Defining parameters
| Level: | \( N \) | \(=\) | \( 290 = 2 \cdot 5 \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 290.l (of order \(14\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 145 \) |
| Character field: | \(\Q(\zeta_{14})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(90\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(290, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 288 | 96 | 192 |
| Cusp forms | 240 | 96 | 144 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(290, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 290.2.l.a | $48$ | $2.316$ | None | \(-8\) | \(4\) | \(-6\) | \(-7\) | ||
| 290.2.l.b | $48$ | $2.316$ | None | \(8\) | \(-4\) | \(8\) | \(7\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(290, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(290, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)