Properties

Label 2900.2.by
Level $2900$
Weight $2$
Character orbit 2900.by
Rep. character $\chi_{2900}(599,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $3192$
Sturm bound $900$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.by (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 580 \)
Character field: \(\Q(\zeta_{28})\)
Sturm bound: \(900\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2900, [\chi])\).

Total New Old
Modular forms 5544 3288 2256
Cusp forms 5256 3192 2064
Eisenstein series 288 96 192

Trace form

\( 3192 q + 28 q^{4} - 28 q^{6} + 56 q^{9} + 32 q^{14} - 20 q^{16} - 88 q^{21} + 20 q^{24} - 32 q^{26} + 32 q^{29} + 28 q^{34} - 52 q^{36} - 28 q^{41} - 8 q^{44} - 44 q^{46} - 476 q^{49} + 68 q^{54} - 28 q^{56}+ \cdots - 28 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2900, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(580, [\chi])\)\(^{\oplus 2}\)