Properties

Label 290.2.c.b
Level $290$
Weight $2$
Character orbit 290.c
Analytic conductor $2.316$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [290,2,Mod(231,290)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("290.231"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(290, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 290 = 2 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 290.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.31566165862\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{29})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 15x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + \beta_1 q^{3} - q^{4} - q^{5} + (\beta_{3} - 1) q^{6} + ( - \beta_{3} - 2) q^{7} + \beta_{2} q^{8} + (\beta_{3} - 5) q^{9} + \beta_{2} q^{10} - 2 \beta_{2} q^{11} - \beta_1 q^{12}+ \cdots + (8 \beta_{2} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{5} - 2 q^{6} - 10 q^{7} - 18 q^{9} - 6 q^{13} + 4 q^{16} + 4 q^{20} - 8 q^{22} + 2 q^{23} + 2 q^{24} + 4 q^{25} + 10 q^{28} - 8 q^{29} + 2 q^{30} - 4 q^{33} + 6 q^{34} + 10 q^{35} + 18 q^{36}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 15x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 8\nu ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 7\beta_{2} - 8\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/290\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
231.1
3.19258i
2.19258i
2.19258i
3.19258i
1.00000i 3.19258i −1.00000 −1.00000 −3.19258 0.192582 1.00000i −7.19258 1.00000i
231.2 1.00000i 2.19258i −1.00000 −1.00000 2.19258 −5.19258 1.00000i −1.80742 1.00000i
231.3 1.00000i 2.19258i −1.00000 −1.00000 2.19258 −5.19258 1.00000i −1.80742 1.00000i
231.4 1.00000i 3.19258i −1.00000 −1.00000 −3.19258 0.192582 1.00000i −7.19258 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 290.2.c.b 4
3.b odd 2 1 2610.2.f.e 4
4.b odd 2 1 2320.2.g.f 4
5.b even 2 1 1450.2.c.c 4
5.c odd 4 1 1450.2.d.f 4
5.c odd 4 1 1450.2.d.g 4
29.b even 2 1 inner 290.2.c.b 4
29.c odd 4 1 8410.2.a.o 2
29.c odd 4 1 8410.2.a.t 2
87.d odd 2 1 2610.2.f.e 4
116.d odd 2 1 2320.2.g.f 4
145.d even 2 1 1450.2.c.c 4
145.h odd 4 1 1450.2.d.f 4
145.h odd 4 1 1450.2.d.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
290.2.c.b 4 1.a even 1 1 trivial
290.2.c.b 4 29.b even 2 1 inner
1450.2.c.c 4 5.b even 2 1
1450.2.c.c 4 145.d even 2 1
1450.2.d.f 4 5.c odd 4 1
1450.2.d.f 4 145.h odd 4 1
1450.2.d.g 4 5.c odd 4 1
1450.2.d.g 4 145.h odd 4 1
2320.2.g.f 4 4.b odd 2 1
2320.2.g.f 4 116.d odd 2 1
2610.2.f.e 4 3.b odd 2 1
2610.2.f.e 4 87.d odd 2 1
8410.2.a.o 2 29.c odd 4 1
8410.2.a.t 2 29.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 15T_{3}^{2} + 49 \) acting on \(S_{2}^{\mathrm{new}}(290, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 15T^{2} + 49 \) Copy content Toggle raw display
$5$ \( (T + 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 5 T - 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 3 T - 5)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 19T^{2} + 25 \) Copy content Toggle raw display
$19$ \( T^{4} + 76T^{2} + 400 \) Copy content Toggle raw display
$23$ \( (T^{2} - T - 7)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T + 29)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 27T^{2} + 1 \) Copy content Toggle raw display
$37$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 76T^{2} + 400 \) Copy content Toggle raw display
$43$ \( T^{4} + 27T^{2} + 1 \) Copy content Toggle raw display
$47$ \( T^{4} + 108T^{2} + 16 \) Copy content Toggle raw display
$53$ \( (T^{2} - 11 T + 23)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 23 T + 125)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 235 T^{2} + 10609 \) Copy content Toggle raw display
$67$ \( (T^{2} - 14 T + 20)^{2} \) Copy content Toggle raw display
$71$ \( (T - 6)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 155T^{2} + 2809 \) Copy content Toggle raw display
$79$ \( T^{4} + 367 T^{2} + 32041 \) Copy content Toggle raw display
$83$ \( (T^{2} + 4 T - 112)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 60T^{2} + 784 \) Copy content Toggle raw display
$97$ \( T^{4} + 155T^{2} + 2809 \) Copy content Toggle raw display
show more
show less