Newspace parameters
Level: | \( N \) | \(=\) | \( 290 = 2 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 290.l (of order \(14\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.31566165862\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{14})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | 0.900969 | − | 0.433884i | −1.97436 | − | 2.47577i | 0.623490 | − | 0.781831i | 2.23570 | − | 0.0405388i | −2.85304 | − | 1.37395i | 3.28805 | − | 2.62213i | 0.222521 | − | 0.974928i | −1.56378 | + | 6.85135i | 1.99671 | − | 1.00656i |
9.2 | 0.900969 | − | 0.433884i | −1.80982 | − | 2.26945i | 0.623490 | − | 0.781831i | −1.84310 | − | 1.26609i | −2.61527 | − | 1.25945i | −2.48331 | + | 1.98037i | 0.222521 | − | 0.974928i | −1.20737 | + | 5.28982i | −2.20991 | − | 0.341011i |
9.3 | 0.900969 | − | 0.433884i | −0.581531 | − | 0.729217i | 0.623490 | − | 0.781831i | 0.424505 | + | 2.19540i | −0.840337 | − | 0.404685i | 0.608556 | − | 0.485308i | 0.222521 | − | 0.974928i | 0.473984 | − | 2.07666i | 1.33502 | + | 1.79380i |
9.4 | 0.900969 | − | 0.433884i | −0.251521 | − | 0.315397i | 0.623490 | − | 0.781831i | −2.18253 | − | 0.486388i | −0.363458 | − | 0.175032i | 2.61384 | − | 2.08447i | 0.222521 | − | 0.974928i | 0.631350 | − | 2.76613i | −2.17743 | + | 0.508742i |
9.5 | 0.900969 | − | 0.433884i | 0.183457 | + | 0.230048i | 0.623490 | − | 0.781831i | 0.263370 | − | 2.22050i | 0.265103 | + | 0.127667i | −1.32570 | + | 1.05721i | 0.222521 | − | 0.974928i | 0.648297 | − | 2.84038i | −0.726152 | − | 2.11488i |
9.6 | 0.900969 | − | 0.433884i | 1.02784 | + | 1.28888i | 0.623490 | − | 0.781831i | 2.22995 | + | 0.165278i | 1.48528 | + | 0.715272i | −0.318876 | + | 0.254295i | 0.222521 | − | 0.974928i | 0.0628256 | − | 0.275257i | 2.08083 | − | 0.818630i |
9.7 | 0.900969 | − | 0.433884i | 1.44121 | + | 1.80722i | 0.623490 | − | 0.781831i | −1.20113 | + | 1.88608i | 2.08261 | + | 1.00293i | −3.02357 | + | 2.41121i | 0.222521 | − | 0.974928i | −0.521398 | + | 2.28440i | −0.263845 | + | 2.22045i |
9.8 | 0.900969 | − | 0.433884i | 2.08821 | + | 2.61854i | 0.623490 | − | 0.781831i | −1.01976 | − | 1.99000i | 3.01756 | + | 1.45318i | 1.86353 | − | 1.48611i | 0.222521 | − | 0.974928i | −1.82854 | + | 8.01136i | −1.78220 | − | 1.35047i |
109.1 | 0.222521 | + | 0.974928i | −2.69492 | − | 1.29780i | −0.900969 | + | 0.433884i | 1.04224 | + | 1.97832i | 0.665589 | − | 2.91614i | 0.184132 | − | 0.382354i | −0.623490 | − | 0.781831i | 3.70781 | + | 4.64945i | −1.69680 | + | 1.45632i |
109.2 | 0.222521 | + | 0.974928i | −2.53367 | − | 1.22015i | −0.900969 | + | 0.433884i | 0.325268 | − | 2.21228i | 0.625765 | − | 2.74166i | −1.72264 | + | 3.57710i | −0.623490 | − | 0.781831i | 3.06025 | + | 3.83743i | 2.22920 | − | 0.175167i |
109.3 | 0.222521 | + | 0.974928i | −0.893741 | − | 0.430403i | −0.900969 | + | 0.433884i | 2.22348 | + | 0.236969i | 0.220736 | − | 0.967106i | 1.53438 | − | 3.18618i | −0.623490 | − | 0.781831i | −1.25694 | − | 1.57616i | 0.263743 | + | 2.22046i |
109.4 | 0.222521 | + | 0.974928i | −0.668503 | − | 0.321934i | −0.900969 | + | 0.433884i | −2.19009 | − | 0.451105i | 0.165107 | − | 0.723379i | −0.462566 | + | 0.960527i | −0.623490 | − | 0.781831i | −1.52721 | − | 1.91507i | −0.0475467 | − | 2.23556i |
109.5 | 0.222521 | + | 0.974928i | 0.0258055 | + | 0.0124273i | −0.900969 | + | 0.433884i | −0.0497182 | − | 2.23552i | −0.00637343 | + | 0.0279238i | 1.83110 | − | 3.80231i | −0.623490 | − | 0.781831i | −1.86996 | − | 2.34485i | 2.16840 | − | 0.545921i |
109.6 | 0.222521 | + | 0.974928i | 0.577693 | + | 0.278202i | −0.900969 | + | 0.433884i | 1.81221 | + | 1.30992i | −0.142678 | + | 0.625115i | −1.73730 | + | 3.60754i | −0.623490 | − | 0.781831i | −1.61414 | − | 2.02406i | −0.873818 | + | 2.05826i |
109.7 | 0.222521 | + | 0.974928i | 2.12638 | + | 1.02401i | −0.900969 | + | 0.433884i | −0.805804 | + | 2.08583i | −0.525173 | + | 2.30094i | 0.814227 | − | 1.69076i | −0.623490 | − | 0.781831i | 1.60244 | + | 2.00939i | −2.21284 | − | 0.321460i |
109.8 | 0.222521 | + | 0.974928i | 2.65998 | + | 1.28098i | −0.900969 | + | 0.433884i | 1.96882 | − | 1.06008i | −0.656961 | + | 2.87833i | −0.0648222 | + | 0.134605i | −0.623490 | − | 0.781831i | 3.56412 | + | 4.46926i | 1.47160 | + | 1.68357i |
129.1 | 0.900969 | + | 0.433884i | −1.97436 | + | 2.47577i | 0.623490 | + | 0.781831i | 2.23570 | + | 0.0405388i | −2.85304 | + | 1.37395i | 3.28805 | + | 2.62213i | 0.222521 | + | 0.974928i | −1.56378 | − | 6.85135i | 1.99671 | + | 1.00656i |
129.2 | 0.900969 | + | 0.433884i | −1.80982 | + | 2.26945i | 0.623490 | + | 0.781831i | −1.84310 | + | 1.26609i | −2.61527 | + | 1.25945i | −2.48331 | − | 1.98037i | 0.222521 | + | 0.974928i | −1.20737 | − | 5.28982i | −2.20991 | + | 0.341011i |
129.3 | 0.900969 | + | 0.433884i | −0.581531 | + | 0.729217i | 0.623490 | + | 0.781831i | 0.424505 | − | 2.19540i | −0.840337 | + | 0.404685i | 0.608556 | + | 0.485308i | 0.222521 | + | 0.974928i | 0.473984 | + | 2.07666i | 1.33502 | − | 1.79380i |
129.4 | 0.900969 | + | 0.433884i | −0.251521 | + | 0.315397i | 0.623490 | + | 0.781831i | −2.18253 | + | 0.486388i | −0.363458 | + | 0.175032i | 2.61384 | + | 2.08447i | 0.222521 | + | 0.974928i | 0.631350 | + | 2.76613i | −2.17743 | − | 0.508742i |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
145.l | even | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 290.2.l.b | yes | 48 |
5.b | even | 2 | 1 | 290.2.l.a | ✓ | 48 | |
29.e | even | 14 | 1 | 290.2.l.a | ✓ | 48 | |
145.l | even | 14 | 1 | inner | 290.2.l.b | yes | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
290.2.l.a | ✓ | 48 | 5.b | even | 2 | 1 | |
290.2.l.a | ✓ | 48 | 29.e | even | 14 | 1 | |
290.2.l.b | yes | 48 | 1.a | even | 1 | 1 | trivial |
290.2.l.b | yes | 48 | 145.l | even | 14 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{48} + 4 T_{3}^{47} + 24 T_{3}^{46} + 65 T_{3}^{45} + 346 T_{3}^{44} + 981 T_{3}^{43} + \cdots + 4096 \)
acting on \(S_{2}^{\mathrm{new}}(290, [\chi])\).