Newspace parameters
Level: | \( N \) | \(=\) | \( 290 = 2 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 290.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.31566165862\) |
Analytic rank: | \(0\) |
Dimension: | \(10\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{10} + 24x^{8} + 152x^{6} + 377x^{4} + 352x^{2} + 64 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{10} + 24x^{8} + 152x^{6} + 377x^{4} + 352x^{2} + 64 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 11 \nu^{9} + 200 \nu^{8} - 224 \nu^{7} + 4128 \nu^{6} - 968 \nu^{5} + 16384 \nu^{4} - 3059 \nu^{3} + 17480 \nu^{2} - 5240 \nu + 1696 ) / 1216 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 11 \nu^{9} + 200 \nu^{8} + 224 \nu^{7} + 4128 \nu^{6} + 968 \nu^{5} + 16384 \nu^{4} + 3059 \nu^{3} + 17480 \nu^{2} + 5240 \nu + 1696 ) / 1216 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 17\nu^{8} + 360\nu^{6} + 1572\nu^{4} + 2033\nu^{2} + 360 ) / 76 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 45\nu^{9} + 944\nu^{7} + 3960\nu^{5} + 4389\nu^{3} - 424\nu ) / 608 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 55\nu^{9} + 1120\nu^{7} + 4232\nu^{5} + 4351\nu^{3} + 1272\nu ) / 608 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 117 \nu^{9} + 20 \nu^{8} - 2576 \nu^{7} + 352 \nu^{6} - 12728 \nu^{5} + 544 \nu^{4} - 20045 \nu^{3} - 76 \nu^{2} - 7288 \nu + 2176 ) / 1216 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 117 \nu^{9} - 20 \nu^{8} - 2576 \nu^{7} - 352 \nu^{6} - 12728 \nu^{5} - 544 \nu^{4} - 20045 \nu^{3} + 76 \nu^{2} - 7288 \nu - 2176 ) / 1216 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 32 \nu^{9} - 81 \nu^{8} - 700 \nu^{7} - 1760 \nu^{6} - 3424 \nu^{5} - 8344 \nu^{4} - 5776 \nu^{3} - 12217 \nu^{2} - 2828 \nu - 3128 ) / 304 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -\beta_{9} + \beta_{7} - 2\beta_{4} + \beta_{2} + \beta _1 - 4 \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{8} - \beta_{7} + 4\beta_{6} - 7\beta_{5} - 2\beta_{3} + 2\beta_{2} - 8\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( 18\beta_{9} - 6\beta_{8} - 12\beta_{7} + 41\beta_{4} - 4\beta_{3} - 22\beta_{2} - 18\beta _1 + 38 \)
|
\(\nu^{5}\) | \(=\) |
\( 18\beta_{8} + 18\beta_{7} - 73\beta_{6} + 126\beta_{5} + 41\beta_{3} - 41\beta_{2} + 103\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( -294\beta_{9} + 118\beta_{8} + 176\beta_{7} - 678\beta_{4} + 73\beta_{3} + 367\beta_{2} + 294\beta _1 - 531 \)
|
\(\nu^{7}\) | \(=\) |
\( -294\beta_{8} - 294\beta_{7} + 1176\beta_{6} - 2036\beta_{5} - 678\beta_{3} + 678\beta_{2} - 1561\beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( 4681 \beta_{9} - 1944 \beta_{8} - 2737 \beta_{7} + 10810 \beta_{4} - 1176 \beta_{3} - 5857 \beta_{2} - 4681 \beta _1 + 8188 \)
|
\(\nu^{9}\) | \(=\) |
\( 4681\beta_{8} + 4681\beta_{7} - 18636\beta_{6} + 32319\beta_{5} + 10810\beta_{3} - 10810\beta_{2} + 24472\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/290\mathbb{Z}\right)^\times\).
\(n\) | \(31\) | \(117\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
59.1 |
|
− | 1.00000i | − | 2.97530i | −1.00000 | −0.639550 | + | 2.14266i | −2.97530 | − | 3.57331i | 1.00000i | −5.85241 | 2.14266 | + | 0.639550i | |||||||||||||||||||||||||||||||||||||||||
59.2 | − | 1.00000i | − | 0.681929i | −1.00000 | 2.23558 | − | 0.0464742i | −0.681929 | − | 0.936197i | 1.00000i | 2.53497 | −0.0464742 | − | 2.23558i | ||||||||||||||||||||||||||||||||||||||||||
59.3 | − | 1.00000i | 1.48580i | −1.00000 | −1.29150 | − | 1.82539i | 1.48580 | 4.37538i | 1.00000i | 0.792385 | −1.82539 | + | 1.29150i | ||||||||||||||||||||||||||||||||||||||||||||
59.4 | − | 1.00000i | 2.35864i | −1.00000 | 1.32739 | − | 1.79945i | 2.35864 | − | 4.21797i | 1.00000i | −2.56319 | −1.79945 | − | 1.32739i | |||||||||||||||||||||||||||||||||||||||||||
59.5 | − | 1.00000i | 2.81278i | −1.00000 | −1.63193 | + | 1.52866i | 2.81278 | − | 0.647892i | 1.00000i | −4.91176 | 1.52866 | + | 1.63193i | |||||||||||||||||||||||||||||||||||||||||||
59.6 | 1.00000i | − | 2.81278i | −1.00000 | −1.63193 | − | 1.52866i | 2.81278 | 0.647892i | − | 1.00000i | −4.91176 | 1.52866 | − | 1.63193i | |||||||||||||||||||||||||||||||||||||||||||
59.7 | 1.00000i | − | 2.35864i | −1.00000 | 1.32739 | + | 1.79945i | 2.35864 | 4.21797i | − | 1.00000i | −2.56319 | −1.79945 | + | 1.32739i | |||||||||||||||||||||||||||||||||||||||||||
59.8 | 1.00000i | − | 1.48580i | −1.00000 | −1.29150 | + | 1.82539i | 1.48580 | − | 4.37538i | − | 1.00000i | 0.792385 | −1.82539 | − | 1.29150i | ||||||||||||||||||||||||||||||||||||||||||
59.9 | 1.00000i | 0.681929i | −1.00000 | 2.23558 | + | 0.0464742i | −0.681929 | 0.936197i | − | 1.00000i | 2.53497 | −0.0464742 | + | 2.23558i | ||||||||||||||||||||||||||||||||||||||||||||
59.10 | 1.00000i | 2.97530i | −1.00000 | −0.639550 | − | 2.14266i | −2.97530 | 3.57331i | − | 1.00000i | −5.85241 | 2.14266 | − | 0.639550i | ||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 290.2.b.b | ✓ | 10 |
3.b | odd | 2 | 1 | 2610.2.e.i | 10 | ||
4.b | odd | 2 | 1 | 2320.2.d.h | 10 | ||
5.b | even | 2 | 1 | inner | 290.2.b.b | ✓ | 10 |
5.c | odd | 4 | 1 | 1450.2.a.t | 5 | ||
5.c | odd | 4 | 1 | 1450.2.a.u | 5 | ||
15.d | odd | 2 | 1 | 2610.2.e.i | 10 | ||
20.d | odd | 2 | 1 | 2320.2.d.h | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
290.2.b.b | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
290.2.b.b | ✓ | 10 | 5.b | even | 2 | 1 | inner |
1450.2.a.t | 5 | 5.c | odd | 4 | 1 | ||
1450.2.a.u | 5 | 5.c | odd | 4 | 1 | ||
2320.2.d.h | 10 | 4.b | odd | 2 | 1 | ||
2320.2.d.h | 10 | 20.d | odd | 2 | 1 | ||
2610.2.e.i | 10 | 3.b | odd | 2 | 1 | ||
2610.2.e.i | 10 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{10} + 25T_{3}^{8} + 224T_{3}^{6} + 849T_{3}^{4} + 1209T_{3}^{2} + 400 \)
acting on \(S_{2}^{\mathrm{new}}(290, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 1)^{5} \)
$3$
\( T^{10} + 25 T^{8} + 224 T^{6} + \cdots + 400 \)
$5$
\( T^{10} + 2 T^{8} - 18 T^{7} + \cdots + 3125 \)
$7$
\( T^{10} + 51 T^{8} + 877 T^{6} + \cdots + 1600 \)
$11$
\( (T^{5} - 27 T^{3} + 4 T^{2} + 172 T - 16)^{2} \)
$13$
\( T^{10} + 53 T^{8} + 356 T^{6} + \cdots + 64 \)
$17$
\( T^{10} + 119 T^{8} + 5325 T^{6} + \cdots + 2930944 \)
$19$
\( (T^{5} - 4 T^{4} - 56 T^{3} + 144 T^{2} + \cdots - 640)^{2} \)
$23$
\( T^{10} + 167 T^{8} + 9813 T^{6} + \cdots + 2611456 \)
$29$
\( (T + 1)^{10} \)
$31$
\( (T^{5} - 5 T^{4} - 22 T^{3} + 175 T^{2} + \cdots + 184)^{2} \)
$37$
\( T^{10} + 212 T^{8} + 12608 T^{6} + \cdots + 262144 \)
$41$
\( (T^{5} + 4 T^{4} - 76 T^{3} - 504 T^{2} + \cdots + 608)^{2} \)
$43$
\( T^{10} + 205 T^{8} + 11856 T^{6} + \cdots + 440896 \)
$47$
\( T^{10} + 194 T^{8} + 11057 T^{6} + \cdots + 4096 \)
$53$
\( T^{10} + 109 T^{8} + 1084 T^{6} + \cdots + 16 \)
$59$
\( (T^{5} - 9 T^{4} - 79 T^{3} + 448 T^{2} + \cdots - 4000)^{2} \)
$61$
\( (T^{5} - 5 T^{4} - 169 T^{3} + 998 T^{2} + \cdots - 9808)^{2} \)
$67$
\( T^{10} + 564 T^{8} + 112832 T^{6} + \cdots + 1048576 \)
$71$
\( (T^{5} + 6 T^{4} - 208 T^{3} - 1192 T^{2} + \cdots + 62464)^{2} \)
$73$
\( T^{10} + 543 T^{8} + \cdots + 3008303104 \)
$79$
\( (T^{5} - 17 T^{4} + 48 T^{3} + 471 T^{2} + \cdots + 3020)^{2} \)
$83$
\( T^{10} + 684 T^{8} + \cdots + 3399356416 \)
$89$
\( (T^{5} + 10 T^{4} - 96 T^{3} - 1088 T^{2} + \cdots - 160)^{2} \)
$97$
\( T^{10} + 623 T^{8} + \cdots + 3351946816 \)
show more
show less