Properties

Label 29.3.f.a.27.2
Level 29
Weight 3
Character 29.27
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 27.2
Character \(\chi\) = 29.27
Dual form 29.3.f.a.14.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.170607 + 1.51418i) q^{2}\) \(+(2.08647 - 3.32060i) q^{3}\) \(+(1.63608 + 0.373424i) q^{4}\) \(+(-5.91405 + 4.71630i) q^{5}\) \(+(4.67202 + 3.72581i) q^{6}\) \(+(-1.42870 - 6.25955i) q^{7}\) \(+(-2.85762 + 8.16662i) q^{8}\) \(+(-2.76806 - 5.74794i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.170607 + 1.51418i) q^{2}\) \(+(2.08647 - 3.32060i) q^{3}\) \(+(1.63608 + 0.373424i) q^{4}\) \(+(-5.91405 + 4.71630i) q^{5}\) \(+(4.67202 + 3.72581i) q^{6}\) \(+(-1.42870 - 6.25955i) q^{7}\) \(+(-2.85762 + 8.16662i) q^{8}\) \(+(-2.76806 - 5.74794i) q^{9}\) \(+(-6.13235 - 9.75958i) q^{10}\) \(+(-5.33282 - 15.2403i) q^{11}\) \(+(4.65362 - 4.65362i) q^{12}\) \(+(-5.47235 + 11.3635i) q^{13}\) \(+(9.72184 - 1.09539i) q^{14}\) \(+(3.32144 + 29.4786i) q^{15}\) \(+(-5.83035 - 2.80775i) q^{16}\) \(+(11.5542 + 11.5542i) q^{17}\) \(+(9.17568 - 3.21071i) q^{18}\) \(+(12.1000 - 7.60291i) q^{19}\) \(+(-11.4370 + 5.50778i) q^{20}\) \(+(-23.7664 - 8.31623i) q^{21}\) \(+(23.9864 - 5.47475i) q^{22}\) \(+(-2.84328 + 3.56536i) q^{23}\) \(+(21.1557 + 26.5284i) q^{24}\) \(+(7.16951 - 31.4117i) q^{25}\) \(+(-16.2727 - 10.2248i) q^{26}\) \(+(10.2113 + 1.15053i) q^{27}\) \(-10.7746i q^{28}\) \(+(23.5053 - 16.9853i) q^{29}\) \(-45.2026 q^{30}\) \(+(-1.32747 + 11.7816i) q^{31}\) \(+(-13.1667 + 20.9547i) q^{32}\) \(+(-61.7338 - 14.0903i) q^{33}\) \(+(-19.4664 + 15.5239i) q^{34}\) \(+(37.9713 + 30.2811i) q^{35}\) \(+(-2.38235 - 10.4377i) q^{36}\) \(+(2.68961 - 7.68647i) q^{37}\) \(+(9.44783 + 19.6186i) q^{38}\) \(+(26.3156 + 41.8810i) q^{39}\) \(+(-21.6161 - 61.7752i) q^{40}\) \(+(10.8682 - 10.8682i) q^{41}\) \(+(16.6470 - 34.5678i) q^{42}\) \(+(-41.8092 + 4.71076i) q^{43}\) \(+(-3.03380 - 26.9258i) q^{44}\) \(+(43.4795 + 20.9386i) q^{45}\) \(+(-4.91352 - 4.91352i) q^{46}\) \(+(-28.2097 + 9.87101i) q^{47}\) \(+(-21.4883 + 13.5020i) q^{48}\) \(+(7.00665 - 3.37423i) q^{49}\) \(+(46.3398 + 16.2150i) q^{50}\) \(+(62.4744 - 14.2594i) q^{51}\) \(+(-13.1966 + 16.5480i) q^{52}\) \(+(-25.1303 - 31.5124i) q^{53}\) \(+(-3.48423 + 15.2654i) q^{54}\) \(+(103.417 + 64.9809i) q^{55}\) \(+(55.2021 + 6.21978i) q^{56}\) \(-56.0423i q^{57}\) \(+(21.7087 + 38.4890i) q^{58}\) \(-72.0544 q^{59}\) \(+(-5.57388 + 49.4696i) q^{60}\) \(+(-36.0211 + 57.3273i) q^{61}\) \(+(-17.6131 - 4.02006i) q^{62}\) \(+(-32.0248 + 25.5389i) q^{63}\) \(+(-49.7205 - 39.6508i) q^{64}\) \(+(-21.2297 - 93.0134i) q^{65}\) \(+(31.8675 - 91.0722i) q^{66}\) \(+(-40.9142 - 84.9592i) q^{67}\) \(+(14.5890 + 23.2182i) q^{68}\) \(+(5.90672 + 16.8804i) q^{69}\) \(+(-52.3293 + 52.3293i) q^{70}\) \(+(13.8330 - 28.7244i) q^{71}\) \(+(54.8514 - 6.18026i) q^{72}\) \(+(14.9474 + 132.662i) q^{73}\) \(+(11.1798 + 5.38392i) q^{74}\) \(+(-89.3466 - 89.3466i) q^{75}\) \(+(22.6356 - 7.92053i) q^{76}\) \(+(-87.7787 + 55.1550i) q^{77}\) \(+(-67.9050 + 32.7013i) q^{78}\) \(+(82.9084 + 29.0109i) q^{79}\) \(+(47.7232 - 10.8925i) q^{80}\) \(+(60.9253 - 76.3979i) q^{81}\) \(+(14.6022 + 18.3106i) q^{82}\) \(+(-14.4328 + 63.2343i) q^{83}\) \(+(-35.7782 - 22.4809i) q^{84}\) \(+(-122.825 - 13.8391i) q^{85}\) \(-64.1103i q^{86}\) \(+(-7.35846 - 113.491i) q^{87}\) \(+139.701 q^{88}\) \(+(10.8152 - 95.9875i) q^{89}\) \(+(-39.1228 + 62.2635i) q^{90}\) \(+(78.9486 + 18.0195i) q^{91}\) \(+(-5.98322 + 4.77146i) q^{92}\) \(+(36.3524 + 28.9901i) q^{93}\) \(+(-10.1337 - 44.3987i) q^{94}\) \(+(-35.7022 + 102.031i) q^{95}\) \(+(42.1103 + 87.4429i) q^{96}\) \(+(63.6202 + 101.251i) q^{97}\) \(+(3.91380 + 11.1850i) q^{98}\) \(+(-72.8390 + 72.8390i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{15}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.170607 + 1.51418i −0.0853036 + 0.757090i 0.876134 + 0.482067i \(0.160114\pi\)
−0.961438 + 0.275023i \(0.911315\pi\)
\(3\) 2.08647 3.32060i 0.695490 1.10687i −0.293077 0.956089i \(-0.594679\pi\)
0.988568 0.150778i \(-0.0481777\pi\)
\(4\) 1.63608 + 0.373424i 0.409019 + 0.0933560i
\(5\) −5.91405 + 4.71630i −1.18281 + 0.943260i −0.999210 0.0397411i \(-0.987347\pi\)
−0.183600 + 0.983001i \(0.558775\pi\)
\(6\) 4.67202 + 3.72581i 0.778670 + 0.620968i
\(7\) −1.42870 6.25955i −0.204100 0.894222i −0.968408 0.249370i \(-0.919776\pi\)
0.764308 0.644852i \(-0.223081\pi\)
\(8\) −2.85762 + 8.16662i −0.357203 + 1.02083i
\(9\) −2.76806 5.74794i −0.307563 0.638661i
\(10\) −6.13235 9.75958i −0.613235 0.975958i
\(11\) −5.33282 15.2403i −0.484802 1.38548i −0.883512 0.468408i \(-0.844828\pi\)
0.398710 0.917077i \(-0.369458\pi\)
\(12\) 4.65362 4.65362i 0.387801 0.387801i
\(13\) −5.47235 + 11.3635i −0.420950 + 0.874112i 0.577387 + 0.816471i \(0.304072\pi\)
−0.998337 + 0.0576417i \(0.981642\pi\)
\(14\) 9.72184 1.09539i 0.694417 0.0782420i
\(15\) 3.32144 + 29.4786i 0.221429 + 1.96524i
\(16\) −5.83035 2.80775i −0.364397 0.175484i
\(17\) 11.5542 + 11.5542i 0.679659 + 0.679659i 0.959923 0.280264i \(-0.0904219\pi\)
−0.280264 + 0.959923i \(0.590422\pi\)
\(18\) 9.17568 3.21071i 0.509760 0.178373i
\(19\) 12.1000 7.60291i 0.636840 0.400153i −0.174558 0.984647i \(-0.555850\pi\)
0.811398 + 0.584494i \(0.198707\pi\)
\(20\) −11.4370 + 5.50778i −0.571851 + 0.275389i
\(21\) −23.7664 8.31623i −1.13173 0.396011i
\(22\) 23.9864 5.47475i 1.09029 0.248852i
\(23\) −2.84328 + 3.56536i −0.123621 + 0.155016i −0.839791 0.542910i \(-0.817322\pi\)
0.716170 + 0.697926i \(0.245894\pi\)
\(24\) 21.1557 + 26.5284i 0.881488 + 1.10535i
\(25\) 7.16951 31.4117i 0.286780 1.25647i
\(26\) −16.2727 10.2248i −0.625873 0.393262i
\(27\) 10.2113 + 1.15053i 0.378195 + 0.0426124i
\(28\) 10.7746i 0.384808i
\(29\) 23.5053 16.9853i 0.810527 0.585702i
\(30\) −45.2026 −1.50675
\(31\) −1.32747 + 11.7816i −0.0428217 + 0.380053i 0.953963 + 0.299925i \(0.0969616\pi\)
−0.996785 + 0.0801282i \(0.974467\pi\)
\(32\) −13.1667 + 20.9547i −0.411461 + 0.654836i
\(33\) −61.7338 14.0903i −1.87072 0.426980i
\(34\) −19.4664 + 15.5239i −0.572541 + 0.456586i
\(35\) 37.9713 + 30.2811i 1.08490 + 0.865175i
\(36\) −2.38235 10.4377i −0.0661763 0.289937i
\(37\) 2.68961 7.68647i 0.0726922 0.207742i −0.901804 0.432144i \(-0.857757\pi\)
0.974497 + 0.224402i \(0.0720428\pi\)
\(38\) 9.44783 + 19.6186i 0.248627 + 0.516280i
\(39\) 26.3156 + 41.8810i 0.674759 + 1.07387i
\(40\) −21.6161 61.7752i −0.540402 1.54438i
\(41\) 10.8682 10.8682i 0.265077 0.265077i −0.562036 0.827113i \(-0.689982\pi\)
0.827113 + 0.562036i \(0.189982\pi\)
\(42\) 16.6470 34.5678i 0.396357 0.823043i
\(43\) −41.8092 + 4.71076i −0.972307 + 0.109553i −0.583804 0.811895i \(-0.698436\pi\)
−0.388503 + 0.921447i \(0.627008\pi\)
\(44\) −3.03380 26.9258i −0.0689501 0.611949i
\(45\) 43.4795 + 20.9386i 0.966211 + 0.465303i
\(46\) −4.91352 4.91352i −0.106816 0.106816i
\(47\) −28.2097 + 9.87101i −0.600207 + 0.210022i −0.613244 0.789893i \(-0.710136\pi\)
0.0130369 + 0.999915i \(0.495850\pi\)
\(48\) −21.4883 + 13.5020i −0.447672 + 0.281291i
\(49\) 7.00665 3.37423i 0.142993 0.0688618i
\(50\) 46.3398 + 16.2150i 0.926796 + 0.324300i
\(51\) 62.4744 14.2594i 1.22499 0.279596i
\(52\) −13.1966 + 16.5480i −0.253780 + 0.318230i
\(53\) −25.1303 31.5124i −0.474157 0.594574i 0.486026 0.873944i \(-0.338446\pi\)
−0.960184 + 0.279370i \(0.909874\pi\)
\(54\) −3.48423 + 15.2654i −0.0645228 + 0.282693i
\(55\) 103.417 + 64.9809i 1.88030 + 1.18147i
\(56\) 55.2021 + 6.21978i 0.985751 + 0.111068i
\(57\) 56.0423i 0.983199i
\(58\) 21.7087 + 38.4890i 0.374288 + 0.663604i
\(59\) −72.0544 −1.22126 −0.610631 0.791915i \(-0.709084\pi\)
−0.610631 + 0.791915i \(0.709084\pi\)
\(60\) −5.57388 + 49.4696i −0.0928980 + 0.824493i
\(61\) −36.0211 + 57.3273i −0.590510 + 0.939791i 0.409117 + 0.912482i \(0.365837\pi\)
−0.999627 + 0.0273095i \(0.991306\pi\)
\(62\) −17.6131 4.02006i −0.284081 0.0648397i
\(63\) −32.0248 + 25.5389i −0.508331 + 0.405380i
\(64\) −49.7205 39.6508i −0.776883 0.619543i
\(65\) −21.2297 93.0134i −0.326611 1.43097i
\(66\) 31.8675 91.0722i 0.482842 1.37988i
\(67\) −40.9142 84.9592i −0.610659 1.26805i −0.945454 0.325756i \(-0.894381\pi\)
0.334794 0.942291i \(-0.391333\pi\)
\(68\) 14.5890 + 23.2182i 0.214543 + 0.341444i
\(69\) 5.90672 + 16.8804i 0.0856046 + 0.244644i
\(70\) −52.3293 + 52.3293i −0.747561 + 0.747561i
\(71\) 13.8330 28.7244i 0.194830 0.404570i −0.780552 0.625091i \(-0.785062\pi\)
0.975382 + 0.220522i \(0.0707760\pi\)
\(72\) 54.8514 6.18026i 0.761824 0.0858370i
\(73\) 14.9474 + 132.662i 0.204758 + 1.81728i 0.504668 + 0.863313i \(0.331615\pi\)
−0.299910 + 0.953968i \(0.596957\pi\)
\(74\) 11.1798 + 5.38392i 0.151079 + 0.0727557i
\(75\) −89.3466 89.3466i −1.19129 1.19129i
\(76\) 22.6356 7.92053i 0.297836 0.104217i
\(77\) −87.7787 + 55.1550i −1.13998 + 0.716299i
\(78\) −67.9050 + 32.7013i −0.870577 + 0.419248i
\(79\) 82.9084 + 29.0109i 1.04947 + 0.367227i 0.799274 0.600967i \(-0.205218\pi\)
0.250200 + 0.968194i \(0.419504\pi\)
\(80\) 47.7232 10.8925i 0.596540 0.136156i
\(81\) 60.9253 76.3979i 0.752164 0.943184i
\(82\) 14.6022 + 18.3106i 0.178075 + 0.223300i
\(83\) −14.4328 + 63.2343i −0.173889 + 0.761859i 0.810483 + 0.585762i \(0.199205\pi\)
−0.984373 + 0.176098i \(0.943653\pi\)
\(84\) −35.7782 22.4809i −0.425931 0.267630i
\(85\) −122.825 13.8391i −1.44500 0.162813i
\(86\) 64.1103i 0.745469i
\(87\) −7.35846 113.491i −0.0845800 1.30449i
\(88\) 139.701 1.58751
\(89\) 10.8152 95.9875i 0.121519 1.07851i −0.773907 0.633300i \(-0.781700\pi\)
0.895426 0.445211i \(-0.146871\pi\)
\(90\) −39.1228 + 62.2635i −0.434697 + 0.691817i
\(91\) 78.9486 + 18.0195i 0.867567 + 0.198016i
\(92\) −5.98322 + 4.77146i −0.0650350 + 0.0518637i
\(93\) 36.3524 + 28.9901i 0.390886 + 0.311721i
\(94\) −10.1337 44.3987i −0.107805 0.472327i
\(95\) −35.7022 + 102.031i −0.375813 + 1.07401i
\(96\) 42.1103 + 87.4429i 0.438649 + 0.910864i
\(97\) 63.6202 + 101.251i 0.655879 + 1.04382i 0.994685 + 0.102969i \(0.0328341\pi\)
−0.338806 + 0.940856i \(0.610023\pi\)
\(98\) 3.91380 + 11.1850i 0.0399367 + 0.114133i
\(99\) −72.8390 + 72.8390i −0.735747 + 0.735747i
\(100\) 23.4597 48.7146i 0.234597 0.487146i
\(101\) 44.5062 5.01465i 0.440656 0.0496500i 0.111150 0.993804i \(-0.464547\pi\)
0.329505 + 0.944154i \(0.393118\pi\)
\(102\) 10.9327 + 97.0303i 0.107183 + 0.951277i
\(103\) −58.9299 28.3791i −0.572135 0.275526i 0.125365 0.992111i \(-0.459990\pi\)
−0.697500 + 0.716585i \(0.745704\pi\)
\(104\) −77.1631 77.1631i −0.741953 0.741953i
\(105\) 179.778 62.9069i 1.71217 0.599113i
\(106\) 52.0029 32.6756i 0.490594 0.308260i
\(107\) 73.6724 35.4788i 0.688527 0.331577i −0.0566968 0.998391i \(-0.518057\pi\)
0.745224 + 0.666814i \(0.232343\pi\)
\(108\) 16.2768 + 5.69550i 0.150711 + 0.0527361i
\(109\) −70.6783 + 16.1319i −0.648425 + 0.147999i −0.534069 0.845441i \(-0.679338\pi\)
−0.114356 + 0.993440i \(0.536481\pi\)
\(110\) −116.036 + 145.505i −1.05488 + 1.32277i
\(111\) −19.9119 24.9687i −0.179386 0.224943i
\(112\) −9.24542 + 40.5068i −0.0825484 + 0.361668i
\(113\) −32.1123 20.1775i −0.284180 0.178562i 0.382397 0.923998i \(-0.375099\pi\)
−0.666577 + 0.745436i \(0.732241\pi\)
\(114\) 84.8582 + 9.56122i 0.744370 + 0.0838704i
\(115\) 34.4955i 0.299961i
\(116\) 44.7992 19.0119i 0.386200 0.163896i
\(117\) 80.4644 0.687730
\(118\) 12.2930 109.103i 0.104178 0.924605i
\(119\) 55.8167 88.8317i 0.469048 0.746485i
\(120\) −250.232 57.1138i −2.08527 0.475949i
\(121\) −109.227 + 87.1058i −0.902704 + 0.719882i
\(122\) −80.6584 64.3229i −0.661134 0.527237i
\(123\) −13.4127 58.7650i −0.109046 0.477764i
\(124\) −6.57139 + 18.7800i −0.0529951 + 0.151451i
\(125\) 23.6947 + 49.2026i 0.189558 + 0.393621i
\(126\) −33.2069 52.8485i −0.263547 0.419432i
\(127\) −16.1833 46.2491i −0.127427 0.364166i 0.862441 0.506158i \(-0.168935\pi\)
−0.989868 + 0.141992i \(0.954649\pi\)
\(128\) −1.47690 + 1.47690i −0.0115383 + 0.0115383i
\(129\) −71.5911 + 148.660i −0.554970 + 1.15241i
\(130\) 144.461 16.2768i 1.11124 0.125206i
\(131\) −9.85869 87.4983i −0.0752572 0.667926i −0.973541 0.228511i \(-0.926614\pi\)
0.898284 0.439415i \(-0.144814\pi\)
\(132\) −95.7396 46.1058i −0.725300 0.349286i
\(133\) −64.8780 64.8780i −0.487805 0.487805i
\(134\) 135.624 47.4568i 1.01212 0.354155i
\(135\) −65.8163 + 41.3551i −0.487528 + 0.306334i
\(136\) −127.376 + 61.3412i −0.936591 + 0.451039i
\(137\) 47.1122 + 16.4853i 0.343885 + 0.120330i 0.496695 0.867925i \(-0.334547\pi\)
−0.152811 + 0.988255i \(0.548832\pi\)
\(138\) −26.5677 + 6.06392i −0.192520 + 0.0439414i
\(139\) 3.30447 4.14367i 0.0237732 0.0298106i −0.769803 0.638282i \(-0.779645\pi\)
0.793576 + 0.608471i \(0.208217\pi\)
\(140\) 50.8163 + 63.7217i 0.362974 + 0.455155i
\(141\) −26.0811 + 114.269i −0.184972 + 0.810417i
\(142\) 41.1340 + 25.8462i 0.289676 + 0.182015i
\(143\) 202.366 + 22.8012i 1.41515 + 0.159449i
\(144\) 41.2846i 0.286698i
\(145\) −58.9034 + 211.310i −0.406231 + 1.45731i
\(146\) −203.424 −1.39331
\(147\) 3.41472 30.3065i 0.0232294 0.206167i
\(148\) 7.27072 11.5713i 0.0491265 0.0781844i
\(149\) 121.378 + 27.7037i 0.814617 + 0.185931i 0.609479 0.792802i \(-0.291379\pi\)
0.205138 + 0.978733i \(0.434236\pi\)
\(150\) 150.530 120.044i 1.00353 0.800291i
\(151\) 116.656 + 93.0300i 0.772556 + 0.616093i 0.928355 0.371696i \(-0.121224\pi\)
−0.155798 + 0.987789i \(0.549795\pi\)
\(152\) 27.5129 + 120.542i 0.181006 + 0.793039i
\(153\) 34.4302 98.3958i 0.225034 0.643110i
\(154\) −68.5389 142.323i −0.445058 0.924173i
\(155\) −47.7150 75.9380i −0.307839 0.489923i
\(156\) 27.4149 + 78.3474i 0.175737 + 0.502227i
\(157\) 112.055 112.055i 0.713725 0.713725i −0.253587 0.967312i \(-0.581611\pi\)
0.967312 + 0.253587i \(0.0816105\pi\)
\(158\) −58.0725 + 120.589i −0.367548 + 0.763221i
\(159\) −157.074 + 17.6980i −0.987886 + 0.111308i
\(160\) −20.9601 186.026i −0.131000 1.16266i
\(161\) 26.3798 + 12.7038i 0.163850 + 0.0789058i
\(162\) 105.286 + 105.286i 0.649913 + 0.649913i
\(163\) −108.237 + 37.8739i −0.664033 + 0.232355i −0.641188 0.767384i \(-0.721558\pi\)
−0.0228453 + 0.999739i \(0.507273\pi\)
\(164\) 21.8396 13.7227i 0.133168 0.0836752i
\(165\) 431.551 207.824i 2.61546 1.25954i
\(166\) −93.2858 32.6421i −0.561963 0.196639i
\(167\) −39.7689 + 9.07699i −0.238137 + 0.0543532i −0.339924 0.940453i \(-0.610401\pi\)
0.101787 + 0.994806i \(0.467544\pi\)
\(168\) 135.831 170.327i 0.808517 1.01385i
\(169\) 6.18821 + 7.75977i 0.0366166 + 0.0459158i
\(170\) 41.9098 183.619i 0.246528 1.08011i
\(171\) −77.1945 48.5045i −0.451430 0.283652i
\(172\) −70.1622 7.90538i −0.407919 0.0459615i
\(173\) 92.8408i 0.536652i 0.963328 + 0.268326i \(0.0864704\pi\)
−0.963328 + 0.268326i \(0.913530\pi\)
\(174\) 173.101 + 8.22034i 0.994835 + 0.0472434i
\(175\) −206.866 −1.18209
\(176\) −11.6988 + 103.830i −0.0664705 + 0.589942i
\(177\) −150.339 + 239.264i −0.849375 + 1.35177i
\(178\) 143.497 + 32.7523i 0.806164 + 0.184002i
\(179\) −259.613 + 207.034i −1.45035 + 1.15662i −0.492153 + 0.870509i \(0.663790\pi\)
−0.958198 + 0.286108i \(0.907639\pi\)
\(180\) 63.3168 + 50.4935i 0.351760 + 0.280519i
\(181\) −5.32646 23.3367i −0.0294279 0.128932i 0.958080 0.286500i \(-0.0924919\pi\)
−0.987508 + 0.157568i \(0.949635\pi\)
\(182\) −40.7539 + 116.468i −0.223923 + 0.639935i
\(183\) 115.204 + 239.223i 0.629529 + 1.30723i
\(184\) −20.9919 33.4085i −0.114087 0.181568i
\(185\) 20.3452 + 58.1432i 0.109974 + 0.314288i
\(186\) −50.0981 + 50.0981i −0.269345 + 0.269345i
\(187\) 114.473 237.707i 0.612158 1.27116i
\(188\) −49.8394 + 5.61555i −0.265103 + 0.0298699i
\(189\) −7.38704 65.5618i −0.0390849 0.346888i
\(190\) −148.402 71.4668i −0.781065 0.376141i
\(191\) 80.4392 + 80.4392i 0.421147 + 0.421147i 0.885599 0.464451i \(-0.153748\pi\)
−0.464451 + 0.885599i \(0.653748\pi\)
\(192\) −235.405 + 82.3716i −1.22607 + 0.429019i
\(193\) 185.269 116.412i 0.959941 0.603171i 0.0416731 0.999131i \(-0.486731\pi\)
0.918267 + 0.395961i \(0.129588\pi\)
\(194\) −164.166 + 79.0584i −0.846218 + 0.407517i
\(195\) −353.155 123.574i −1.81105 0.633715i
\(196\) 12.7234 2.90404i 0.0649155 0.0148165i
\(197\) 156.057 195.689i 0.792166 0.993345i −0.207719 0.978189i \(-0.566604\pi\)
0.999885 0.0151563i \(-0.00482457\pi\)
\(198\) −97.8645 122.718i −0.494265 0.619789i
\(199\) 68.8429 301.621i 0.345944 1.51568i −0.440349 0.897827i \(-0.645145\pi\)
0.786293 0.617854i \(-0.211998\pi\)
\(200\) 236.039 + 148.313i 1.18020 + 0.741567i
\(201\) −367.482 41.4052i −1.82827 0.205996i
\(202\) 68.2460i 0.337851i
\(203\) −139.903 122.866i −0.689176 0.605249i
\(204\) 107.538 0.527146
\(205\) −13.0174 + 115.532i −0.0634994 + 0.563573i
\(206\) 53.0250 84.3888i 0.257403 0.409654i
\(207\) 28.3639 + 6.47388i 0.137024 + 0.0312748i
\(208\) 63.8115 50.8880i 0.306786 0.244654i
\(209\) −180.398 143.862i −0.863147 0.688337i
\(210\) 64.5811 + 282.948i 0.307529 + 1.34737i
\(211\) 15.0592 43.0368i 0.0713708 0.203966i −0.902672 0.430329i \(-0.858398\pi\)
0.974043 + 0.226363i \(0.0726834\pi\)
\(212\) −29.3477 60.9410i −0.138432 0.287458i
\(213\) −66.5203 105.866i −0.312302 0.497025i
\(214\) 41.1522 + 117.606i 0.192300 + 0.549562i
\(215\) 225.044 225.044i 1.04672 1.04672i
\(216\) −38.5759 + 80.1038i −0.178592 + 0.370851i
\(217\) 75.6444 8.52307i 0.348592 0.0392768i
\(218\) −12.3683 109.772i −0.0567354 0.503541i
\(219\) 471.703 + 227.160i 2.15389 + 1.03726i
\(220\) 144.932 + 144.932i 0.658782 + 0.658782i
\(221\) −194.525 + 68.0671i −0.880202 + 0.307996i
\(222\) 41.2042 25.8903i 0.185605 0.116623i
\(223\) −125.985 + 60.6713i −0.564956 + 0.272069i −0.694485 0.719507i \(-0.744368\pi\)
0.129529 + 0.991576i \(0.458654\pi\)
\(224\) 149.979 + 52.4798i 0.669548 + 0.234285i
\(225\) −200.398 + 45.7396i −0.890659 + 0.203287i
\(226\) 36.0310 45.1814i 0.159429 0.199918i
\(227\) 18.6570 + 23.3951i 0.0821894 + 0.103062i 0.821226 0.570603i \(-0.193290\pi\)
−0.739037 + 0.673665i \(0.764719\pi\)
\(228\) 20.9275 91.6896i 0.0917875 0.402147i
\(229\) −251.179 157.826i −1.09685 0.689196i −0.143073 0.989712i \(-0.545698\pi\)
−0.953777 + 0.300516i \(0.902841\pi\)
\(230\) 52.2325 + 5.88518i 0.227098 + 0.0255878i
\(231\) 406.557i 1.75999i
\(232\) 71.5436 + 240.496i 0.308378 + 1.03662i
\(233\) 102.836 0.441355 0.220678 0.975347i \(-0.429173\pi\)
0.220678 + 0.975347i \(0.429173\pi\)
\(234\) −13.7278 + 121.838i −0.0586658 + 0.520673i
\(235\) 120.279 191.423i 0.511826 0.814567i
\(236\) −117.887 26.9068i −0.499519 0.114012i
\(237\) 269.320 214.775i 1.13637 0.906225i
\(238\) 124.985 + 99.6718i 0.525145 + 0.418789i
\(239\) 82.4096 + 361.060i 0.344810 + 1.51071i 0.788783 + 0.614671i \(0.210711\pi\)
−0.443973 + 0.896040i \(0.646432\pi\)
\(240\) 63.4034 181.196i 0.264181 0.754985i
\(241\) −23.2235 48.2241i −0.0963630 0.200100i 0.847215 0.531250i \(-0.178278\pi\)
−0.943578 + 0.331150i \(0.892563\pi\)
\(242\) −113.259 180.251i −0.468012 0.744837i
\(243\) −96.0228 274.417i −0.395155 1.12929i
\(244\) −80.3407 + 80.3407i −0.329265 + 0.329265i
\(245\) −25.5238 + 53.0008i −0.104179 + 0.216330i
\(246\) 91.2691 10.2836i 0.371012 0.0418031i
\(247\) 20.1801 + 179.103i 0.0817007 + 0.725114i
\(248\) −92.4227 44.5084i −0.372672 0.179470i
\(249\) 179.862 + 179.862i 0.722338 + 0.722338i
\(250\) −78.5441 + 27.4838i −0.314177 + 0.109935i
\(251\) 309.133 194.241i 1.23160 0.773868i 0.250644 0.968079i \(-0.419358\pi\)
0.980960 + 0.194211i \(0.0622147\pi\)
\(252\) −61.9319 + 29.8248i −0.245762 + 0.118353i
\(253\) 69.5001 + 24.3191i 0.274704 + 0.0961231i
\(254\) 72.7905 16.6139i 0.286577 0.0654092i
\(255\) −302.225 + 378.979i −1.18520 + 1.48619i
\(256\) −160.587 201.370i −0.627294 0.786602i
\(257\) −94.8505 + 415.567i −0.369068 + 1.61699i 0.360276 + 0.932846i \(0.382683\pi\)
−0.729344 + 0.684147i \(0.760175\pi\)
\(258\) −212.885 133.764i −0.825135 0.518466i
\(259\) −51.9565 5.85409i −0.200604 0.0226027i
\(260\) 160.105i 0.615787i
\(261\) −162.695 88.0905i −0.623352 0.337511i
\(262\) 134.170 0.512100
\(263\) 1.99454 17.7021i 0.00758382 0.0673083i −0.989350 0.145554i \(-0.953503\pi\)
0.996934 + 0.0782461i \(0.0249320\pi\)
\(264\) 291.482 463.892i 1.10410 1.75717i
\(265\) 297.244 + 67.8441i 1.12168 + 0.256015i
\(266\) 109.306 87.1684i 0.410924 0.327701i
\(267\) −296.170 236.188i −1.10925 0.884599i
\(268\) −35.2130 154.278i −0.131392 0.575664i
\(269\) −69.6952 + 199.177i −0.259090 + 0.740437i 0.738703 + 0.674031i \(0.235439\pi\)
−0.997793 + 0.0664053i \(0.978847\pi\)
\(270\) −51.3904 106.713i −0.190335 0.395234i
\(271\) 168.487 + 268.145i 0.621722 + 0.989464i 0.998016 + 0.0629639i \(0.0200553\pi\)
−0.376294 + 0.926500i \(0.622802\pi\)
\(272\) −34.9238 99.8065i −0.128396 0.366935i
\(273\) 224.559 224.559i 0.822562 0.822562i
\(274\) −32.9993 + 68.5238i −0.120436 + 0.250087i
\(275\) −516.958 + 58.2472i −1.87985 + 0.211808i
\(276\) 3.36029 + 29.8234i 0.0121750 + 0.108056i
\(277\) −486.478 234.275i −1.75624 0.845760i −0.975216 0.221257i \(-0.928984\pi\)
−0.781022 0.624503i \(-0.785302\pi\)
\(278\) 5.71050 + 5.71050i 0.0205414 + 0.0205414i
\(279\) 71.3947 24.9821i 0.255895 0.0895416i
\(280\) −355.802 + 223.565i −1.27072 + 0.798448i
\(281\) −178.225 + 85.8285i −0.634252 + 0.305439i −0.723244 0.690593i \(-0.757350\pi\)
0.0889921 + 0.996032i \(0.471635\pi\)
\(282\) −168.574 58.9866i −0.597780 0.209172i
\(283\) 155.124 35.4061i 0.548143 0.125110i 0.0605241 0.998167i \(-0.480723\pi\)
0.487619 + 0.873057i \(0.337866\pi\)
\(284\) 33.3582 41.8298i 0.117458 0.147288i
\(285\) 264.312 + 331.437i 0.927412 + 1.16294i
\(286\) −69.0502 + 302.529i −0.241434 + 1.05779i
\(287\) −83.5573 52.5025i −0.291140 0.182936i
\(288\) 156.893 + 17.6776i 0.544768 + 0.0613806i
\(289\) 22.0004i 0.0761260i
\(290\) −309.912 125.241i −1.06866 0.431867i
\(291\) 468.956 1.61153
\(292\) −25.0839 + 222.626i −0.0859039 + 0.762418i
\(293\) 131.410 209.138i 0.448498 0.713781i −0.543586 0.839353i \(-0.682934\pi\)
0.992084 + 0.125572i \(0.0400768\pi\)
\(294\) 45.3069 + 10.3410i 0.154105 + 0.0351735i
\(295\) 426.134 339.830i 1.44452 1.15197i
\(296\) 55.0866 + 43.9301i 0.186103 + 0.148412i
\(297\) −36.9204 161.759i −0.124311 0.544643i
\(298\) −62.6564 + 179.062i −0.210256 + 0.600878i
\(299\) −24.9554 51.8205i −0.0834630 0.173313i
\(300\) −112.814 179.542i −0.376046 0.598474i
\(301\) 89.2202 + 254.977i 0.296413 + 0.847098i
\(302\) −160.767 + 160.767i −0.532340 + 0.532340i
\(303\) 76.2093 158.250i 0.251516 0.522278i
\(304\) −91.8941 + 10.3540i −0.302283 + 0.0340591i
\(305\) −57.3418 508.923i −0.188006 1.66860i
\(306\) 143.115 + 68.9205i 0.467696 + 0.225230i
\(307\) 226.087 + 226.087i 0.736440 + 0.736440i 0.971887 0.235447i \(-0.0756555\pi\)
−0.235447 + 0.971887i \(0.575655\pi\)
\(308\) −164.209 + 57.4592i −0.533146 + 0.186556i
\(309\) −217.191 + 136.470i −0.702884 + 0.441652i
\(310\) 123.124 59.2936i 0.397175 0.191270i
\(311\) 72.3712 + 25.3238i 0.232705 + 0.0814269i 0.444112 0.895971i \(-0.353519\pi\)
−0.211408 + 0.977398i \(0.567805\pi\)
\(312\) −417.226 + 95.2292i −1.33726 + 0.305222i
\(313\) −344.367 + 431.823i −1.10022 + 1.37963i −0.182116 + 0.983277i \(0.558294\pi\)
−0.918100 + 0.396349i \(0.870277\pi\)
\(314\) 150.554 + 188.789i 0.479471 + 0.601238i
\(315\) 68.9472 302.077i 0.218880 0.958976i
\(316\) 124.811 + 78.4241i 0.394972 + 0.248177i
\(317\) 7.26544 + 0.818619i 0.0229194 + 0.00258239i 0.123417 0.992355i \(-0.460615\pi\)
−0.100497 + 0.994937i \(0.532043\pi\)
\(318\) 240.858i 0.757414i
\(319\) −384.212 267.648i −1.20443 0.839023i
\(320\) 481.054 1.50330
\(321\) 35.9046 318.662i 0.111852 0.992716i
\(322\) −23.7365 + 37.7764i −0.0737158 + 0.117318i
\(323\) 227.651 + 51.9599i 0.704802 + 0.160866i
\(324\) 128.207 102.242i 0.395701 0.315561i
\(325\) 317.711 + 253.366i 0.977573 + 0.779589i
\(326\) −38.8819 170.353i −0.119270 0.522554i
\(327\) −93.9008 + 268.353i −0.287158 + 0.820651i
\(328\) 57.6991 + 119.813i 0.175912 + 0.365285i
\(329\) 102.091 + 162.478i 0.310308 + 0.493853i
\(330\) 241.057 + 688.903i 0.730477 + 2.08758i
\(331\) −60.5776 + 60.5776i −0.183014 + 0.183014i −0.792668 0.609654i \(-0.791308\pi\)
0.609654 + 0.792668i \(0.291308\pi\)
\(332\) −47.2264 + 98.0667i −0.142248 + 0.295382i
\(333\) −51.6264 + 5.81690i −0.155034 + 0.0174682i
\(334\) −6.95934 61.7659i −0.0208364 0.184928i
\(335\) 642.661 + 309.489i 1.91839 + 0.923849i
\(336\) 115.217 + 115.217i 0.342907 + 0.342907i
\(337\) 319.145 111.674i 0.947018 0.331376i 0.187796 0.982208i \(-0.439865\pi\)
0.759222 + 0.650832i \(0.225580\pi\)
\(338\) −12.8054 + 8.04620i −0.0378859 + 0.0238053i
\(339\) −134.003 + 64.5324i −0.395289 + 0.190361i
\(340\) −195.784 68.5077i −0.575835 0.201493i
\(341\) 186.635 42.5983i 0.547318 0.124922i
\(342\) 86.6146 108.611i 0.253259 0.317577i
\(343\) −227.285 285.007i −0.662639 0.830923i
\(344\) 81.0039 354.901i 0.235476 1.03169i
\(345\) −114.546 71.9739i −0.332017 0.208620i
\(346\) −140.578 15.8393i −0.406294 0.0457783i
\(347\) 98.3157i 0.283330i 0.989915 + 0.141665i \(0.0452456\pi\)
−0.989915 + 0.141665i \(0.954754\pi\)
\(348\) 30.3412 188.428i 0.0871875 0.541459i
\(349\) −534.702 −1.53210 −0.766049 0.642782i \(-0.777780\pi\)
−0.766049 + 0.642782i \(0.777780\pi\)
\(350\) 35.2929 313.233i 0.100837 0.894951i
\(351\) −68.9538 + 109.739i −0.196449 + 0.312648i
\(352\) 389.573 + 88.9176i 1.10674 + 0.252607i
\(353\) 263.129 209.839i 0.745409 0.594444i −0.175382 0.984500i \(-0.556116\pi\)
0.920791 + 0.390057i \(0.127545\pi\)
\(354\) −336.640 268.461i −0.950959 0.758365i
\(355\) 53.6642 + 235.118i 0.151167 + 0.662305i
\(356\) 53.5385 153.004i 0.150389 0.429787i
\(357\) −178.515 370.690i −0.500041 1.03835i
\(358\) −269.195 428.422i −0.751943 1.19671i
\(359\) −81.3356 232.444i −0.226561 0.647475i −0.999909 0.0134931i \(-0.995705\pi\)
0.773348 0.633982i \(-0.218581\pi\)
\(360\) −295.246 + 295.246i −0.820127 + 0.820127i
\(361\) −68.0273 + 141.260i −0.188441 + 0.391302i
\(362\) 36.2447 4.08380i 0.100124 0.0112812i
\(363\) 61.3440 + 544.443i 0.168992 + 1.49984i
\(364\) 122.437 + 58.9625i 0.336365 + 0.161985i
\(365\) −714.071 714.071i −1.95636 1.95636i
\(366\) −381.882 + 133.626i −1.04339 + 0.365099i
\(367\) 132.396 83.1898i 0.360752 0.226675i −0.339444 0.940626i \(-0.610239\pi\)
0.700196 + 0.713951i \(0.253096\pi\)
\(368\) 26.5880 12.8041i 0.0722500 0.0347938i
\(369\) −92.5534 32.3859i −0.250822 0.0877665i
\(370\) −91.5103 + 20.8866i −0.247325 + 0.0564504i
\(371\) −161.350 + 202.327i −0.434906 + 0.545355i
\(372\) 48.6497 + 61.0048i 0.130779 + 0.163991i
\(373\) −130.647 + 572.403i −0.350261 + 1.53459i 0.426318 + 0.904573i \(0.359810\pi\)
−0.776579 + 0.630020i \(0.783047\pi\)
\(374\) 340.401 + 213.888i 0.910162 + 0.571893i
\(375\) 212.821 + 23.9791i 0.567522 + 0.0639443i
\(376\) 258.586i 0.687728i
\(377\) 64.3831 + 360.051i 0.170778 + 0.955043i
\(378\) 100.533 0.265959
\(379\) −7.44921 + 66.1135i −0.0196549 + 0.174442i −0.999704 0.0243113i \(-0.992261\pi\)
0.980050 + 0.198753i \(0.0636893\pi\)
\(380\) −96.5123 + 153.598i −0.253980 + 0.404207i
\(381\) −187.341 42.7593i −0.491708 0.112229i
\(382\) −135.523 + 108.076i −0.354772 + 0.282921i
\(383\) 21.1423 + 16.8604i 0.0552018 + 0.0440220i 0.650702 0.759333i \(-0.274475\pi\)
−0.595500 + 0.803355i \(0.703046\pi\)
\(384\) 1.82268 + 7.98570i 0.00474657 + 0.0207961i
\(385\) 259.000 740.180i 0.672728 1.92255i
\(386\) 144.661 + 300.391i 0.374768 + 0.778214i
\(387\) 142.808 + 227.277i 0.369012 + 0.587280i
\(388\) 66.2780 + 189.412i 0.170820 + 0.488175i
\(389\) −148.329 + 148.329i −0.381307 + 0.381307i −0.871573 0.490266i \(-0.836900\pi\)
0.490266 + 0.871573i \(0.336900\pi\)
\(390\) 247.365 513.658i 0.634268 1.31707i
\(391\) −74.0469 + 8.34308i −0.189378 + 0.0213378i
\(392\) 7.53364 + 66.8629i 0.0192185 + 0.170569i
\(393\) −311.117 149.826i −0.791645 0.381236i
\(394\) 269.684 + 269.684i 0.684477 + 0.684477i
\(395\) −627.149 + 219.449i −1.58772 + 0.555567i
\(396\) −146.370 + 91.9704i −0.369621 + 0.232248i
\(397\) 625.449 301.201i 1.57544 0.758692i 0.577121 0.816659i \(-0.304176\pi\)
0.998318 + 0.0579674i \(0.0184619\pi\)
\(398\) 444.963 + 155.699i 1.11800 + 0.391204i
\(399\) −350.800 + 80.0678i −0.879198 + 0.200671i
\(400\) −129.997 + 163.011i −0.324992 + 0.407527i
\(401\) −475.354 596.075i −1.18542 1.48647i −0.835324 0.549758i \(-0.814720\pi\)
−0.350097 0.936713i \(-0.613851\pi\)
\(402\) 125.390 549.369i 0.311915 1.36659i
\(403\) −126.616 79.5580i −0.314183 0.197414i
\(404\) 74.6882 + 8.41534i 0.184872 + 0.0208300i
\(405\) 739.163i 1.82509i
\(406\) 209.909 190.876i 0.517017 0.470138i
\(407\) −131.488 −0.323065
\(408\) −62.0775 + 550.953i −0.152151 + 1.35037i
\(409\) 82.4668 131.245i 0.201630 0.320893i −0.730569 0.682839i \(-0.760745\pi\)
0.932199 + 0.361947i \(0.117888\pi\)
\(410\) −172.716 39.4213i −0.421259 0.0961496i
\(411\) 153.039 122.045i 0.372358 0.296946i
\(412\) −85.8164 68.4363i −0.208292 0.166107i
\(413\) 102.944 + 451.029i 0.249260 + 1.09208i
\(414\) −14.6417 + 41.8436i −0.0353664 + 0.101071i
\(415\) −212.876 442.041i −0.512953 1.06516i
\(416\) −166.065 264.292i −0.399196 0.635316i
\(417\) −6.86480 19.6185i −0.0164623 0.0470467i
\(418\) 248.611 248.611i 0.594763 0.594763i
\(419\) 149.598 310.643i 0.357035 0.741390i −0.642659 0.766153i \(-0.722169\pi\)
0.999693 + 0.0247624i \(0.00788291\pi\)
\(420\) 317.621 35.7873i 0.756240 0.0852078i
\(421\) −66.7338 592.279i −0.158513 1.40684i −0.781158 0.624334i \(-0.785371\pi\)
0.622645 0.782504i \(-0.286058\pi\)
\(422\) 62.5963 + 30.1448i 0.148332 + 0.0714331i
\(423\) 134.824 + 134.824i 0.318734 + 0.318734i
\(424\) 329.163 115.179i 0.776328 0.271649i
\(425\) 445.775 280.099i 1.04888 0.659057i
\(426\) 171.650 82.6621i 0.402934 0.194043i
\(427\) 410.307 + 143.572i 0.960905 + 0.336235i
\(428\) 133.782 30.5349i 0.312575 0.0713433i
\(429\) 497.944 624.402i 1.16071 1.45548i
\(430\) 302.364 + 379.152i 0.703171 + 0.881749i
\(431\) −61.6978 + 270.316i −0.143150 + 0.627183i 0.851542 + 0.524287i \(0.175668\pi\)
−0.994692 + 0.102896i \(0.967189\pi\)
\(432\) −56.3049 35.3787i −0.130335 0.0818952i
\(433\) −318.885 35.9297i −0.736454 0.0829785i −0.264233 0.964459i \(-0.585119\pi\)
−0.472221 + 0.881480i \(0.656547\pi\)
\(434\) 115.993i 0.267266i
\(435\) 578.776 + 636.487i 1.33052 + 1.46319i
\(436\) −121.659 −0.279035
\(437\) −7.29647 + 64.7580i −0.0166967 + 0.148188i
\(438\) −424.437 + 675.488i −0.969035 + 1.54221i
\(439\) −589.295 134.503i −1.34236 0.306384i −0.509785 0.860302i \(-0.670275\pi\)
−0.832572 + 0.553917i \(0.813132\pi\)
\(440\) −826.200 + 658.873i −1.87773 + 1.49744i
\(441\) −38.7897 30.9338i −0.0879586 0.0701446i
\(442\) −69.8786 306.158i −0.158096 0.692665i
\(443\) −286.372 + 818.404i −0.646438 + 1.84741i −0.129098 + 0.991632i \(0.541208\pi\)
−0.517339 + 0.855781i \(0.673077\pi\)
\(444\) −23.2535 48.2863i −0.0523726 0.108753i
\(445\) 388.744 + 618.683i 0.873582 + 1.39030i
\(446\) −70.3733 201.115i −0.157788 0.450931i
\(447\) 345.245 345.245i 0.772359 0.772359i
\(448\) −177.160 + 367.877i −0.395447 + 0.821154i
\(449\) 583.687 65.7657i 1.29997 0.146472i 0.565295 0.824889i \(-0.308762\pi\)
0.734677 + 0.678417i \(0.237334\pi\)
\(450\) −35.0686 311.243i −0.0779303 0.691650i
\(451\) −223.593 107.677i −0.495771 0.238751i
\(452\) −45.0035 45.0035i −0.0995652 0.0995652i
\(453\) 552.315 193.263i 1.21924 0.426630i
\(454\) −38.6075 + 24.2587i −0.0850384 + 0.0534332i
\(455\) −551.891 + 265.777i −1.21295 + 0.584125i
\(456\) 457.676 + 160.148i 1.00368 + 0.351202i
\(457\) 30.9403 7.06192i 0.0677030 0.0154528i −0.188535 0.982066i \(-0.560374\pi\)
0.256238 + 0.966614i \(0.417517\pi\)
\(458\) 281.830 353.403i 0.615349 0.771623i
\(459\) 104.690 + 131.277i 0.228082 + 0.286006i
\(460\) 12.8815 56.4373i 0.0280032 0.122690i
\(461\) −26.3626 16.5647i −0.0571858 0.0359322i 0.503136 0.864207i \(-0.332180\pi\)
−0.560322 + 0.828275i \(0.689322\pi\)
\(462\) −615.601 69.3615i −1.33247 0.150133i
\(463\) 492.788i 1.06434i −0.846638 0.532169i \(-0.821377\pi\)
0.846638 0.532169i \(-0.178623\pi\)
\(464\) −184.735 + 33.0336i −0.398135 + 0.0711932i
\(465\) −351.716 −0.756378
\(466\) −17.5445 + 155.712i −0.0376492 + 0.334146i
\(467\) 70.6660 112.464i 0.151319 0.240823i −0.762459 0.647036i \(-0.776008\pi\)
0.913778 + 0.406214i \(0.133151\pi\)
\(468\) 131.646 + 30.0473i 0.281295 + 0.0642037i
\(469\) −473.352 + 377.486i −1.00928 + 0.804874i
\(470\) 269.329 + 214.783i 0.573040 + 0.456984i
\(471\) −138.290 605.888i −0.293609 1.28639i
\(472\) 205.904 588.441i 0.436238 1.24670i
\(473\) 294.755 + 612.064i 0.623160 + 1.29401i
\(474\) 279.261 + 444.441i 0.589157 + 0.937638i
\(475\) −152.069 434.589i −0.320146 0.914924i
\(476\) 124.492 124.492i 0.261538 0.261538i
\(477\) −111.569 + 231.676i −0.233898 + 0.485694i
\(478\) −560.770 + 63.1836i −1.17316 + 0.132183i
\(479\) 20.8876 + 185.382i 0.0436066 + 0.387020i 0.996492 + 0.0836888i \(0.0266702\pi\)
−0.952885 + 0.303331i \(0.901901\pi\)
\(480\) −661.450 318.537i −1.37802 0.663619i
\(481\) 72.6264 + 72.6264i 0.150990 + 0.150990i
\(482\) 76.9820 26.9372i 0.159714 0.0558863i
\(483\) 97.2250 61.0905i 0.201294 0.126481i
\(484\) −211.231 + 101.724i −0.436429 + 0.210173i
\(485\) −853.784 298.752i −1.76038 0.615983i
\(486\) 431.899 98.5782i 0.888682 0.202836i
\(487\) 348.899 437.506i 0.716426 0.898369i −0.281704 0.959501i \(-0.590900\pi\)
0.998130 + 0.0611319i \(0.0194710\pi\)
\(488\) −365.235 457.990i −0.748433 0.938505i
\(489\) −100.070 + 438.436i −0.204642 + 0.896597i
\(490\) −75.8982 47.6900i −0.154894 0.0973266i
\(491\) 244.577 + 27.5572i 0.498121 + 0.0561247i 0.357451 0.933932i \(-0.383646\pi\)
0.140670 + 0.990057i \(0.455074\pi\)
\(492\) 101.153i 0.205595i
\(493\) 467.837 + 75.3326i 0.948960 + 0.152805i
\(494\) −274.637 −0.555946
\(495\) 87.2431 774.304i 0.176249 1.56425i
\(496\) 40.8195 64.9639i 0.0822974 0.130976i
\(497\) −199.565 45.5495i −0.401540 0.0916489i
\(498\) −303.030 + 241.658i −0.608493 + 0.485257i
\(499\) −414.297 330.391i −0.830254 0.662106i 0.113213 0.993571i \(-0.463886\pi\)
−0.943468 + 0.331465i \(0.892457\pi\)
\(500\) 20.3930 + 89.3475i 0.0407859 + 0.178695i
\(501\) −52.8356 + 150.995i −0.105460 + 0.301388i
\(502\) 241.376 + 501.221i 0.480828 + 0.998449i
\(503\) −337.253 536.736i −0.670484 1.06707i −0.992724 0.120411i \(-0.961579\pi\)
0.322240 0.946658i \(-0.395564\pi\)
\(504\) −117.052 334.515i −0.232246 0.663721i
\(505\) −239.562 + 239.562i −0.474379 + 0.474379i
\(506\) −48.6808 + 101.087i −0.0962070 + 0.199776i
\(507\) 38.6786 4.35803i 0.0762892 0.00859573i
\(508\) −9.20654 81.7103i −0.0181231 0.160847i
\(509\) 480.177 + 231.241i 0.943374 + 0.454305i 0.841358 0.540478i \(-0.181756\pi\)
0.102016 + 0.994783i \(0.467471\pi\)
\(510\) −522.280 522.280i −1.02408 1.02408i
\(511\) 809.047 283.098i 1.58326 0.554007i
\(512\) 325.234 204.358i 0.635223 0.399137i
\(513\) 132.303 63.7140i 0.257901 0.124199i
\(514\) −613.062 214.520i −1.19273 0.417353i
\(515\) 482.359 110.095i 0.936619 0.213777i
\(516\) −172.642 + 216.486i −0.334577 + 0.419547i
\(517\) 300.875 + 377.285i 0.581964 + 0.729759i
\(518\) 17.7283 77.6728i 0.0342245 0.149947i
\(519\) 308.287 + 193.710i 0.594002 + 0.373236i
\(520\) 820.271 + 92.4223i 1.57744 + 0.177735i
\(521\) 491.340i 0.943071i 0.881847 + 0.471535i \(0.156300\pi\)
−0.881847 + 0.471535i \(0.843700\pi\)
\(522\) 161.142 231.321i 0.308701 0.443143i
\(523\) −633.523 −1.21133 −0.605663 0.795721i \(-0.707092\pi\)
−0.605663 + 0.795721i \(0.707092\pi\)
\(524\) 16.5444 146.835i 0.0315732 0.280220i
\(525\) −431.620 + 686.920i −0.822134 + 1.30842i
\(526\) 26.4638 + 6.04020i 0.0503115 + 0.0114833i
\(527\) −151.465 + 120.790i −0.287411 + 0.229202i
\(528\) 320.368 + 255.485i 0.606757 + 0.483873i
\(529\) 113.086 + 495.462i 0.213773 + 0.936601i
\(530\) −153.440 + 438.507i −0.289510 + 0.827371i
\(531\) 199.451 + 414.165i 0.375614 + 0.779972i
\(532\) −81.9184 130.372i −0.153982 0.245061i
\(533\) 64.0256 + 182.975i 0.120123 + 0.343292i
\(534\) 408.160 408.160i 0.764344 0.764344i
\(535\) −268.374 + 557.284i −0.501634 + 1.04165i
\(536\) 810.746 91.3492i 1.51259 0.170428i
\(537\) 145.803 + 1294.04i 0.271515 + 2.40976i
\(538\) −289.700 139.512i −0.538476 0.259316i
\(539\) −88.7896 88.7896i −0.164730 0.164730i
\(540\) −123.123 + 43.0828i −0.228006 + 0.0797829i
\(541\) −450.657 + 283.166i −0.833007 + 0.523413i −0.879718 0.475496i \(-0.842269\pi\)
0.0467114 + 0.998908i \(0.485126\pi\)
\(542\) −434.765 + 209.372i −0.802149 + 0.386294i
\(543\) −88.6054 31.0044i −0.163178 0.0570983i
\(544\) −394.247 + 89.9843i −0.724719 + 0.165412i
\(545\) 341.913 428.745i 0.627362 0.786688i
\(546\) 301.712 + 378.335i 0.552586 + 0.692921i
\(547\) 93.5855 410.025i 0.171089 0.749588i −0.814463 0.580215i \(-0.802969\pi\)
0.985552 0.169373i \(-0.0541743\pi\)
\(548\) 70.9231 + 44.5640i 0.129422 + 0.0813211i
\(549\) 429.223 + 48.3618i 0.781827 + 0.0880907i
\(550\) 792.705i 1.44128i
\(551\) 155.275 384.230i 0.281805 0.697333i
\(552\) −154.735 −0.280317
\(553\) 63.1439 560.418i 0.114184 1.01341i
\(554\) 437.732 696.646i 0.790130 1.25748i
\(555\) 235.520 + 53.7559i 0.424360 + 0.0968574i
\(556\) 6.95371 5.54540i 0.0125067 0.00997374i
\(557\) 436.339 + 347.969i 0.783374 + 0.624720i 0.931289 0.364280i \(-0.118685\pi\)
−0.147915 + 0.989000i \(0.547256\pi\)
\(558\) 25.6470 + 112.367i 0.0459623 + 0.201374i
\(559\) 175.264 500.876i 0.313531 0.896022i
\(560\) −136.364 283.164i −0.243508 0.505650i
\(561\) −550.483 876.088i −0.981253 1.56165i
\(562\) −99.5534 284.507i −0.177141 0.506241i
\(563\) −624.348 + 624.348i −1.10897 + 1.10897i −0.115679 + 0.993287i \(0.536904\pi\)
−0.993287 + 0.115679i \(0.963096\pi\)
\(564\) −85.3414 + 177.213i −0.151315 + 0.314208i
\(565\) 285.077 32.1205i 0.504561 0.0568504i
\(566\) 27.1459 + 240.927i 0.0479610 + 0.425666i
\(567\) −565.261 272.215i −0.996933 0.480098i
\(568\) 195.052 + 195.052i 0.343402 + 0.343402i
\(569\) 994.025 347.824i 1.74697 0.611290i 0.748323 0.663335i \(-0.230859\pi\)
0.998645 + 0.0520443i \(0.0165737\pi\)
\(570\) −546.950 + 343.671i −0.959561 + 0.602932i
\(571\) 383.661 184.761i 0.671911 0.323575i −0.0666361 0.997777i \(-0.521227\pi\)
0.738547 + 0.674202i \(0.235512\pi\)
\(572\) 322.572 + 112.873i 0.563937 + 0.197330i
\(573\) 434.940 99.2722i 0.759058 0.173250i
\(574\) 93.7538 117.563i 0.163334 0.204814i
\(575\) 91.6092 + 114.874i 0.159320 + 0.199781i
\(576\) −90.2809 + 395.546i −0.156738 + 0.686713i
\(577\) 174.128 + 109.412i 0.301782 + 0.189622i 0.674407 0.738360i \(-0.264399\pi\)
−0.372625 + 0.927982i \(0.621542\pi\)
\(578\) 33.3126 + 3.75343i 0.0576343 + 0.00649382i
\(579\) 858.093i 1.48203i
\(580\) −175.279 + 323.724i −0.302205 + 0.558144i
\(581\) 416.439 0.716762
\(582\) −80.0072 + 710.084i −0.137469 + 1.22007i
\(583\) −346.245 + 551.045i −0.593901 + 0.945189i
\(584\) −1126.11 257.027i −1.92827 0.440115i
\(585\) −475.870 + 379.494i −0.813454 + 0.648708i
\(586\) 294.253 + 234.659i 0.502138 + 0.400442i
\(587\) −110.905 485.906i −0.188935 0.827778i −0.977179 0.212416i \(-0.931867\pi\)
0.788244 0.615362i \(-0.210990\pi\)
\(588\) 16.9039 48.3086i 0.0287482 0.0821575i
\(589\) 73.5124 + 152.650i 0.124809 + 0.259168i
\(590\) 441.863 + 703.221i 0.748920 + 1.19190i
\(591\) −324.197 926.501i −0.548556 1.56768i
\(592\) −37.2631 + 37.2631i −0.0629444 + 0.0629444i
\(593\) 27.9471 58.0328i 0.0471283 0.0978630i −0.876075 0.482175i \(-0.839847\pi\)
0.923203 + 0.384312i \(0.125561\pi\)
\(594\) 251.231 28.3069i 0.422948 0.0476548i
\(595\) 88.8543 + 788.604i 0.149335 + 1.32538i
\(596\) 188.238 + 90.6509i 0.315836 + 0.152099i
\(597\) −857.922 857.922i −1.43706 1.43706i
\(598\) 82.7231 28.9461i 0.138333 0.0484048i
\(599\) −693.663 + 435.857i −1.15803 + 0.727641i −0.967209 0.253983i \(-0.918259\pi\)
−0.190826 + 0.981624i \(0.561117\pi\)
\(600\) 984.979 474.341i 1.64163 0.790568i
\(601\) −311.390 108.960i −0.518119 0.181298i 0.0585361 0.998285i \(-0.481357\pi\)
−0.576655 + 0.816988i \(0.695642\pi\)
\(602\) −401.302 + 91.5946i −0.666615 + 0.152150i
\(603\) −375.088 + 470.345i −0.622036 + 0.780008i
\(604\) 156.118 + 195.766i 0.258474 + 0.324116i
\(605\) 235.158 1030.30i 0.388692 1.70297i
\(606\) 226.617 + 142.393i 0.373956 + 0.234972i
\(607\) −344.589 38.8258i −0.567692 0.0639635i −0.176546 0.984292i \(-0.556492\pi\)
−0.391145 + 0.920329i \(0.627921\pi\)
\(608\) 353.657i 0.581673i
\(609\) −699.890 + 208.206i −1.14924 + 0.341881i
\(610\) 780.384 1.27932
\(611\) 42.2048 374.578i 0.0690750 0.613057i
\(612\) 93.0737 148.126i 0.152081 0.242036i
\(613\) −869.396 198.434i −1.41826 0.323710i −0.556428 0.830896i \(-0.687829\pi\)
−0.861837 + 0.507186i \(0.830686\pi\)
\(614\) −380.909 + 303.764i −0.620372 + 0.494730i
\(615\) 356.477 + 284.281i 0.579637 + 0.462245i
\(616\) −199.591 874.467i −0.324012 1.41959i
\(617\) 130.369 372.572i 0.211294 0.603845i −0.788645 0.614849i \(-0.789217\pi\)
0.999939 + 0.0110041i \(0.00350277\pi\)
\(618\) −169.586 352.150i −0.274411 0.569821i
\(619\) 547.850 + 871.898i 0.885057 + 1.40856i 0.912562 + 0.408938i \(0.134101\pi\)
−0.0275057 + 0.999622i \(0.508756\pi\)
\(620\) −49.7083 142.058i −0.0801748 0.229126i
\(621\) −33.1356 + 33.1356i −0.0533585 + 0.0533585i
\(622\) −50.6918 + 105.263i −0.0814980 + 0.169232i
\(623\) −616.290 + 69.4393i −0.989230 + 0.111459i
\(624\) −35.8377 318.069i −0.0574323 0.509725i
\(625\) 353.533 + 170.252i 0.565652 + 0.272404i
\(626\) −595.106 595.106i −0.950649 0.950649i
\(627\) −854.104 + 298.864i −1.36221 + 0.476657i
\(628\) 225.174 141.486i 0.358558 0.225297i
\(629\) 119.887 57.7347i 0.190600 0.0917881i
\(630\) 445.637 + 155.935i 0.707360 + 0.247516i
\(631\) −75.0733 + 17.1350i −0.118975 + 0.0271553i −0.281594 0.959534i \(-0.590863\pi\)
0.162619 + 0.986689i \(0.448006\pi\)
\(632\) −473.842 + 594.179i −0.749750 + 0.940157i
\(633\) −111.487 139.801i −0.176125 0.220854i
\(634\) −2.47907 + 10.8615i −0.00391021 + 0.0171317i
\(635\) 313.833 + 197.194i 0.494226 + 0.310542i
\(636\) −263.594 29.6999i −0.414456 0.0466979i
\(637\) 98.0848i 0.153979i
\(638\) 470.817 536.103i 0.737958 0.840287i
\(639\) −203.397 −0.318305
\(640\) 1.76896 15.7000i 0.00276400 0.0245312i
\(641\) −57.7855 + 91.9651i −0.0901490 + 0.143471i −0.888754 0.458384i \(-0.848429\pi\)
0.798605 + 0.601855i \(0.205571\pi\)
\(642\) 476.386 + 108.732i 0.742034 + 0.169364i
\(643\) 353.051 281.549i 0.549069 0.437868i −0.309253 0.950980i \(-0.600079\pi\)
0.858322 + 0.513112i \(0.171508\pi\)
\(644\) 38.4155 + 30.6353i 0.0596513 + 0.0475703i
\(645\) −277.734 1216.83i −0.430595 1.88656i
\(646\) −117.515 + 335.840i −0.181913 + 0.519876i
\(647\) −353.316 733.668i −0.546084 1.13395i −0.973243 0.229778i \(-0.926200\pi\)
0.427160 0.904176i \(-0.359514\pi\)
\(648\) 449.811 + 715.870i 0.694153 + 1.10474i
\(649\) 384.254 + 1098.13i 0.592070 + 1.69204i
\(650\) −437.846 + 437.846i −0.673609 + 0.673609i
\(651\) 129.528 268.968i 0.198968 0.413161i
\(652\) −191.228 + 21.5462i −0.293294 + 0.0330463i
\(653\) −41.8389 371.331i −0.0640719 0.568653i −0.984203 0.177043i \(-0.943347\pi\)
0.920131 0.391610i \(-0.128082\pi\)
\(654\) −390.315 187.966i −0.596811 0.287409i
\(655\) 470.973 + 470.973i 0.719043 + 0.719043i
\(656\) −93.8804 + 32.8502i −0.143110 + 0.0500765i
\(657\) 721.156 453.132i 1.09765 0.689699i
\(658\) −263.438 + 126.865i −0.400362 + 0.192804i
\(659\) 874.680 + 306.064i 1.32728 + 0.464436i 0.898501 0.438971i \(-0.144657\pi\)
0.428782 + 0.903408i \(0.358943\pi\)
\(660\) 783.657 178.865i 1.18736 0.271007i
\(661\) −560.439 + 702.769i −0.847866 + 1.06319i 0.149362 + 0.988783i \(0.452278\pi\)
−0.997228 + 0.0744073i \(0.976293\pi\)
\(662\) −81.3904 102.060i −0.122946 0.154170i
\(663\) −179.846 + 787.958i −0.271261 + 1.18847i
\(664\) −475.167 298.567i −0.715613 0.449650i
\(665\) 689.676 + 77.7079i 1.03711 + 0.116854i
\(666\) 79.1641i 0.118865i
\(667\) −6.27320 + 132.099i −0.00940510 + 0.198050i
\(668\) −68.4545 −0.102477
\(669\) −61.3995 + 544.935i −0.0917780 + 0.814552i
\(670\) −578.265 + 920.304i −0.863083 + 1.37359i
\(671\) 1065.78 + 243.258i 1.58835 + 0.362530i
\(672\) 487.191 388.522i 0.724986 0.578157i
\(673\) −481.293 383.819i −0.715146 0.570310i 0.196887 0.980426i \(-0.436917\pi\)
−0.912033 + 0.410116i \(0.865488\pi\)
\(674\) 114.646 + 502.296i 0.170097 + 0.745246i
\(675\) 109.350 312.505i 0.162000 0.462970i
\(676\) 7.22671 + 15.0064i 0.0106904 + 0.0221988i
\(677\) −421.002 670.021i −0.621864 0.989692i −0.998005 0.0631292i \(-0.979892\pi\)
0.376141 0.926562i \(-0.377251\pi\)
\(678\) −74.8518 213.914i −0.110401 0.315508i
\(679\) 542.892 542.892i 0.799546 0.799546i
\(680\) 464.007 963.521i 0.682363 1.41694i
\(681\) 116.613 13.1391i 0.171238 0.0192939i
\(682\) 32.6602 + 289.867i 0.0478888 + 0.425025i
\(683\) 241.679 + 116.387i 0.353849 + 0.170405i 0.602361 0.798224i \(-0.294227\pi\)
−0.248511 + 0.968629i \(0.579941\pi\)
\(684\) −108.183 108.183i −0.158163 0.158163i
\(685\) −356.373 + 124.700i −0.520253 + 0.182044i
\(686\) 470.328 295.527i 0.685609 0.430797i
\(687\) −1048.15 + 504.764i −1.52570 + 0.734737i
\(688\) 256.989 + 89.9243i 0.373530 + 0.130704i
\(689\) 495.612 113.120i 0.719321 0.164180i
\(690\) 128.524 161.164i 0.186266 0.233571i
\(691\) 10.6882 + 13.4026i 0.0154677 + 0.0193959i 0.789505 0.613744i \(-0.210337\pi\)
−0.774037 + 0.633140i \(0.781766\pi\)
\(692\) −34.6689 + 151.895i −0.0500996 + 0.219501i
\(693\) 560.005 + 351.874i 0.808088 + 0.507755i
\(694\) −148.868 16.7734i −0.214507 0.0241691i
\(695\) 40.0908i 0.0576845i
\(696\) 947.866 + 264.221i 1.36188 + 0.379628i
\(697\) 251.146 0.360325
\(698\) 91.2241 809.636i 0.130693 1.15994i
\(699\) 214.564 341.476i 0.306958 0.488521i
\(700\) −338.449 77.2488i −0.483498 0.110355i
\(701\) −554.998 + 442.596i −0.791723 + 0.631378i −0.933523 0.358517i \(-0.883282\pi\)
0.141800 + 0.989895i \(0.454711\pi\)
\(702\) −154.401 123.131i −0.219945 0.175400i
\(703\) −25.8953 113.455i −0.0368354 0.161387i
\(704\) −339.140 + 969.207i −0.481733 + 1.37672i
\(705\) −384.681 798.798i −0.545647 1.13305i
\(706\) 272.842 + 434.225i 0.386461 + 0.615050i
\(707\) −94.9756 271.425i −0.134336 0.383910i
\(708\) −335.314 + 335.314i −0.473607 + 0.473607i
\(709\) 397.216 824.828i 0.560249 1.16337i −0.407908 0.913023i \(-0.633742\pi\)
0.968157 0.250345i \(-0.0805442\pi\)
\(710\) −365.167 + 41.1444i −0.514320 + 0.0579499i
\(711\) −62.7427 556.857i −0.0882458 0.783203i
\(712\) 752.987 + 362.620i 1.05757 + 0.509297i
\(713\) −38.2315 38.2315i −0.0536206 0.0536206i
\(714\) 591.747 207.061i 0.828777 0.290002i
\(715\) −1304.34 + 819.571i −1.82425 + 1.14625i
\(716\) −502.058 + 241.778i −0.701198 + 0.337679i
\(717\) 1370.88 + 479.692i 1.91197 + 0.669026i
\(718\) 365.838 83.5002i 0.509524 0.116295i
\(719\) −98.7345 + 123.809i −0.137322 + 0.172196i −0.845737 0.533600i \(-0.820839\pi\)
0.708415 + 0.705796i \(0.249410\pi\)
\(720\) −194.710 244.159i −0.270431 0.339110i
\(721\) −93.4475 + 409.420i −0.129608 + 0.567851i
\(722\) −202.287 127.106i −0.280176 0.176046i
\(723\) −208.588 23.5022i −0.288503 0.0325065i
\(724\) 40.1697i 0.0554830i
\(725\) −365.017 860.117i −0.503472 1.18637i
\(726\) −834.851 −1.14993
\(727\) −85.2122 + 756.279i −0.117211 + 1.04027i 0.788107 + 0.615538i \(0.211061\pi\)
−0.905318 + 0.424735i \(0.860367\pi\)
\(728\) −372.764 + 593.250i −0.512038 + 0.814903i
\(729\) −254.179 58.0147i −0.348668 0.0795812i
\(730\) 1203.06 959.406i 1.64802 1.31426i
\(731\) −537.501 428.643i −0.735296 0.586379i
\(732\) 99.1507 + 434.408i 0.135452 + 0.593453i
\(733\) 268.707 767.920i 0.366585 1.04764i −0.601901 0.798571i \(-0.705590\pi\)
0.968486 0.249069i \(-0.0801245\pi\)
\(734\) 103.377 + 214.664i 0.140840 + 0.292458i
\(735\) 122.740 + 195.339i 0.166993 + 0.265767i
\(736\) −37.2745 106.525i −0.0506448 0.144734i
\(737\) −1076.62 + 1076.62i −1.46081 + 1.46081i
\(738\) 64.8283 134.617i 0.0878432 0.182408i
\(739\) 1094.54 123.325i 1.48111 0.166881i 0.665900 0.746041i \(-0.268048\pi\)
0.815214 + 0.579160i \(0.196619\pi\)
\(740\) 11.5742 + 102.724i 0.0156408 + 0.138816i
\(741\) 636.835 + 306.684i 0.859426 + 0.413878i
\(742\) −278.831 278.831i −0.375784 0.375784i
\(743\) −786.175 + 275.095i −1.05811 + 0.370248i −0.802575 0.596552i \(-0.796537\pi\)
−0.255534 + 0.966800i \(0.582251\pi\)
\(744\) −340.632 + 214.033i −0.457839 + 0.287679i
\(745\) −848.495 + 408.614i −1.13892 + 0.548475i
\(746\) −844.433 295.480i −1.13195 0.396085i
\(747\) 403.418 92.0776i 0.540051 0.123263i
\(748\) 276.053 346.159i 0.369054 0.462780i
\(749\) −327.337 410.468i −0.437032 0.548021i
\(750\) −72.6174 + 318.158i −0.0968232 + 0.424210i
\(751\) −163.686 102.851i −0.217958 0.136952i 0.418628 0.908158i \(-0.362511\pi\)
−0.636586 + 0.771206i \(0.719654\pi\)
\(752\) 192.188 + 21.6544i 0.255569 + 0.0287957i
\(753\) 1431.78i 1.90144i
\(754\) −556.166 + 36.0604i −0.737621 + 0.0478254i
\(755\) −1128.67 −1.49492
\(756\) 12.3966 110.023i 0.0163976 0.145533i
\(757\) 39.3932 62.6939i 0.0520386 0.0828189i −0.819692 0.572805i \(-0.805855\pi\)
0.871730 + 0.489986i \(0.162998\pi\)
\(758\) −98.8369