Properties

Label 290.2.l
Level $290$
Weight $2$
Character orbit 290.l
Rep. character $\chi_{290}(9,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $96$
Newform subspaces $2$
Sturm bound $90$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 290 = 2 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 290.l (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q(\zeta_{14})\)
Newform subspaces: \( 2 \)
Sturm bound: \(90\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(290, [\chi])\).

Total New Old
Modular forms 288 96 192
Cusp forms 240 96 144
Eisenstein series 48 0 48

Trace form

\( 96 q - 16 q^{4} + 2 q^{5} - 6 q^{6} - 16 q^{9} - 14 q^{15} - 16 q^{16} - 5 q^{20} + 14 q^{21} - 6 q^{24} - 24 q^{25} + 42 q^{26} - 20 q^{29} - 36 q^{30} + 28 q^{31} - 66 q^{34} - 2 q^{36} - 28 q^{39} - 21 q^{40}+ \cdots + 8 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(290, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
290.2.l.a 290.l 145.l $48$ $2.316$ None 290.2.l.a \(-8\) \(4\) \(-6\) \(-7\) $\mathrm{SU}(2)[C_{14}]$
290.2.l.b 290.l 145.l $48$ $2.316$ None 290.2.l.a \(8\) \(-4\) \(8\) \(7\) $\mathrm{SU}(2)[C_{14}]$

Decomposition of \(S_{2}^{\mathrm{old}}(290, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(290, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)