# Properties

 Label 2900.2.a.g Level $2900$ Weight $2$ Character orbit 2900.a Self dual yes Analytic conductor $23.157$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2900,2,Mod(1,2900)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2900, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2900.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2900 = 2^{2} \cdot 5^{2} \cdot 29$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2900.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$23.1566165862$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.564.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 5x + 3$$ x^3 - x^2 - 5*x + 3 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 580) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - \beta_{2} - 1) q^{3} + ( - \beta_{2} + 1) q^{7} + (\beta_1 + 4) q^{9}+O(q^{10})$$ q + (-b2 - 1) * q^3 + (-b2 + 1) * q^7 + (b1 + 4) * q^9 $$q + ( - \beta_{2} - 1) q^{3} + ( - \beta_{2} + 1) q^{7} + (\beta_1 + 4) q^{9} + (\beta_{2} + 3) q^{11} + (\beta_1 + 1) q^{13} + (\beta_{2} + \beta_1) q^{17} + ( - \beta_{2} - \beta_1 + 2) q^{19} + ( - 2 \beta_{2} + \beta_1 + 5) q^{21} + ( - \beta_{2} + \beta_1) q^{23} + ( - 2 \beta_{2} - 2 \beta_1 - 4) q^{27} - q^{29} + (\beta_{2} + \beta_1 + 2) q^{31} + ( - 2 \beta_{2} - \beta_1 - 9) q^{33} + (3 \beta_{2} - \beta_1 + 4) q^{37} + ( - 2 \beta_{2} - 2 \beta_1 - 4) q^{39} + ( - \beta_1 + 3) q^{41} + (\beta_{2} - 2 \beta_1 - 5) q^{43} + ( - \beta_{2} + 3) q^{47} + ( - 4 \beta_{2} + \beta_1) q^{49} + ( - 3 \beta_1 - 9) q^{51} + (2 \beta_{2} - \beta_1 - 3) q^{53} + ( - 2 \beta_{2} + 3 \beta_1 + 7) q^{57} + ( - 2 \beta_{2} + 3 \beta_1 + 3) q^{59} + (2 \beta_{2} - \beta_1 - 7) q^{61} + ( - 5 \beta_{2} + 1) q^{63} + ( - \beta_{2} + \beta_1 + 4) q^{67} + ( - 2 \beta_{2} - \beta_1 + 3) q^{69} + ( - 2 \beta_{2} + \beta_1 - 3) q^{71} + ( - \beta_{2} + 2 \beta_1 + 1) q^{73} + ( - \beta_1 - 3) q^{77} + ( - \beta_{2} - 2 \beta_1 - 1) q^{79} + (4 \beta_{2} + 3 \beta_1 + 10) q^{81} + (3 \beta_{2} - 3) q^{83} + (\beta_{2} + 1) q^{87} + (2 \beta_{2} - 2 \beta_1 + 6) q^{89} + ( - 2 \beta_{2} - 2) q^{91} + ( - 2 \beta_{2} - 3 \beta_1 - 11) q^{93} + (\beta_{2} + 13) q^{97} + (5 \beta_{2} + 4 \beta_1 + 15) q^{99}+O(q^{100})$$ q + (-b2 - 1) * q^3 + (-b2 + 1) * q^7 + (b1 + 4) * q^9 + (b2 + 3) * q^11 + (b1 + 1) * q^13 + (b2 + b1) * q^17 + (-b2 - b1 + 2) * q^19 + (-2*b2 + b1 + 5) * q^21 + (-b2 + b1) * q^23 + (-2*b2 - 2*b1 - 4) * q^27 - q^29 + (b2 + b1 + 2) * q^31 + (-2*b2 - b1 - 9) * q^33 + (3*b2 - b1 + 4) * q^37 + (-2*b2 - 2*b1 - 4) * q^39 + (-b1 + 3) * q^41 + (b2 - 2*b1 - 5) * q^43 + (-b2 + 3) * q^47 + (-4*b2 + b1) * q^49 + (-3*b1 - 9) * q^51 + (2*b2 - b1 - 3) * q^53 + (-2*b2 + 3*b1 + 7) * q^57 + (-2*b2 + 3*b1 + 3) * q^59 + (2*b2 - b1 - 7) * q^61 + (-5*b2 + 1) * q^63 + (-b2 + b1 + 4) * q^67 + (-2*b2 - b1 + 3) * q^69 + (-2*b2 + b1 - 3) * q^71 + (-b2 + 2*b1 + 1) * q^73 + (-b1 - 3) * q^77 + (-b2 - 2*b1 - 1) * q^79 + (4*b2 + 3*b1 + 10) * q^81 + (3*b2 - 3) * q^83 + (b2 + 1) * q^87 + (2*b2 - 2*b1 + 6) * q^89 + (-2*b2 - 2) * q^91 + (-2*b2 - 3*b1 - 11) * q^93 + (b2 + 13) * q^97 + (5*b2 + 4*b1 + 15) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - 2 q^{3} + 4 q^{7} + 11 q^{9}+O(q^{10})$$ 3 * q - 2 * q^3 + 4 * q^7 + 11 * q^9 $$3 q - 2 q^{3} + 4 q^{7} + 11 q^{9} + 8 q^{11} + 2 q^{13} - 2 q^{17} + 8 q^{19} + 16 q^{21} - 8 q^{27} - 3 q^{29} + 4 q^{31} - 24 q^{33} + 10 q^{37} - 8 q^{39} + 10 q^{41} - 14 q^{43} + 10 q^{47} + 3 q^{49} - 24 q^{51} - 10 q^{53} + 20 q^{57} + 8 q^{59} - 22 q^{61} + 8 q^{63} + 12 q^{67} + 12 q^{69} - 8 q^{71} + 2 q^{73} - 8 q^{77} + 23 q^{81} - 12 q^{83} + 2 q^{87} + 18 q^{89} - 4 q^{91} - 28 q^{93} + 38 q^{97} + 36 q^{99}+O(q^{100})$$ 3 * q - 2 * q^3 + 4 * q^7 + 11 * q^9 + 8 * q^11 + 2 * q^13 - 2 * q^17 + 8 * q^19 + 16 * q^21 - 8 * q^27 - 3 * q^29 + 4 * q^31 - 24 * q^33 + 10 * q^37 - 8 * q^39 + 10 * q^41 - 14 * q^43 + 10 * q^47 + 3 * q^49 - 24 * q^51 - 10 * q^53 + 20 * q^57 + 8 * q^59 - 22 * q^61 + 8 * q^63 + 12 * q^67 + 12 * q^69 - 8 * q^71 + 2 * q^73 - 8 * q^77 + 23 * q^81 - 12 * q^83 + 2 * q^87 + 18 * q^89 - 4 * q^91 - 28 * q^93 + 38 * q^97 + 36 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 5x + 3$$ :

 $$\beta_{1}$$ $$=$$ $$2\nu - 1$$ 2*v - 1 $$\beta_{2}$$ $$=$$ $$\nu^{2} - 4$$ v^2 - 4
 $$\nu$$ $$=$$ $$( \beta _1 + 1 ) / 2$$ (b1 + 1) / 2 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 4$$ b2 + 4

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.51414 −2.08613 0.571993
0 −3.32088 0 0 0 −1.32088 0 8.02827 0
1.2 0 −1.35194 0 0 0 0.648061 0 −1.17226 0
1.3 0 2.67282 0 0 0 4.67282 0 4.14399 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$29$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2900.2.a.g 3
5.b even 2 1 580.2.a.c 3
5.c odd 4 2 2900.2.c.f 6
15.d odd 2 1 5220.2.a.x 3
20.d odd 2 1 2320.2.a.m 3
40.e odd 2 1 9280.2.a.bw 3
40.f even 2 1 9280.2.a.bk 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
580.2.a.c 3 5.b even 2 1
2320.2.a.m 3 20.d odd 2 1
2900.2.a.g 3 1.a even 1 1 trivial
2900.2.c.f 6 5.c odd 4 2
5220.2.a.x 3 15.d odd 2 1
9280.2.a.bk 3 40.f even 2 1
9280.2.a.bw 3 40.e odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2900))$$:

 $$T_{3}^{3} + 2T_{3}^{2} - 8T_{3} - 12$$ T3^3 + 2*T3^2 - 8*T3 - 12 $$T_{7}^{3} - 4T_{7}^{2} - 4T_{7} + 4$$ T7^3 - 4*T7^2 - 4*T7 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3}$$
$3$ $$T^{3} + 2 T^{2} + \cdots - 12$$
$5$ $$T^{3}$$
$7$ $$T^{3} - 4 T^{2} + \cdots + 4$$
$11$ $$T^{3} - 8 T^{2} + \cdots + 12$$
$13$ $$T^{3} - 2 T^{2} + \cdots + 24$$
$17$ $$T^{3} + 2 T^{2} + \cdots - 108$$
$19$ $$T^{3} - 8 T^{2} + \cdots + 164$$
$23$ $$T^{3} - 24T + 36$$
$29$ $$(T + 1)^{3}$$
$31$ $$T^{3} - 4 T^{2} + \cdots - 36$$
$37$ $$T^{3} - 10 T^{2} + \cdots + 508$$
$41$ $$T^{3} - 10 T^{2} + \cdots + 24$$
$43$ $$T^{3} + 14 T^{2} + \cdots - 548$$
$47$ $$T^{3} - 10 T^{2} + \cdots - 12$$
$53$ $$T^{3} + 10 T^{2} + \cdots - 72$$
$59$ $$T^{3} - 8 T^{2} + \cdots + 1488$$
$61$ $$T^{3} + 22 T^{2} + \cdots + 104$$
$67$ $$T^{3} - 12 T^{2} + \cdots + 68$$
$71$ $$T^{3} + 8 T^{2} + \cdots - 144$$
$73$ $$T^{3} - 2 T^{2} + \cdots + 324$$
$79$ $$T^{3} - 108T + 244$$
$83$ $$T^{3} + 12 T^{2} + \cdots - 108$$
$89$ $$T^{3} - 18 T^{2} + \cdots + 72$$
$97$ $$T^{3} - 38 T^{2} + \cdots - 1908$$