(-0.346337\pi\)
0.464213 + 0.885724i \(0.346337\pi\)
\(642\) 0 0
\(643\) 40.6235i 1.60203i 0.598643 + 0.801016i \(0.295707\pi\)
−0.598643 + 0.801016i \(0.704293\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.2280i 0.402106i 0.979580 + 0.201053i \(0.0644363\pi\)
−0.979580 + 0.201053i \(0.935564\pi\)
\(648\) 0 0
\(649\) 7.25143 0.284644
\(650\) 0 0
\(651\) −19.0946 −0.748377
\(652\) 0 0
\(653\) − 28.2280i − 1.10465i −0.833629 0.552324i \(-0.813741\pi\)
0.833629 0.552324i \(-0.186259\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 20.5575i 0.802023i
\(658\) 0 0
\(659\) 15.0471 0.586152 0.293076 0.956089i \(-0.405321\pi\)
0.293076 + 0.956089i \(0.405321\pi\)
\(660\) 0 0
\(661\) 13.8767 0.539743 0.269871 0.962896i \(-0.413019\pi\)
0.269871 + 0.962896i \(0.413019\pi\)
\(662\) 0 0
\(663\) 10.7900i 0.419050i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 3.81681i − 0.147787i
\(668\) 0 0
\(669\) 19.9137 0.769908
\(670\) 0 0
\(671\) 9.74897 0.376355
\(672\) 0 0
\(673\) 15.3456i 0.591531i 0.955261 + 0.295766i \(0.0955747\pi\)
−0.955261 + 0.295766i \(0.904425\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 50.5530i 1.94291i 0.237228 + 0.971454i \(0.423761\pi\)
−0.237228 + 0.971454i \(0.576239\pi\)
\(678\) 0 0
\(679\) −43.5843 −1.67261
\(680\) 0 0
\(681\) 64.7361 2.48069
\(682\) 0 0
\(683\) 41.6027i 1.59188i 0.605373 + 0.795942i \(0.293024\pi\)
−0.605373 + 0.795942i \(0.706976\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.34565i 0.203949i
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −41.6627 −1.58492 −0.792461 0.609922i \(-0.791201\pi\)
−0.792461 + 0.609922i \(0.791201\pi\)
\(692\) 0 0
\(693\) 13.0286i 0.494917i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 10.0784i − 0.381747i
\(698\) 0 0
\(699\) −0.769701 −0.0291128
\(700\) 0 0
\(701\) −44.8145 −1.69262 −0.846311 0.532689i \(-0.821182\pi\)
−0.846311 + 0.532689i \(0.821182\pi\)
\(702\) 0 0
\(703\) 39.6001i 1.49354i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 76.2835i − 2.86893i
\(708\) 0 0
\(709\) −23.4320 −0.880006 −0.440003 0.897996i \(-0.645023\pi\)
−0.440003 + 0.897996i \(0.645023\pi\)
\(710\) 0 0
\(711\) 9.88279 0.370634
\(712\) 0 0
\(713\) 5.83528i 0.218533i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 20.0739i 0.749673i
\(718\) 0 0
\(719\) −32.3328 −1.20581 −0.602905 0.797813i \(-0.705990\pi\)
−0.602905 + 0.797813i \(0.705990\pi\)
\(720\) 0 0
\(721\) 63.2179 2.35436
\(722\) 0 0
\(723\) 57.9216i 2.15413i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 4.01847i − 0.149037i −0.997220 0.0745184i \(-0.976258\pi\)
0.997220 0.0745184i \(-0.0237420\pi\)
\(728\) 0 0
\(729\) 42.1685 1.56180
\(730\) 0 0
\(731\) 31.6212 1.16955
\(732\) 0 0
\(733\) − 3.49189i − 0.128976i −0.997918 0.0644880i \(-0.979459\pi\)
0.997918 0.0644880i \(-0.0205414\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 5.25934i − 0.193730i
\(738\) 0 0
\(739\) 45.4090 1.67040 0.835198 0.549949i \(-0.185353\pi\)
0.835198 + 0.549949i \(0.185353\pi\)
\(740\) 0 0
\(741\) 16.9054 0.621035
\(742\) 0 0
\(743\) 40.6683i 1.49198i 0.665960 + 0.745988i \(0.268022\pi\)
−0.665960 + 0.745988i \(0.731978\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 58.0924i − 2.12549i
\(748\) 0 0
\(749\) 3.14399 0.114879
\(750\) 0 0
\(751\) 49.0268 1.78901 0.894506 0.447055i \(-0.147527\pi\)
0.894506 + 0.447055i \(0.147527\pi\)
\(752\) 0 0
\(753\) 33.8722i 1.23437i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 51.7260i 1.88001i 0.341157 + 0.940006i \(0.389181\pi\)
−0.341157 + 0.940006i \(0.610819\pi\)
\(758\) 0 0
\(759\) 6.86392 0.249144
\(760\) 0 0
\(761\) 34.2307 1.24086 0.620431 0.784261i \(-0.286958\pi\)
0.620431 + 0.784261i \(0.286958\pi\)
\(762\) 0 0
\(763\) − 63.3042i − 2.29177i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.3294i 0.445190i
\(768\) 0 0
\(769\) −22.5971 −0.814871 −0.407436 0.913234i \(-0.633577\pi\)
−0.407436 + 0.913234i \(0.633577\pi\)
\(770\) 0 0
\(771\) −45.3615 −1.63365
\(772\) 0 0
\(773\) 13.8538i 0.498285i 0.968467 + 0.249142i \(0.0801487\pi\)
−0.968467 + 0.249142i \(0.919851\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 89.4565i − 3.20923i
\(778\) 0 0
\(779\) −15.7904 −0.565751
\(780\) 0 0
\(781\) −3.02073 −0.108090
\(782\) 0 0
\(783\) 3.05767i 0.109272i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 20.0969i − 0.716376i −0.933649 0.358188i \(-0.883395\pi\)
0.933649 0.358188i \(-0.116605\pi\)
\(788\) 0 0
\(789\) 15.7780 0.561712
\(790\) 0 0
\(791\) −93.5428 −3.32600
\(792\) 0 0
\(793\) 16.5759i 0.588629i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 43.6890i − 1.54754i −0.633464 0.773772i \(-0.718367\pi\)
0.633464 0.773772i \(-0.281633\pi\)
\(798\) 0 0
\(799\) 23.5473 0.833044
\(800\) 0 0
\(801\) −6.76970 −0.239196
\(802\) 0 0
\(803\) 3.33774i 0.117786i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 39.7075i − 1.39777i
\(808\) 0 0
\(809\) 18.4403 0.648325 0.324163 0.946001i \(-0.394918\pi\)
0.324163 + 0.946001i \(0.394918\pi\)
\(810\) 0 0
\(811\) 15.0577 0.528746 0.264373 0.964420i \(-0.414835\pi\)
0.264373 + 0.964420i \(0.414835\pi\)
\(812\) 0 0
\(813\) − 60.3909i − 2.11800i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 49.5428i − 1.73328i
\(818\) 0 0
\(819\) −22.1523 −0.774064
\(820\) 0 0
\(821\) 50.9793 1.77919 0.889594 0.456751i \(-0.150987\pi\)
0.889594 + 0.456751i \(0.150987\pi\)
\(822\) 0 0
\(823\) − 2.84545i − 0.0991861i −0.998770 0.0495930i \(-0.984208\pi\)
0.998770 0.0495930i \(-0.0157924\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.0761i 0.524249i 0.965034 + 0.262124i \(0.0844231\pi\)
−0.965034 + 0.262124i \(0.915577\pi\)
\(828\) 0 0
\(829\) 34.6992 1.20515 0.602577 0.798061i \(-0.294141\pi\)
0.602577 + 0.798061i \(0.294141\pi\)
\(830\) 0 0
\(831\) −73.4195 −2.54690
\(832\) 0 0
\(833\) 52.3513i 1.81386i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 4.67469i − 0.161581i
\(838\) 0 0
\(839\) 14.7882 0.510544 0.255272 0.966869i \(-0.417835\pi\)
0.255272 + 0.966869i \(0.417835\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) − 46.9009i − 1.61535i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 49.2857i − 1.69348i
\(848\) 0 0
\(849\) 70.8515 2.43162
\(850\) 0 0
\(851\) −27.3377 −0.937126
\(852\) 0 0
\(853\) 35.7753i 1.22492i 0.790500 + 0.612462i \(0.209821\pi\)
−0.790500 + 0.612462i \(0.790179\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.4112i 0.423959i 0.977274 + 0.211980i \(0.0679911\pi\)
−0.977274 + 0.211980i \(0.932009\pi\)
\(858\) 0 0
\(859\) 0.0599353 0.00204497 0.00102248 0.999999i \(-0.499675\pi\)
0.00102248 + 0.999999i \(0.499675\pi\)
\(860\) 0 0
\(861\) 35.6706 1.21565
\(862\) 0 0
\(863\) − 44.5530i − 1.51660i −0.651906 0.758300i \(-0.726030\pi\)
0.651906 0.758300i \(-0.273970\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 12.1542i − 0.412777i
\(868\) 0 0
\(869\) 1.60458 0.0544318
\(870\) 0 0
\(871\) 8.94233 0.302999
\(872\) 0 0
\(873\) − 38.6517i − 1.30816i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 29.9137i − 1.01011i −0.863086 0.505057i \(-0.831472\pi\)
0.863086 0.505057i \(-0.168528\pi\)
\(878\) 0 0
\(879\) −60.6992 −2.04733
\(880\) 0 0
\(881\) −32.2386 −1.08615 −0.543073 0.839685i \(-0.682739\pi\)
−0.543073 + 0.839685i \(0.682739\pi\)
\(882\) 0 0
\(883\) 36.7098i 1.23538i 0.786421 + 0.617691i \(0.211932\pi\)
−0.786421 + 0.617691i \(0.788068\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.63588i 0.0885042i 0.999020 + 0.0442521i \(0.0140905\pi\)
−0.999020 + 0.0442521i \(0.985910\pi\)
\(888\) 0 0
\(889\) −14.2017 −0.476308
\(890\) 0 0
\(891\) 2.86578 0.0960073
\(892\) 0 0
\(893\) − 36.8930i − 1.23458i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 11.6706i 0.389669i
\(898\) 0 0
\(899\) −1.52884 −0.0509896
\(900\) 0 0
\(901\) 37.0162 1.23319
\(902\) 0 0
\(903\) 111.917i 3.72437i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 16.0185i − 0.531885i −0.963989 0.265942i \(-0.914317\pi\)
0.963989 0.265942i \(-0.0856831\pi\)
\(908\) 0 0
\(909\) 67.6502 2.24382
\(910\) 0 0
\(911\) 37.9480 1.25727 0.628636 0.777700i \(-0.283613\pi\)
0.628636 + 0.777700i \(0.283613\pi\)
\(912\) 0 0
\(913\) − 9.43196i − 0.312152i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 17.8353i − 0.588973i
\(918\) 0 0
\(919\) 7.58425 0.250181 0.125091 0.992145i \(-0.460078\pi\)
0.125091 + 0.992145i \(0.460078\pi\)
\(920\) 0 0
\(921\) −56.0245 −1.84607
\(922\) 0 0
\(923\) − 5.13608i − 0.169056i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 56.0633i 1.84136i
\(928\) 0 0
\(929\) −26.4033 −0.866265 −0.433132 0.901330i \(-0.642592\pi\)
−0.433132 + 0.901330i \(0.642592\pi\)
\(930\) 0 0
\(931\) 82.0219 2.68816
\(932\) 0 0
\(933\) 73.4689i 2.40526i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 44.6050i − 1.45718i −0.684949 0.728591i \(-0.740176\pi\)
0.684949 0.728591i \(-0.259824\pi\)
\(938\) 0 0
\(939\) −50.3988 −1.64470
\(940\) 0 0
\(941\) −9.26724 −0.302103 −0.151052 0.988526i \(-0.548266\pi\)
−0.151052 + 0.988526i \(0.548266\pi\)
\(942\) 0 0
\(943\) − 10.9009i − 0.354981i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28.4218i 0.923584i 0.886988 + 0.461792i \(0.152793\pi\)
−0.886988 + 0.461792i \(0.847207\pi\)
\(948\) 0 0
\(949\) −5.67508 −0.184221
\(950\) 0 0
\(951\) −78.7158 −2.55254
\(952\) 0 0
\(953\) 55.2100i 1.78843i 0.447642 + 0.894213i \(0.352264\pi\)
−0.447642 + 0.894213i \(0.647736\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.79834i 0.0581320i
\(958\) 0 0
\(959\) 75.2548 2.43010
\(960\) 0 0
\(961\) −28.6627 −0.924602
\(962\) 0 0
\(963\) 2.78817i 0.0898476i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 34.1496i 1.09818i 0.835764 + 0.549089i \(0.185025\pi\)
−0.835764 + 0.549089i \(0.814975\pi\)
\(968\) 0 0
\(969\) 52.1478 1.67523
\(970\) 0 0
\(971\) −41.4090 −1.32888 −0.664438 0.747343i \(-0.731329\pi\)
−0.664438 + 0.747343i \(0.731329\pi\)
\(972\) 0 0
\(973\) − 14.2880i − 0.458051i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13.9506i 0.446320i 0.974782 + 0.223160i \(0.0716373\pi\)
−0.974782 + 0.223160i \(0.928363\pi\)
\(978\) 0 0
\(979\) −1.09914 −0.0351286
\(980\) 0 0
\(981\) 56.1399 1.79241
\(982\) 0 0
\(983\) − 39.6521i − 1.26471i −0.774681 0.632353i \(-0.782089\pi\)
0.774681 0.632353i \(-0.217911\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 83.3411i 2.65278i
\(988\) 0 0
\(989\) 34.2017 1.08755
\(990\) 0 0
\(991\) 2.93442 0.0932149 0.0466075 0.998913i \(-0.485159\pi\)
0.0466075 + 0.998913i \(0.485159\pi\)
\(992\) 0 0
\(993\) − 9.64153i − 0.305965i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 12.9977i − 0.411643i −0.978590 0.205821i \(-0.934013\pi\)
0.978590 0.205821i \(-0.0659866\pi\)
\(998\) 0 0
\(999\) 21.9005 0.692900
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2900.2.c.f.349.2 6
5.2 odd 4 580.2.a.c.1.1 3
5.3 odd 4 2900.2.a.g.1.3 3
5.4 even 2 inner 2900.2.c.f.349.5 6
15.2 even 4 5220.2.a.x.1.1 3
20.7 even 4 2320.2.a.m.1.3 3
40.27 even 4 9280.2.a.bw.1.1 3
40.37 odd 4 9280.2.a.bk.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
580.2.a.c.1.1 3 5.2 odd 4
2320.2.a.m.1.3 3 20.7 even 4
2900.2.a.g.1.3 3 5.3 odd 4
2900.2.c.f.349.2 6 1.1 even 1 trivial
2900.2.c.f.349.5 6 5.4 even 2 inner
5220.2.a.x.1.1 3 15.2 even 4
9280.2.a.bk.1.3 3 40.37 odd 4
9280.2.a.bw.1.1 3 40.27 even 4