Defining parameters
Level: | \( N \) | \(=\) | \( 290 = 2 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 290.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(290, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 50 | 14 | 36 |
Cusp forms | 42 | 14 | 28 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(290, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
290.2.b.a | $4$ | $2.316$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}+(-\beta _{1}+\beta _{3})q^{3}-q^{4}+(-2\beta _{1}+\cdots)q^{5}+\cdots\) |
290.2.b.b | $10$ | $2.316$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{2}+(-\beta _{1}+\beta _{5})q^{3}-q^{4}+\beta _{3}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(290, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(290, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 2}\)