Properties

Label 2900.2.bu
Level $2900$
Weight $2$
Character orbit 2900.bu
Rep. character $\chi_{2900}(17,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $600$
Sturm bound $900$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.bu (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 725 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(900\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2900, [\chi])\).

Total New Old
Modular forms 3648 600 3048
Cusp forms 3552 600 2952
Eisenstein series 96 0 96

Trace form

\( 600 q + 150 q^{9} - 6 q^{13} - 14 q^{15} - 12 q^{17} + 20 q^{19} + 2 q^{25} - 30 q^{27} + 20 q^{29} - 20 q^{31} + 4 q^{33} - 16 q^{35} + 20 q^{37} + 20 q^{41} + 20 q^{45} + 50 q^{47} - 72 q^{53} + 2 q^{55}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2900, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(725, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1450, [\chi])\)\(^{\oplus 2}\)