# Properties

 Label 290.2.a.a Level $290$ Weight $2$ Character orbit 290.a Self dual yes Analytic conductor $2.316$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [290,2,Mod(1,290)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(290, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("290.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$290 = 2 \cdot 5 \cdot 29$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 290.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$2.31566165862$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{4} - q^{5} - 2 q^{7} - q^{8} - 3 q^{9}+O(q^{10})$$ q - q^2 + q^4 - q^5 - 2 * q^7 - q^8 - 3 * q^9 $$q - q^{2} + q^{4} - q^{5} - 2 q^{7} - q^{8} - 3 q^{9} + q^{10} + 2 q^{11} - 6 q^{13} + 2 q^{14} + q^{16} + 2 q^{17} + 3 q^{18} - 2 q^{19} - q^{20} - 2 q^{22} - 6 q^{23} + q^{25} + 6 q^{26} - 2 q^{28} - q^{29} - 6 q^{31} - q^{32} - 2 q^{34} + 2 q^{35} - 3 q^{36} - 2 q^{37} + 2 q^{38} + q^{40} + 10 q^{41} - 8 q^{43} + 2 q^{44} + 3 q^{45} + 6 q^{46} - 4 q^{47} - 3 q^{49} - q^{50} - 6 q^{52} + 10 q^{53} - 2 q^{55} + 2 q^{56} + q^{58} + 8 q^{59} + 10 q^{61} + 6 q^{62} + 6 q^{63} + q^{64} + 6 q^{65} + 2 q^{67} + 2 q^{68} - 2 q^{70} + 4 q^{71} + 3 q^{72} + 6 q^{73} + 2 q^{74} - 2 q^{76} - 4 q^{77} - 10 q^{79} - q^{80} + 9 q^{81} - 10 q^{82} - 6 q^{83} - 2 q^{85} + 8 q^{86} - 2 q^{88} - 6 q^{89} - 3 q^{90} + 12 q^{91} - 6 q^{92} + 4 q^{94} + 2 q^{95} + 6 q^{97} + 3 q^{98} - 6 q^{99}+O(q^{100})$$ q - q^2 + q^4 - q^5 - 2 * q^7 - q^8 - 3 * q^9 + q^10 + 2 * q^11 - 6 * q^13 + 2 * q^14 + q^16 + 2 * q^17 + 3 * q^18 - 2 * q^19 - q^20 - 2 * q^22 - 6 * q^23 + q^25 + 6 * q^26 - 2 * q^28 - q^29 - 6 * q^31 - q^32 - 2 * q^34 + 2 * q^35 - 3 * q^36 - 2 * q^37 + 2 * q^38 + q^40 + 10 * q^41 - 8 * q^43 + 2 * q^44 + 3 * q^45 + 6 * q^46 - 4 * q^47 - 3 * q^49 - q^50 - 6 * q^52 + 10 * q^53 - 2 * q^55 + 2 * q^56 + q^58 + 8 * q^59 + 10 * q^61 + 6 * q^62 + 6 * q^63 + q^64 + 6 * q^65 + 2 * q^67 + 2 * q^68 - 2 * q^70 + 4 * q^71 + 3 * q^72 + 6 * q^73 + 2 * q^74 - 2 * q^76 - 4 * q^77 - 10 * q^79 - q^80 + 9 * q^81 - 10 * q^82 - 6 * q^83 - 2 * q^85 + 8 * q^86 - 2 * q^88 - 6 * q^89 - 3 * q^90 + 12 * q^91 - 6 * q^92 + 4 * q^94 + 2 * q^95 + 6 * q^97 + 3 * q^98 - 6 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 0 1.00000 −1.00000 0 −2.00000 −1.00000 −3.00000 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$5$$ $$+1$$
$$29$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 290.2.a.a 1
3.b odd 2 1 2610.2.a.l 1
4.b odd 2 1 2320.2.a.d 1
5.b even 2 1 1450.2.a.g 1
5.c odd 4 2 1450.2.b.d 2
8.b even 2 1 9280.2.a.k 1
8.d odd 2 1 9280.2.a.q 1
29.b even 2 1 8410.2.a.i 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
290.2.a.a 1 1.a even 1 1 trivial
1450.2.a.g 1 5.b even 2 1
1450.2.b.d 2 5.c odd 4 2
2320.2.a.d 1 4.b odd 2 1
2610.2.a.l 1 3.b odd 2 1
8410.2.a.i 1 29.b even 2 1
9280.2.a.k 1 8.b even 2 1
9280.2.a.q 1 8.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(290))$$:

 $$T_{3}$$ T3 $$T_{7} + 2$$ T7 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T + 2$$
$11$ $$T - 2$$
$13$ $$T + 6$$
$17$ $$T - 2$$
$19$ $$T + 2$$
$23$ $$T + 6$$
$29$ $$T + 1$$
$31$ $$T + 6$$
$37$ $$T + 2$$
$41$ $$T - 10$$
$43$ $$T + 8$$
$47$ $$T + 4$$
$53$ $$T - 10$$
$59$ $$T - 8$$
$61$ $$T - 10$$
$67$ $$T - 2$$
$71$ $$T - 4$$
$73$ $$T - 6$$
$79$ $$T + 10$$
$83$ $$T + 6$$
$89$ $$T + 6$$
$97$ $$T - 6$$