Properties

Label 29.3.f.a.21.3
Level $29$
Weight $3$
Character 29.21
Analytic conductor $0.790$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 29.f (of order \(28\), degree \(12\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 21.3
Character \(\chi\) \(=\) 29.21
Dual form 29.3.f.a.18.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.144456 + 0.412831i) q^{2} +(0.570967 + 0.0643326i) q^{3} +(2.97776 + 2.37469i) q^{4} +(-1.02777 - 2.13419i) q^{5} +(-0.109038 + 0.226420i) q^{6} +(-1.74606 - 2.18949i) q^{7} +(-2.89184 + 1.81707i) q^{8} +(-8.45249 - 1.92922i) q^{9} +O(q^{10})\) \(q+(-0.144456 + 0.412831i) q^{2} +(0.570967 + 0.0643326i) q^{3} +(2.97776 + 2.37469i) q^{4} +(-1.02777 - 2.13419i) q^{5} +(-0.109038 + 0.226420i) q^{6} +(-1.74606 - 2.18949i) q^{7} +(-2.89184 + 1.81707i) q^{8} +(-8.45249 - 1.92922i) q^{9} +(1.02953 - 0.116000i) q^{10} +(-7.71599 - 4.84828i) q^{11} +(1.54744 + 1.54744i) q^{12} +(8.82927 - 2.01522i) q^{13} +(1.15612 - 0.404544i) q^{14} +(-0.449525 - 1.28467i) q^{15} +(3.05767 + 13.3965i) q^{16} +(5.09882 - 5.09882i) q^{17} +(2.01746 - 3.21076i) q^{18} +(2.57525 + 22.8560i) q^{19} +(2.00757 - 8.79574i) q^{20} +(-0.856089 - 1.36246i) q^{21} +(3.11614 - 2.48504i) q^{22} +(17.8554 + 8.59869i) q^{23} +(-1.76805 + 0.851446i) q^{24} +(12.0888 - 15.1589i) q^{25} +(-0.443493 + 3.93611i) q^{26} +(-9.58301 - 3.35324i) q^{27} -10.6662i q^{28} +(-26.8516 - 10.9540i) q^{29} +0.595288 q^{30} +(-10.2548 + 29.3065i) q^{31} +(-19.5476 - 2.20249i) q^{32} +(-4.09368 - 3.26460i) q^{33} +(1.36840 + 2.84151i) q^{34} +(-2.87824 + 5.97672i) q^{35} +(-20.5882 - 25.8168i) q^{36} +(5.78232 - 3.63327i) q^{37} +(-9.80767 - 2.23854i) q^{38} +(5.17087 - 0.582617i) q^{39} +(6.85011 + 4.30421i) q^{40} +(9.53079 + 9.53079i) q^{41} +(0.686132 - 0.156605i) q^{42} +(47.8950 - 16.7592i) q^{43} +(-11.4633 - 32.7601i) q^{44} +(4.56989 + 20.0220i) q^{45} +(-6.12912 + 6.12912i) q^{46} +(-44.9627 + 71.5578i) q^{47} +(0.883996 + 7.84568i) q^{48} +(9.15838 - 40.1255i) q^{49} +(4.51176 + 7.18042i) q^{50} +(3.23928 - 2.58324i) q^{51} +(31.0770 + 14.9659i) q^{52} +(76.8011 - 36.9854i) q^{53} +(2.76864 - 3.47177i) q^{54} +(-2.41687 + 21.4503i) q^{55} +(9.02780 + 3.15896i) q^{56} +13.2157i q^{57} +(8.40103 - 9.50282i) q^{58} +54.7819 q^{59} +(1.71211 - 4.89293i) q^{60} +(-85.8310 - 9.67083i) q^{61} +(-10.6173 - 8.46700i) q^{62} +(10.5346 + 21.8752i) q^{63} +(-20.1150 + 41.7693i) q^{64} +(-13.3753 - 16.7721i) q^{65} +(1.93908 - 1.21841i) q^{66} +(-70.4365 - 16.0767i) q^{67} +(27.2912 - 3.07498i) q^{68} +(9.64165 + 6.05825i) q^{69} +(-2.05160 - 2.05160i) q^{70} +(-85.2177 + 19.4504i) q^{71} +(27.9488 - 9.77971i) q^{72} +(-41.8509 - 119.603i) q^{73} +(0.664638 + 2.91197i) q^{74} +(7.87752 - 7.87752i) q^{75} +(-46.6073 + 74.1752i) q^{76} +(2.85733 + 25.3595i) q^{77} +(-0.506440 + 2.21886i) q^{78} +(-29.8246 - 47.4656i) q^{79} +(25.4481 - 20.2942i) q^{80} +(65.0456 + 31.3243i) q^{81} +(-5.31139 + 2.55783i) q^{82} +(57.5797 - 72.2026i) q^{83} +(0.686181 - 6.09003i) q^{84} +(-16.1222 - 5.64142i) q^{85} +22.1935i q^{86} +(-14.6267 - 7.98181i) q^{87} +31.1231 q^{88} +(-31.8736 + 91.0895i) q^{89} +(-8.92584 - 1.00570i) q^{90} +(-19.8288 - 15.8129i) q^{91} +(32.7498 + 68.0057i) q^{92} +(-7.74052 + 16.0733i) q^{93} +(-23.0462 - 28.8990i) q^{94} +(46.1322 - 28.9868i) q^{95} +(-11.0194 - 2.51510i) q^{96} +(17.8156 - 2.00733i) q^{97} +(15.2421 + 9.57722i) q^{98} +(55.8659 + 55.8659i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 16q^{2} - 12q^{3} - 14q^{4} - 14q^{5} - 14q^{6} - 10q^{7} + 28q^{8} - 14q^{9} + O(q^{10}) \) \( 48q - 16q^{2} - 12q^{3} - 14q^{4} - 14q^{5} - 14q^{6} - 10q^{7} + 28q^{8} - 14q^{9} - 20q^{10} - 8q^{11} - 68q^{12} - 14q^{13} + 26q^{14} - 4q^{15} + 18q^{16} - 26q^{17} - 34q^{18} + 2q^{19} + 46q^{20} + 218q^{21} + 154q^{22} + 56q^{23} + 154q^{24} - 34q^{25} + 110q^{26} + 126q^{27} - 170q^{29} + 24q^{30} - 88q^{31} - 132q^{32} - 224q^{33} - 224q^{34} - 210q^{35} - 434q^{36} - 56q^{37} - 294q^{38} - 232q^{39} - 492q^{40} - 34q^{41} - 14q^{42} + 176q^{43} + 126q^{44} + 114q^{45} + 744q^{46} + 208q^{47} + 640q^{48} + 506q^{49} + 732q^{50} + 322q^{51} + 690q^{52} - 14q^{53} - 36q^{54} + 284q^{55} + 332q^{56} - 508q^{58} - 44q^{59} - 316q^{60} - 30q^{61} - 504q^{62} - 686q^{63} - 896q^{64} - 554q^{65} - 608q^{66} - 574q^{67} - 796q^{68} - 806q^{69} - 1066q^{70} + 224q^{71} + 748q^{72} - 22q^{73} + 820q^{74} + 768q^{75} + 514q^{76} + 436q^{77} + 282q^{78} + 564q^{79} + 1162q^{80} + 670q^{81} - 18q^{82} - 126q^{83} + 572q^{84} + 38q^{85} - 118q^{87} - 384q^{88} - 160q^{89} - 828q^{90} - 434q^{91} - 1022q^{92} - 406q^{93} - 2q^{94} - 642q^{95} - 1176q^{96} + 604q^{97} - 102q^{98} + 316q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.144456 + 0.412831i −0.0722279 + 0.206416i −0.974338 0.225091i \(-0.927732\pi\)
0.902110 + 0.431506i \(0.142018\pi\)
\(3\) 0.570967 + 0.0643326i 0.190322 + 0.0214442i 0.206611 0.978423i \(-0.433757\pi\)
−0.0162887 + 0.999867i \(0.505185\pi\)
\(4\) 2.97776 + 2.37469i 0.744441 + 0.593672i
\(5\) −1.02777 2.13419i −0.205554 0.426837i 0.772550 0.634954i \(-0.218981\pi\)
−0.978104 + 0.208117i \(0.933267\pi\)
\(6\) −0.109038 + 0.226420i −0.0181730 + 0.0377366i
\(7\) −1.74606 2.18949i −0.249438 0.312785i 0.641311 0.767281i \(-0.278391\pi\)
−0.890749 + 0.454496i \(0.849819\pi\)
\(8\) −2.89184 + 1.81707i −0.361481 + 0.227133i
\(9\) −8.45249 1.92922i −0.939165 0.214358i
\(10\) 1.02953 0.116000i 0.102953 0.0116000i
\(11\) −7.71599 4.84828i −0.701454 0.440753i 0.133517 0.991047i \(-0.457373\pi\)
−0.834971 + 0.550294i \(0.814516\pi\)
\(12\) 1.54744 + 1.54744i 0.128953 + 0.128953i
\(13\) 8.82927 2.01522i 0.679175 0.155017i 0.131002 0.991382i \(-0.458181\pi\)
0.548173 + 0.836365i \(0.315324\pi\)
\(14\) 1.15612 0.404544i 0.0825800 0.0288960i
\(15\) −0.449525 1.28467i −0.0299684 0.0856447i
\(16\) 3.05767 + 13.3965i 0.191104 + 0.837282i
\(17\) 5.09882 5.09882i 0.299931 0.299931i −0.541056 0.840987i \(-0.681975\pi\)
0.840987 + 0.541056i \(0.181975\pi\)
\(18\) 2.01746 3.21076i 0.112081 0.178376i
\(19\) 2.57525 + 22.8560i 0.135540 + 1.20295i 0.858778 + 0.512348i \(0.171224\pi\)
−0.723238 + 0.690599i \(0.757347\pi\)
\(20\) 2.00757 8.79574i 0.100378 0.439787i
\(21\) −0.856089 1.36246i −0.0407662 0.0648790i
\(22\) 3.11614 2.48504i 0.141643 0.112956i
\(23\) 17.8554 + 8.59869i 0.776320 + 0.373856i 0.779712 0.626138i \(-0.215365\pi\)
−0.00339216 + 0.999994i \(0.501080\pi\)
\(24\) −1.76805 + 0.851446i −0.0736686 + 0.0354769i
\(25\) 12.0888 15.1589i 0.483552 0.606355i
\(26\) −0.443493 + 3.93611i −0.0170574 + 0.151389i
\(27\) −9.58301 3.35324i −0.354926 0.124194i
\(28\) 10.6662i 0.380934i
\(29\) −26.8516 10.9540i −0.925918 0.377724i
\(30\) 0.595288 0.0198429
\(31\) −10.2548 + 29.3065i −0.330800 + 0.945371i 0.651597 + 0.758565i \(0.274099\pi\)
−0.982397 + 0.186806i \(0.940186\pi\)
\(32\) −19.5476 2.20249i −0.610863 0.0688278i
\(33\) −4.09368 3.26460i −0.124051 0.0989272i
\(34\) 1.36840 + 2.84151i 0.0402470 + 0.0835737i
\(35\) −2.87824 + 5.97672i −0.0822354 + 0.170763i
\(36\) −20.5882 25.8168i −0.571895 0.717133i
\(37\) 5.78232 3.63327i 0.156279 0.0981966i −0.451622 0.892209i \(-0.649155\pi\)
0.607901 + 0.794013i \(0.292012\pi\)
\(38\) −9.80767 2.23854i −0.258097 0.0589089i
\(39\) 5.17087 0.582617i 0.132586 0.0149389i
\(40\) 6.85011 + 4.30421i 0.171253 + 0.107605i
\(41\) 9.53079 + 9.53079i 0.232458 + 0.232458i 0.813718 0.581260i \(-0.197440\pi\)
−0.581260 + 0.813718i \(0.697440\pi\)
\(42\) 0.686132 0.156605i 0.0163365 0.00372870i
\(43\) 47.8950 16.7592i 1.11384 0.389748i 0.290257 0.956949i \(-0.406259\pi\)
0.823580 + 0.567200i \(0.191973\pi\)
\(44\) −11.4633 32.7601i −0.260529 0.744548i
\(45\) 4.56989 + 20.0220i 0.101553 + 0.444933i
\(46\) −6.12912 + 6.12912i −0.133242 + 0.133242i
\(47\) −44.9627 + 71.5578i −0.956654 + 1.52251i −0.107604 + 0.994194i \(0.534318\pi\)
−0.849050 + 0.528312i \(0.822825\pi\)
\(48\) 0.883996 + 7.84568i 0.0184166 + 0.163452i
\(49\) 9.15838 40.1255i 0.186906 0.818887i
\(50\) 4.51176 + 7.18042i 0.0902352 + 0.143608i
\(51\) 3.23928 2.58324i 0.0635153 0.0506517i
\(52\) 31.0770 + 14.9659i 0.597635 + 0.287806i
\(53\) 76.8011 36.9854i 1.44908 0.697839i 0.466642 0.884446i \(-0.345464\pi\)
0.982435 + 0.186608i \(0.0597493\pi\)
\(54\) 2.76864 3.47177i 0.0512712 0.0642920i
\(55\) −2.41687 + 21.4503i −0.0439430 + 0.390005i
\(56\) 9.02780 + 3.15896i 0.161211 + 0.0564101i
\(57\) 13.2157i 0.231854i
\(58\) 8.40103 9.50282i 0.144845 0.163842i
\(59\) 54.7819 0.928507 0.464253 0.885702i \(-0.346323\pi\)
0.464253 + 0.885702i \(0.346323\pi\)
\(60\) 1.71211 4.89293i 0.0285351 0.0815488i
\(61\) −85.8310 9.67083i −1.40707 0.158538i −0.624460 0.781057i \(-0.714681\pi\)
−0.782605 + 0.622518i \(0.786110\pi\)
\(62\) −10.6173 8.46700i −0.171246 0.136564i
\(63\) 10.5346 + 21.8752i 0.167215 + 0.347226i
\(64\) −20.1150 + 41.7693i −0.314297 + 0.652645i
\(65\) −13.3753 16.7721i −0.205774 0.258033i
\(66\) 1.93908 1.21841i 0.0293801 0.0184607i
\(67\) −70.4365 16.0767i −1.05129 0.239950i −0.338238 0.941061i \(-0.609831\pi\)
−0.713053 + 0.701111i \(0.752688\pi\)
\(68\) 27.2912 3.07498i 0.401341 0.0452203i
\(69\) 9.64165 + 6.05825i 0.139734 + 0.0878007i
\(70\) −2.05160 2.05160i −0.0293086 0.0293086i
\(71\) −85.2177 + 19.4504i −1.20025 + 0.273949i −0.775492 0.631358i \(-0.782498\pi\)
−0.424758 + 0.905307i \(0.639641\pi\)
\(72\) 27.9488 9.77971i 0.388178 0.135829i
\(73\) −41.8509 119.603i −0.573299 1.63840i −0.755511 0.655136i \(-0.772611\pi\)
0.182212 0.983259i \(-0.441674\pi\)
\(74\) 0.664638 + 2.91197i 0.00898159 + 0.0393509i
\(75\) 7.87752 7.87752i 0.105034 0.105034i
\(76\) −46.6073 + 74.1752i −0.613255 + 0.975989i
\(77\) 2.85733 + 25.3595i 0.0371082 + 0.329345i
\(78\) −0.506440 + 2.21886i −0.00649282 + 0.0284469i
\(79\) −29.8246 47.4656i −0.377527 0.600831i 0.602876 0.797835i \(-0.294021\pi\)
−0.980403 + 0.197005i \(0.936879\pi\)
\(80\) 25.4481 20.2942i 0.318101 0.253677i
\(81\) 65.0456 + 31.3243i 0.803032 + 0.386720i
\(82\) −5.31139 + 2.55783i −0.0647730 + 0.0311930i
\(83\) 57.5797 72.2026i 0.693731 0.869911i −0.302807 0.953052i \(-0.597924\pi\)
0.996538 + 0.0831410i \(0.0264952\pi\)
\(84\) 0.686181 6.09003i 0.00816882 0.0725003i
\(85\) −16.1222 5.64142i −0.189673 0.0663696i
\(86\) 22.1935i 0.258064i
\(87\) −14.6267 7.98181i −0.168123 0.0917450i
\(88\) 31.1231 0.353672
\(89\) −31.8736 + 91.0895i −0.358130 + 1.02348i 0.614055 + 0.789264i \(0.289537\pi\)
−0.972185 + 0.234214i \(0.924748\pi\)
\(90\) −8.92584 1.00570i −0.0991760 0.0111745i
\(91\) −19.8288 15.8129i −0.217899 0.173768i
\(92\) 32.7498 + 68.0057i 0.355977 + 0.739193i
\(93\) −7.74052 + 16.0733i −0.0832313 + 0.172832i
\(94\) −23.0462 28.8990i −0.245172 0.307436i
\(95\) 46.1322 28.9868i 0.485602 0.305124i
\(96\) −11.0194 2.51510i −0.114785 0.0261989i
\(97\) 17.8156 2.00733i 0.183666 0.0206942i −0.0196524 0.999807i \(-0.506256\pi\)
0.203318 + 0.979113i \(0.434827\pi\)
\(98\) 15.2421 + 9.57722i 0.155531 + 0.0977268i
\(99\) 55.8659 + 55.8659i 0.564302 + 0.564302i
\(100\) 71.9952 16.4324i 0.719952 0.164324i
\(101\) 56.2980 19.6995i 0.557406 0.195045i −0.0368497 0.999321i \(-0.511732\pi\)
0.594256 + 0.804276i \(0.297447\pi\)
\(102\) 0.598509 + 1.71044i 0.00586773 + 0.0167690i
\(103\) 15.4396 + 67.6452i 0.149899 + 0.656750i 0.992912 + 0.118856i \(0.0379227\pi\)
−0.843013 + 0.537894i \(0.819220\pi\)
\(104\) −21.8711 + 21.8711i −0.210299 + 0.210299i
\(105\) −2.02788 + 3.22735i −0.0193131 + 0.0307367i
\(106\) 4.17438 + 37.0486i 0.0393809 + 0.349515i
\(107\) 25.8436 113.228i 0.241529 1.05821i −0.698097 0.716003i \(-0.745970\pi\)
0.939626 0.342204i \(-0.111173\pi\)
\(108\) −20.5730 32.7418i −0.190491 0.303165i
\(109\) 20.6806 16.4922i 0.189730 0.151305i −0.524018 0.851707i \(-0.675568\pi\)
0.713748 + 0.700402i \(0.246996\pi\)
\(110\) −8.50622 4.09638i −0.0773292 0.0372398i
\(111\) 3.53525 1.70249i 0.0318491 0.0153377i
\(112\) 23.9927 30.0859i 0.214221 0.268624i
\(113\) −19.3999 + 172.179i −0.171681 + 1.52371i 0.552157 + 0.833740i \(0.313805\pi\)
−0.723838 + 0.689970i \(0.757624\pi\)
\(114\) −5.45585 1.90908i −0.0478583 0.0167464i
\(115\) 46.9441i 0.408210i
\(116\) −53.9455 96.3827i −0.465047 0.830885i
\(117\) −78.5171 −0.671086
\(118\) −7.91357 + 22.6157i −0.0670641 + 0.191658i
\(119\) −20.0667 2.26097i −0.168628 0.0189998i
\(120\) 3.63429 + 2.89825i 0.0302857 + 0.0241521i
\(121\) −16.4692 34.1986i −0.136109 0.282633i
\(122\) 16.3912 34.0367i 0.134354 0.278989i
\(123\) 4.82863 + 6.05491i 0.0392572 + 0.0492269i
\(124\) −100.130 + 62.9160i −0.807501 + 0.507387i
\(125\) −102.511 23.3974i −0.820087 0.187179i
\(126\) −10.5526 + 1.18899i −0.0837504 + 0.00943640i
\(127\) −78.5879 49.3801i −0.618803 0.388819i 0.185839 0.982580i \(-0.440500\pi\)
−0.804642 + 0.593761i \(0.797643\pi\)
\(128\) −69.9768 69.9768i −0.546694 0.546694i
\(129\) 28.4246 6.48774i 0.220346 0.0502925i
\(130\) 8.85620 3.09892i 0.0681246 0.0238378i
\(131\) 22.2619 + 63.6208i 0.169938 + 0.485655i 0.997082 0.0763345i \(-0.0243217\pi\)
−0.827144 + 0.561990i \(0.810036\pi\)
\(132\) −4.43760 19.4424i −0.0336182 0.147291i
\(133\) 45.5465 45.5465i 0.342455 0.342455i
\(134\) 16.8119 26.7560i 0.125462 0.199672i
\(135\) 2.69269 + 23.8983i 0.0199459 + 0.177024i
\(136\) −5.48010 + 24.0099i −0.0402949 + 0.176543i
\(137\) 47.2941 + 75.2682i 0.345213 + 0.549403i 0.973531 0.228553i \(-0.0733995\pi\)
−0.628319 + 0.777956i \(0.716257\pi\)
\(138\) −3.89383 + 3.10522i −0.0282161 + 0.0225016i
\(139\) 100.465 + 48.3816i 0.722773 + 0.348069i 0.758837 0.651280i \(-0.225768\pi\)
−0.0360644 + 0.999349i \(0.511482\pi\)
\(140\) −22.7636 + 10.9624i −0.162597 + 0.0783025i
\(141\) −30.2757 + 37.9646i −0.214722 + 0.269252i
\(142\) 4.28047 37.9902i 0.0301442 0.267537i
\(143\) −77.8970 27.2573i −0.544734 0.190611i
\(144\) 119.133i 0.827311i
\(145\) 4.21940 + 68.5646i 0.0290993 + 0.472859i
\(146\) 55.4214 0.379599
\(147\) 7.81051 22.3212i 0.0531327 0.151845i
\(148\) 25.8463 + 2.91218i 0.174637 + 0.0196769i
\(149\) 101.656 + 81.0682i 0.682257 + 0.544082i 0.902139 0.431445i \(-0.141996\pi\)
−0.219883 + 0.975526i \(0.570567\pi\)
\(150\) 2.11413 + 4.39004i 0.0140942 + 0.0292669i
\(151\) −5.27420 + 10.9520i −0.0349284 + 0.0725297i −0.917703 0.397267i \(-0.869959\pi\)
0.882775 + 0.469797i \(0.155673\pi\)
\(152\) −48.9781 61.4166i −0.322224 0.404056i
\(153\) −52.9345 + 33.2609i −0.345977 + 0.217392i
\(154\) −10.8820 2.48374i −0.0706621 0.0161282i
\(155\) 73.0851 8.23472i 0.471517 0.0531272i
\(156\) 16.7812 + 10.5443i 0.107572 + 0.0675917i
\(157\) 121.723 + 121.723i 0.775307 + 0.775307i 0.979029 0.203722i \(-0.0653039\pi\)
−0.203722 + 0.979029i \(0.565304\pi\)
\(158\) 23.9036 5.45585i 0.151289 0.0345307i
\(159\) 46.2303 16.1767i 0.290756 0.101740i
\(160\) 15.3899 + 43.9819i 0.0961872 + 0.274887i
\(161\) −12.3498 54.1081i −0.0767069 0.336075i
\(162\) −22.3279 + 22.3279i −0.137826 + 0.137826i
\(163\) 80.4969 128.110i 0.493846 0.785951i −0.503085 0.864237i \(-0.667802\pi\)
0.996931 + 0.0782856i \(0.0249446\pi\)
\(164\) 5.74780 + 51.0131i 0.0350475 + 0.311056i
\(165\) −2.75990 + 12.0919i −0.0167267 + 0.0732844i
\(166\) 21.4898 + 34.2008i 0.129456 + 0.206029i
\(167\) −33.8968 + 27.0318i −0.202975 + 0.161867i −0.719702 0.694283i \(-0.755722\pi\)
0.516727 + 0.856150i \(0.327150\pi\)
\(168\) 4.95136 + 2.38445i 0.0294724 + 0.0141931i
\(169\) −78.3688 + 37.7404i −0.463721 + 0.223316i
\(170\) 4.65790 5.84083i 0.0273994 0.0343578i
\(171\) 22.3271 198.158i 0.130568 1.15882i
\(172\) 182.418 + 63.8307i 1.06057 + 0.371109i
\(173\) 144.282i 0.834001i 0.908906 + 0.417001i \(0.136919\pi\)
−0.908906 + 0.417001i \(0.863081\pi\)
\(174\) 5.40805 4.88534i 0.0310808 0.0280767i
\(175\) −54.2981 −0.310275
\(176\) 41.3571 118.192i 0.234984 0.671545i
\(177\) 31.2787 + 3.52426i 0.176716 + 0.0199111i
\(178\) −33.0003 26.3168i −0.185395 0.147847i
\(179\) −85.8695 178.310i −0.479718 0.996144i −0.990638 0.136516i \(-0.956410\pi\)
0.510920 0.859628i \(-0.329305\pi\)
\(180\) −33.9379 + 70.4728i −0.188544 + 0.391515i
\(181\) 104.881 + 131.517i 0.579455 + 0.726614i 0.982020 0.188778i \(-0.0604525\pi\)
−0.402564 + 0.915392i \(0.631881\pi\)
\(182\) 9.39246 5.90167i 0.0516069 0.0324268i
\(183\) −48.3845 11.0435i −0.264396 0.0603468i
\(184\) −67.2593 + 7.57830i −0.365540 + 0.0411864i
\(185\) −13.6970 8.60638i −0.0740377 0.0465210i
\(186\) −5.51741 5.51741i −0.0296635 0.0296635i
\(187\) −64.0630 + 14.6220i −0.342583 + 0.0781923i
\(188\) −303.816 + 106.310i −1.61604 + 0.565477i
\(189\) 9.39065 + 26.8369i 0.0496860 + 0.141994i
\(190\) 5.30258 + 23.2321i 0.0279083 + 0.122274i
\(191\) 10.5650 10.5650i 0.0553139 0.0553139i −0.678909 0.734223i \(-0.737547\pi\)
0.734223 + 0.678909i \(0.237547\pi\)
\(192\) −14.1721 + 22.5548i −0.0738132 + 0.117473i
\(193\) −19.0816 169.354i −0.0988684 0.877481i −0.941046 0.338280i \(-0.890155\pi\)
0.842177 0.539201i \(-0.181274\pi\)
\(194\) −1.74488 + 7.64480i −0.00899420 + 0.0394062i
\(195\) −6.55788 10.4368i −0.0336301 0.0535221i
\(196\) 122.557 97.7359i 0.625291 0.498653i
\(197\) −295.470 142.291i −1.49985 0.722290i −0.509447 0.860502i \(-0.670150\pi\)
−0.990403 + 0.138212i \(0.955864\pi\)
\(198\) −31.1333 + 14.9930i −0.157239 + 0.0757224i
\(199\) −81.5974 + 102.320i −0.410037 + 0.514170i −0.943373 0.331733i \(-0.892367\pi\)
0.533336 + 0.845903i \(0.320938\pi\)
\(200\) −7.41425 + 65.8033i −0.0370713 + 0.329016i
\(201\) −39.1827 13.7106i −0.194939 0.0682120i
\(202\) 26.0873i 0.129145i
\(203\) 22.9009 + 77.9179i 0.112812 + 0.383832i
\(204\) 15.7802 0.0773539
\(205\) 10.5450 30.1360i 0.0514392 0.147005i
\(206\) −30.1564 3.39781i −0.146390 0.0164942i
\(207\) −134.333 107.127i −0.648953 0.517523i
\(208\) 53.9939 + 112.120i 0.259586 + 0.539036i
\(209\) 90.9416 188.842i 0.435127 0.903551i
\(210\) −1.03941 1.30338i −0.00494958 0.00620657i
\(211\) 156.990 98.6433i 0.744028 0.467504i −0.105917 0.994375i \(-0.533778\pi\)
0.849945 + 0.526871i \(0.176635\pi\)
\(212\) 316.524 + 72.2446i 1.49304 + 0.340776i
\(213\) −49.9078 + 5.62326i −0.234309 + 0.0264003i
\(214\) 43.0108 + 27.0255i 0.200985 + 0.126287i
\(215\) −84.9922 84.9922i −0.395313 0.395313i
\(216\) 33.8056 7.71592i 0.156508 0.0357218i
\(217\) 82.0720 28.7182i 0.378212 0.132342i
\(218\) 3.82107 + 10.9200i 0.0175278 + 0.0500917i
\(219\) −16.2011 70.9817i −0.0739777 0.324117i
\(220\) −58.1346 + 58.1346i −0.264248 + 0.264248i
\(221\) 34.7436 55.2941i 0.157211 0.250200i
\(222\) 0.192152 + 1.70540i 0.000865550 + 0.00768197i
\(223\) −79.9211 + 350.157i −0.358390 + 1.57021i 0.398813 + 0.917032i \(0.369422\pi\)
−0.757204 + 0.653179i \(0.773435\pi\)
\(224\) 29.3091 + 46.6451i 0.130844 + 0.208237i
\(225\) −131.425 + 104.808i −0.584113 + 0.465814i
\(226\) −68.2785 32.8812i −0.302117 0.145492i
\(227\) 110.881 53.3974i 0.488462 0.235231i −0.173407 0.984850i \(-0.555478\pi\)
0.661869 + 0.749619i \(0.269763\pi\)
\(228\) −31.3831 + 39.3532i −0.137645 + 0.172602i
\(229\) 15.5674 138.164i 0.0679798 0.603338i −0.912826 0.408349i \(-0.866104\pi\)
0.980806 0.194988i \(-0.0624669\pi\)
\(230\) 19.3800 + 6.78136i 0.0842609 + 0.0294842i
\(231\) 14.6633i 0.0634774i
\(232\) 97.5549 17.1139i 0.420495 0.0737668i
\(233\) −156.772 −0.672842 −0.336421 0.941712i \(-0.609217\pi\)
−0.336421 + 0.941712i \(0.609217\pi\)
\(234\) 11.3423 32.4143i 0.0484712 0.138523i
\(235\) 198.929 + 22.4139i 0.846506 + 0.0953784i
\(236\) 163.128 + 130.090i 0.691219 + 0.551228i
\(237\) −13.9753 29.0200i −0.0589675 0.122447i
\(238\) 3.83215 7.95755i 0.0161015 0.0334351i
\(239\) 221.013 + 277.141i 0.924740 + 1.15959i 0.986870 + 0.161519i \(0.0516394\pi\)
−0.0621295 + 0.998068i \(0.519789\pi\)
\(240\) 15.8356 9.95017i 0.0659817 0.0414590i
\(241\) 352.633 + 80.4862i 1.46321 + 0.333968i 0.878682 0.477407i \(-0.158423\pi\)
0.584526 + 0.811375i \(0.301280\pi\)
\(242\) 16.4973 1.85880i 0.0681708 0.00768100i
\(243\) 112.493 + 70.6840i 0.462934 + 0.290881i
\(244\) −232.619 232.619i −0.953357 0.953357i
\(245\) −95.0479 + 21.6941i −0.387951 + 0.0885472i
\(246\) −3.19718 + 1.11874i −0.0129967 + 0.00454773i
\(247\) 68.7975 + 196.612i 0.278532 + 0.796000i
\(248\) −23.5966 103.384i −0.0951477 0.416869i
\(249\) 37.5211 37.5211i 0.150687 0.150687i
\(250\) 24.4675 38.9398i 0.0978699 0.155759i
\(251\) −40.5879 360.228i −0.161705 1.43517i −0.768265 0.640132i \(-0.778880\pi\)
0.606560 0.795038i \(-0.292549\pi\)
\(252\) −20.5774 + 90.1555i −0.0816564 + 0.357760i
\(253\) −96.0830 152.915i −0.379775 0.604408i
\(254\) 31.7381 25.3103i 0.124953 0.0996469i
\(255\) −8.84235 4.25825i −0.0346759 0.0166990i
\(256\) −128.080 + 61.6800i −0.500312 + 0.240938i
\(257\) −162.607 + 203.903i −0.632713 + 0.793397i −0.990071 0.140571i \(-0.955106\pi\)
0.357358 + 0.933968i \(0.383678\pi\)
\(258\) −1.42777 + 12.6718i −0.00553397 + 0.0491154i
\(259\) −18.0513 6.31643i −0.0696963 0.0243878i
\(260\) 81.7056i 0.314252i
\(261\) 205.830 + 144.391i 0.788622 + 0.553224i
\(262\) −29.4805 −0.112521
\(263\) −31.2460 + 89.2960i −0.118806 + 0.339529i −0.987894 0.155129i \(-0.950421\pi\)
0.869088 + 0.494657i \(0.164706\pi\)
\(264\) 17.7703 + 2.00223i 0.0673117 + 0.00758420i
\(265\) −157.868 125.895i −0.595727 0.475077i
\(266\) 12.2236 + 25.3825i 0.0459532 + 0.0954229i
\(267\) −24.0588 + 49.9586i −0.0901079 + 0.187111i
\(268\) −171.566 215.137i −0.640172 0.802750i
\(269\) 77.3328 48.5914i 0.287483 0.180637i −0.380568 0.924753i \(-0.624272\pi\)
0.668051 + 0.744115i \(0.267129\pi\)
\(270\) −10.2549 2.34062i −0.0379812 0.00866897i
\(271\) −329.458 + 37.1210i −1.21571 + 0.136978i −0.696430 0.717625i \(-0.745229\pi\)
−0.519282 + 0.854603i \(0.673801\pi\)
\(272\) 83.8969 + 52.7159i 0.308444 + 0.193808i
\(273\) −10.3043 10.3043i −0.0377447 0.0377447i
\(274\) −37.9050 + 8.65156i −0.138339 + 0.0315750i
\(275\) −166.772 + 58.3559i −0.606442 + 0.212203i
\(276\) 14.3241 + 40.9359i 0.0518989 + 0.148319i
\(277\) −40.2441 176.321i −0.145285 0.636537i −0.994158 0.107939i \(-0.965575\pi\)
0.848872 0.528598i \(-0.177282\pi\)
\(278\) −34.4862 + 34.4862i −0.124051 + 0.124051i
\(279\) 143.217 227.929i 0.513324 0.816950i
\(280\) −2.53669 22.5137i −0.00905959 0.0804061i
\(281\) 20.6977 90.6827i 0.0736574 0.322714i −0.924654 0.380809i \(-0.875645\pi\)
0.998311 + 0.0580950i \(0.0185026\pi\)
\(282\) −11.2995 17.9830i −0.0400690 0.0637694i
\(283\) −416.818 + 332.401i −1.47286 + 1.17456i −0.527048 + 0.849835i \(0.676701\pi\)
−0.945807 + 0.324728i \(0.894727\pi\)
\(284\) −299.947 144.447i −1.05615 0.508615i
\(285\) 28.2048 13.5827i 0.0989641 0.0476586i
\(286\) 22.5053 28.2208i 0.0786900 0.0986742i
\(287\) 4.22625 37.5090i 0.0147256 0.130693i
\(288\) 160.977 + 56.3283i 0.558948 + 0.195584i
\(289\) 237.004i 0.820083i
\(290\) −28.9151 8.16266i −0.0997073 0.0281471i
\(291\) 10.3013 0.0353995
\(292\) 159.397 455.532i 0.545882 1.56004i
\(293\) 491.604 + 55.3905i 1.67783 + 0.189046i 0.898927 0.438098i \(-0.144348\pi\)
0.778903 + 0.627144i \(0.215776\pi\)
\(294\) 8.08659 + 6.44884i 0.0275054 + 0.0219348i
\(295\) −56.3032 116.915i −0.190858 0.396321i
\(296\) −10.1197 + 21.0137i −0.0341881 + 0.0709923i
\(297\) 57.6850 + 72.3347i 0.194226 + 0.243551i
\(298\) −48.1523 + 30.2561i −0.161585 + 0.101531i
\(299\) 174.978 + 39.9376i 0.585211 + 0.133571i
\(300\) 42.1641 4.75075i 0.140547 0.0158358i
\(301\) −120.322 75.6032i −0.399740 0.251173i
\(302\) −3.75943 3.75943i −0.0124484 0.0124484i
\(303\) 33.4117 7.62599i 0.110270 0.0251683i
\(304\) −298.316 + 104.385i −0.981304 + 0.343373i
\(305\) 67.5752 + 193.119i 0.221558 + 0.633176i
\(306\) −6.08445 26.6577i −0.0198838 0.0871168i
\(307\) 36.0084 36.0084i 0.117291 0.117291i −0.646025 0.763316i \(-0.723570\pi\)
0.763316 + 0.646025i \(0.223570\pi\)
\(308\) −51.7125 + 82.3000i −0.167898 + 0.267208i
\(309\) 4.46370 + 39.6165i 0.0144456 + 0.128209i
\(310\) −7.15803 + 31.3614i −0.0230904 + 0.101166i
\(311\) 190.293 + 302.850i 0.611876 + 0.973795i 0.998666 + 0.0516276i \(0.0164409\pi\)
−0.386790 + 0.922168i \(0.626416\pi\)
\(312\) −13.8947 + 11.0807i −0.0445343 + 0.0355149i
\(313\) −20.4314 9.83925i −0.0652761 0.0314353i 0.400961 0.916095i \(-0.368676\pi\)
−0.466237 + 0.884660i \(0.654391\pi\)
\(314\) −67.8347 + 32.6675i −0.216034 + 0.104037i
\(315\) 35.8587 44.9654i 0.113837 0.142747i
\(316\) 23.9053 212.166i 0.0756497 0.671410i
\(317\) −334.683 117.111i −1.05578 0.369434i −0.254096 0.967179i \(-0.581778\pi\)
−0.801686 + 0.597745i \(0.796064\pi\)
\(318\) 21.4221i 0.0673651i
\(319\) 154.079 + 214.705i 0.483006 + 0.673057i
\(320\) 109.817 0.343178
\(321\) 22.0401 62.9870i 0.0686607 0.196221i
\(322\) 24.1215 + 2.71784i 0.0749115 + 0.00844050i
\(323\) 129.669 + 103.408i 0.401453 + 0.320148i
\(324\) 119.305 + 247.739i 0.368225 + 0.764627i
\(325\) 76.1868 158.204i 0.234421 0.486780i
\(326\) 41.2596 + 51.7379i 0.126563 + 0.158705i
\(327\) 12.8689 8.08608i 0.0393545 0.0247281i
\(328\) −44.8797 10.2435i −0.136828 0.0312302i
\(329\) 235.183 26.4988i 0.714843 0.0805434i
\(330\) −4.59324 2.88612i −0.0139189 0.00874583i
\(331\) 104.909 + 104.909i 0.316945 + 0.316945i 0.847592 0.530648i \(-0.178051\pi\)
−0.530648 + 0.847592i \(0.678051\pi\)
\(332\) 342.917 78.2686i 1.03288 0.235749i
\(333\) −55.8844 + 19.5548i −0.167821 + 0.0587231i
\(334\) −6.26297 17.8985i −0.0187514 0.0535884i
\(335\) 38.0819 + 166.848i 0.113677 + 0.498053i
\(336\) 15.6346 15.6346i 0.0465314 0.0465314i
\(337\) 272.078 433.010i 0.807354 1.28490i −0.147868 0.989007i \(-0.547241\pi\)
0.955222 0.295889i \(-0.0956160\pi\)
\(338\) −4.25959 37.8049i −0.0126023 0.111849i
\(339\) −22.1535 + 97.0607i −0.0653495 + 0.286315i
\(340\) −34.6116 55.0841i −0.101799 0.162012i
\(341\) 221.212 176.411i 0.648716 0.517334i
\(342\) 78.5806 + 37.8424i 0.229768 + 0.110650i
\(343\) −227.479 + 109.548i −0.663205 + 0.319383i
\(344\) −108.052 + 135.493i −0.314106 + 0.393876i
\(345\) 3.02004 26.8036i 0.00875373 0.0776915i
\(346\) −59.5642 20.8424i −0.172151 0.0602382i
\(347\) 0.628357i 0.00181083i 1.00000 0.000905413i \(0.000288202\pi\)
−1.00000 0.000905413i \(0.999712\pi\)
\(348\) −24.6005 58.5018i −0.0706912 0.168109i
\(349\) −128.175 −0.367263 −0.183632 0.982995i \(-0.558785\pi\)
−0.183632 + 0.982995i \(0.558785\pi\)
\(350\) 7.84368 22.4160i 0.0224105 0.0640456i
\(351\) −91.3685 10.2948i −0.260309 0.0293298i
\(352\) 140.151 + 111.767i 0.398157 + 0.317519i
\(353\) −203.979 423.568i −0.577845 1.19991i −0.961083 0.276259i \(-0.910905\pi\)
0.383238 0.923650i \(-0.374809\pi\)
\(354\) −5.97331 + 12.4037i −0.0168738 + 0.0350387i
\(355\) 129.095 + 161.880i 0.363648 + 0.456000i
\(356\) −311.221 + 195.553i −0.874217 + 0.549307i
\(357\) −11.3120 2.58188i −0.0316862 0.00723217i
\(358\) 86.0162 9.69170i 0.240269 0.0270718i
\(359\) −252.579 158.706i −0.703563 0.442078i 0.132161 0.991228i \(-0.457808\pi\)
−0.835723 + 0.549151i \(0.814951\pi\)
\(360\) −49.5967 49.5967i −0.137769 0.137769i
\(361\) −163.815 + 37.3898i −0.453782 + 0.103573i
\(362\) −69.4451 + 24.2999i −0.191837 + 0.0671268i
\(363\) −7.20329 20.5858i −0.0198438 0.0567102i
\(364\) −21.4947 94.1744i −0.0590513 0.258721i
\(365\) −212.242 + 212.242i −0.581484 + 0.581484i
\(366\) 11.5485 18.3794i 0.0315533 0.0502168i
\(367\) 17.6081 + 156.277i 0.0479786 + 0.425822i 0.994625 + 0.103546i \(0.0330191\pi\)
−0.946646 + 0.322275i \(0.895552\pi\)
\(368\) −60.5967 + 265.491i −0.164665 + 0.721444i
\(369\) −62.1719 98.9459i −0.168487 0.268146i
\(370\) 5.53159 4.41130i 0.0149502 0.0119224i
\(371\) −215.079 103.577i −0.579728 0.279182i
\(372\) −61.2186 + 29.4813i −0.164566 + 0.0792509i
\(373\) −49.1110 + 61.5833i −0.131665 + 0.165103i −0.843294 0.537453i \(-0.819386\pi\)
0.711629 + 0.702556i \(0.247958\pi\)
\(374\) 3.21787 28.5594i 0.00860394 0.0763621i
\(375\) −57.0251 19.9540i −0.152067 0.0532105i
\(376\) 288.634i 0.767644i
\(377\) −259.155 42.6039i −0.687414 0.113008i
\(378\) −12.4357 −0.0328985
\(379\) −42.3230 + 120.952i −0.111670 + 0.319135i −0.986133 0.165958i \(-0.946928\pi\)
0.874463 + 0.485093i \(0.161214\pi\)
\(380\) 206.205 + 23.2338i 0.542645 + 0.0611415i
\(381\) −41.6944 33.2502i −0.109434 0.0872708i
\(382\) 2.83537 + 5.88771i 0.00742244 + 0.0154129i
\(383\) 278.017 577.309i 0.725894 1.50733i −0.130745 0.991416i \(-0.541737\pi\)
0.856638 0.515917i \(-0.172549\pi\)
\(384\) −35.4527 44.4563i −0.0923247 0.115771i
\(385\) 51.1853 32.1618i 0.132949 0.0835373i
\(386\) 72.6710 + 16.5867i 0.188267 + 0.0429707i
\(387\) −437.164 + 49.2565i −1.12962 + 0.127278i
\(388\) 57.8174 + 36.3291i 0.149014 + 0.0936317i
\(389\) 108.171 + 108.171i 0.278076 + 0.278076i 0.832340 0.554265i \(-0.187000\pi\)
−0.554265 + 0.832340i \(0.687000\pi\)
\(390\) 5.25596 1.19964i 0.0134768 0.00307600i
\(391\) 134.884 47.1981i 0.344973 0.120711i
\(392\) 46.4261 + 132.678i 0.118434 + 0.338464i
\(393\) 8.61792 + 37.7576i 0.0219286 + 0.0960753i
\(394\) 101.425 101.425i 0.257423 0.257423i
\(395\) −70.6476 + 112.435i −0.178855 + 0.284646i
\(396\) 33.6914 + 299.020i 0.0850793 + 0.755100i
\(397\) 91.8822 402.562i 0.231441 1.01401i −0.717004 0.697069i \(-0.754487\pi\)
0.948445 0.316942i \(-0.102656\pi\)
\(398\) −30.4536 48.4667i −0.0765166 0.121776i
\(399\) 28.9357 23.0754i 0.0725205 0.0578332i
\(400\) 240.040 + 115.597i 0.600099 + 0.288993i
\(401\) −63.8457 + 30.7465i −0.159216 + 0.0766745i −0.511795 0.859108i \(-0.671019\pi\)
0.352579 + 0.935782i \(0.385305\pi\)
\(402\) 11.3203 14.1952i 0.0281600 0.0353116i
\(403\) −31.4832 + 279.421i −0.0781220 + 0.693352i
\(404\) 214.422 + 75.0297i 0.530749 + 0.185717i
\(405\) 171.014i 0.422256i
\(406\) −35.4751 1.80149i −0.0873771 0.00443716i
\(407\) −62.2315 −0.152903
\(408\) −4.67358 + 13.3563i −0.0114548 + 0.0327361i
\(409\) −207.189 23.3446i −0.506576 0.0570774i −0.145022 0.989428i \(-0.546325\pi\)
−0.361554 + 0.932351i \(0.617754\pi\)
\(410\) 10.9178 + 8.70663i 0.0266287 + 0.0212357i
\(411\) 22.1612 + 46.0182i 0.0539202 + 0.111966i
\(412\) −114.661 + 238.096i −0.278303 + 0.577902i
\(413\) −95.6527 119.945i −0.231605 0.290423i
\(414\) 63.6307 39.9818i 0.153697 0.0965745i
\(415\) −213.272 48.6781i −0.513910 0.117297i
\(416\) −177.030 + 19.9465i −0.425552 + 0.0479482i
\(417\) 54.2500 + 34.0875i 0.130096 + 0.0817446i
\(418\) 64.8229 + 64.8229i 0.155079 + 0.155079i
\(419\) 238.392 54.4114i 0.568955 0.129860i 0.0716402 0.997431i \(-0.477177\pi\)
0.497314 + 0.867570i \(0.334320\pi\)
\(420\) −13.7025 + 4.79471i −0.0326250 + 0.0114160i
\(421\) 92.8412 + 265.325i 0.220525 + 0.630226i 0.999993 + 0.00378275i \(0.00120409\pi\)
−0.779467 + 0.626443i \(0.784510\pi\)
\(422\) 18.0449 + 79.0599i 0.0427605 + 0.187346i
\(423\) 518.098 518.098i 1.22482 1.22482i
\(424\) −154.892 + 246.509i −0.365311 + 0.581389i
\(425\) −15.6538 138.931i −0.0368324 0.326896i
\(426\) 4.88802 21.4158i 0.0114742 0.0502719i
\(427\) 128.692 + 204.812i 0.301387 + 0.479654i
\(428\) 345.838 275.796i 0.808032 0.644384i
\(429\) −42.7231 20.5744i −0.0995876 0.0479589i
\(430\) 47.3651 22.8098i 0.110151 0.0530461i
\(431\) 23.2025 29.0951i 0.0538342 0.0675060i −0.754185 0.656661i \(-0.771968\pi\)
0.808020 + 0.589156i \(0.200539\pi\)
\(432\) 15.6201 138.632i 0.0361576 0.320907i
\(433\) 530.470 + 185.619i 1.22510 + 0.428682i 0.863833 0.503779i \(-0.168057\pi\)
0.361270 + 0.932461i \(0.382343\pi\)
\(434\) 38.0304i 0.0876276i
\(435\) −2.00180 + 39.4196i −0.00460183 + 0.0906197i
\(436\) 100.746 0.231068
\(437\) −150.549 + 430.246i −0.344507 + 0.984544i
\(438\) 31.6438 + 3.56540i 0.0722461 + 0.00814018i
\(439\) −152.107 121.302i −0.346486 0.276313i 0.434747 0.900552i \(-0.356838\pi\)
−0.781233 + 0.624239i \(0.785409\pi\)
\(440\) −31.9874 66.4225i −0.0726986 0.150960i
\(441\) −154.822 + 321.491i −0.351071 + 0.729006i
\(442\) 17.8082 + 22.3308i 0.0402901 + 0.0505222i
\(443\) 115.858 72.7986i 0.261531 0.164331i −0.394883 0.918731i \(-0.629215\pi\)
0.656415 + 0.754400i \(0.272072\pi\)
\(444\) 14.5700 + 3.32551i 0.0328154 + 0.00748990i
\(445\) 227.161 25.5949i 0.510474 0.0575166i
\(446\) −133.011 83.5762i −0.298230 0.187390i
\(447\) 52.8271 + 52.8271i 0.118181 + 0.118181i
\(448\) 126.576 28.8901i 0.282535 0.0644868i
\(449\) 652.820 228.432i 1.45394 0.508756i 0.516315 0.856399i \(-0.327303\pi\)
0.937627 + 0.347642i \(0.113018\pi\)
\(450\) −24.2829 69.3966i −0.0539621 0.154215i
\(451\) −27.3316 119.747i −0.0606022 0.265516i
\(452\) −466.640 + 466.640i −1.03239 + 1.03239i
\(453\) −3.71596 + 5.91392i −0.00820301 + 0.0130550i
\(454\) 6.02672 + 53.4886i 0.0132747 + 0.117816i
\(455\) −13.3683 + 58.5704i −0.0293809 + 0.128726i
\(456\) −24.0138 38.2177i −0.0526618 0.0838108i
\(457\) −160.062 + 127.645i −0.350245 + 0.279311i −0.782770 0.622311i \(-0.786194\pi\)
0.432525 + 0.901622i \(0.357623\pi\)
\(458\) 54.7898 + 26.3854i 0.119628 + 0.0576099i
\(459\) −65.9596 + 31.7645i −0.143703 + 0.0692036i
\(460\) 111.478 139.789i 0.242343 0.303888i
\(461\) −23.2302 + 206.174i −0.0503909 + 0.447232i 0.943030 + 0.332709i \(0.107963\pi\)
−0.993421 + 0.114523i \(0.963466\pi\)
\(462\) −6.05346 2.11820i −0.0131027 0.00458484i
\(463\) 151.205i 0.326576i −0.986578 0.163288i \(-0.947790\pi\)
0.986578 0.163288i \(-0.0522099\pi\)
\(464\) 64.6422 393.212i 0.139315 0.847439i
\(465\) 42.2590 0.0908795
\(466\) 22.6467 64.7205i 0.0485980 0.138885i
\(467\) −514.620 57.9838i −1.10197 0.124162i −0.457808 0.889051i \(-0.651365\pi\)
−0.644162 + 0.764889i \(0.722794\pi\)
\(468\) −233.805 186.454i −0.499584 0.398405i
\(469\) 87.7868 + 182.291i 0.187179 + 0.388680i
\(470\) −37.9896 + 78.8863i −0.0808290 + 0.167843i
\(471\) 61.6692 + 77.3307i 0.130932 + 0.164184i
\(472\) −158.421 + 99.5424i −0.335637 + 0.210895i
\(473\) −450.811 102.895i −0.953088 0.217536i
\(474\) 13.9992 1.57733i 0.0295341 0.00332770i
\(475\) 377.603 + 237.264i 0.794954 + 0.499502i
\(476\) −54.3848 54.3848i −0.114254 0.114254i
\(477\) −720.513 + 164.452i −1.51051 + 0.344764i
\(478\) −146.339 + 51.2063i −0.306149 + 0.107126i
\(479\) −271.109 774.785i −0.565990 1.61751i −0.769652 0.638464i \(-0.779570\pi\)
0.203662 0.979041i \(-0.434716\pi\)
\(480\) 5.95768 + 26.1023i 0.0124118 + 0.0543798i
\(481\) 43.7318 43.7318i 0.0909185 0.0909185i
\(482\) −84.1672 + 133.951i −0.174621 + 0.277907i
\(483\) −3.57043 31.6884i −0.00739219 0.0656075i
\(484\) 32.1697 140.945i 0.0664663 0.291208i
\(485\) −22.5944 35.9587i −0.0465863 0.0741417i
\(486\) −45.4308 + 36.2299i −0.0934791 + 0.0745471i
\(487\) 569.988 + 274.492i 1.17041 + 0.563639i 0.915102 0.403222i \(-0.132110\pi\)
0.255305 + 0.966860i \(0.417824\pi\)
\(488\) 265.782 127.994i 0.544636 0.262283i
\(489\) 54.2027 67.9681i 0.110844 0.138994i
\(490\) 4.77424 42.3726i 0.00974336 0.0864747i
\(491\) −877.921 307.198i −1.78803 0.625657i −0.999949 0.0100808i \(-0.996791\pi\)
−0.788077 0.615577i \(-0.788923\pi\)
\(492\) 29.4966i 0.0599524i
\(493\) −192.764 + 81.0591i −0.391002 + 0.164420i
\(494\) −91.1058 −0.184425
\(495\) 61.8110 176.646i 0.124871 0.356860i
\(496\) −423.961 47.7689i −0.854760 0.0963083i
\(497\) 191.382 + 152.622i 0.385075 + 0.307087i
\(498\) 10.0697 + 20.9100i 0.0202203 + 0.0419880i
\(499\) −207.237 + 430.332i −0.415304 + 0.862389i 0.583433 + 0.812161i \(0.301709\pi\)
−0.998738 + 0.0502276i \(0.984005\pi\)
\(500\) −249.692 313.103i −0.499383 0.626206i
\(501\) −21.0930 + 13.2536i −0.0421017 + 0.0264543i
\(502\) 154.576 + 35.2810i 0.307921 + 0.0702810i
\(503\) 823.526 92.7891i 1.63723 0.184471i 0.755143 0.655560i \(-0.227567\pi\)
0.882086 + 0.471089i \(0.156139\pi\)
\(504\) −70.2130 44.1178i −0.139312 0.0875353i
\(505\) −99.9039 99.9039i −0.197830 0.197830i
\(506\) 77.0079 17.5765i 0.152190 0.0347363i
\(507\) −47.1740 + 16.5069i −0.0930453 + 0.0325580i
\(508\) −116.754 333.664i −0.229831 0.656819i
\(509\) 88.5731 + 388.064i 0.174014 + 0.762405i 0.984319 + 0.176397i \(0.0564441\pi\)
−0.810305 + 0.586008i \(0.800699\pi\)
\(510\) 3.03527 3.03527i 0.00595150 0.00595150i
\(511\) −188.796 + 300.466i −0.369463 + 0.587997i
\(512\) −51.2825 455.145i −0.100161 0.888955i
\(513\) 51.9630 227.665i 0.101292 0.443791i
\(514\) −60.6879 96.5843i −0.118070 0.187907i
\(515\) 128.499 102.475i 0.249513 0.198980i
\(516\) 100.048 + 48.1807i 0.193892 + 0.0933734i
\(517\) 693.864 334.147i 1.34210 0.646320i
\(518\) 5.21524 6.53971i 0.0100680 0.0126249i
\(519\) −9.28205 + 82.3804i −0.0178845 + 0.158729i
\(520\) 69.1554 + 24.1985i 0.132991 + 0.0465356i
\(521\) 956.433i 1.83576i 0.396854 + 0.917882i \(0.370102\pi\)
−0.396854 + 0.917882i \(0.629898\pi\)
\(522\) −89.3427 + 64.1149i −0.171155 + 0.122826i
\(523\) 447.294 0.855247 0.427624 0.903957i \(-0.359351\pi\)
0.427624 + 0.903957i \(0.359351\pi\)
\(524\) −84.7890 + 242.313i −0.161811 + 0.462429i
\(525\) −31.0024 3.49314i −0.0590523 0.00665359i
\(526\) −32.3505 25.7987i −0.0615029 0.0490469i
\(527\) 97.1413 + 201.716i 0.184329 + 0.382763i
\(528\) 31.2171 64.8231i 0.0591234 0.122771i
\(529\) −84.9498 106.524i −0.160586 0.201368i
\(530\) 74.7784 46.9864i 0.141091 0.0886536i
\(531\) −463.043 105.687i −0.872021 0.199033i
\(532\) 243.786 27.4680i 0.458243 0.0516316i
\(533\) 103.357 + 64.9433i 0.193915 + 0.121845i
\(534\) −17.1490 17.1490i −0.0321143 0.0321143i
\(535\) −268.211 + 61.2175i −0.501329 + 0.114425i
\(536\) 232.904 81.4965i 0.434522 0.152046i
\(537\) −37.5575 107.333i −0.0699395 0.199876i
\(538\) 8.88888 + 38.9447i 0.0165221 + 0.0723880i
\(539\) −265.206 + 265.206i −0.492033 + 0.492033i
\(540\) −48.7328 + 77.5578i −0.0902459 + 0.143626i
\(541\) 66.1017 + 586.668i 0.122184 + 1.08441i 0.893844 + 0.448379i \(0.147998\pi\)
−0.771659 + 0.636036i \(0.780573\pi\)
\(542\) 32.2674 141.373i 0.0595340 0.260835i
\(543\) 51.4230 + 81.8393i 0.0947017 + 0.150717i
\(544\) −110.900 + 88.4397i −0.203860 + 0.162573i
\(545\) −56.4523 27.1860i −0.103582 0.0498826i
\(546\) 5.74245 2.76542i 0.0105173 0.00506487i
\(547\) 498.842 625.528i 0.911959 1.14356i −0.0772443 0.997012i \(-0.524612\pi\)
0.989203 0.146548i \(-0.0468164\pi\)
\(548\) −37.9076 + 336.440i −0.0691745 + 0.613941i
\(549\) 706.828 + 247.330i 1.28748 + 0.450510i
\(550\) 77.2784i 0.140506i
\(551\) 181.215 641.930i 0.328884 1.16503i
\(552\) −38.8904 −0.0704536
\(553\) −51.8500 + 148.179i −0.0937613 + 0.267955i
\(554\) 78.6042 + 8.85657i 0.141885 + 0.0159866i
\(555\) −7.26686 5.79512i −0.0130934 0.0104417i
\(556\) 184.271 + 382.643i 0.331423 + 0.688207i
\(557\) −125.495 + 260.594i −0.225306 + 0.467852i −0.982724 0.185078i \(-0.940746\pi\)
0.757418 + 0.652930i \(0.226460\pi\)
\(558\) 73.4077 + 92.0503i 0.131555 + 0.164965i
\(559\) 389.104 244.490i 0.696072 0.437371i
\(560\) −88.8679 20.2835i −0.158693 0.0362206i
\(561\) −37.5185 + 4.22732i −0.0668779 + 0.00753533i
\(562\) 34.4467 + 21.6443i 0.0612931 + 0.0385130i
\(563\) 319.931 + 319.931i 0.568261 + 0.568261i 0.931641 0.363380i \(-0.118377\pi\)
−0.363380 + 0.931641i \(0.618377\pi\)
\(564\) −180.308 + 41.1541i −0.319695 + 0.0729683i
\(565\) 387.401 135.558i 0.685666 0.239925i
\(566\) −77.0138 220.093i −0.136067 0.388857i
\(567\) −44.9893 197.111i −0.0793463 0.347639i
\(568\) 211.094 211.094i 0.371644 0.371644i
\(569\) −458.323 + 729.417i −0.805489 + 1.28193i 0.150525 + 0.988606i \(0.451904\pi\)
−0.956014 + 0.293322i \(0.905239\pi\)
\(570\) 1.53302 + 13.6059i 0.00268950 + 0.0238700i
\(571\) 84.1527 368.697i 0.147378 0.645704i −0.846230 0.532818i \(-0.821133\pi\)
0.993608 0.112887i \(-0.0360097\pi\)
\(572\) −167.231 266.147i −0.292362 0.465292i
\(573\) 6.71192 5.35257i 0.0117136 0.00934132i
\(574\) 14.8744 + 7.16312i 0.0259135 + 0.0124793i
\(575\) 346.196 166.719i 0.602081 0.289947i
\(576\) 250.604 314.248i 0.435077 0.545569i
\(577\) −30.4134 + 269.927i −0.0527096 + 0.467811i 0.939436 + 0.342724i \(0.111350\pi\)
−0.992146 + 0.125087i \(0.960079\pi\)
\(578\) −97.8427 34.2366i −0.169278 0.0592329i
\(579\) 97.9231i 0.169124i
\(580\) −150.255 + 214.189i −0.259060 + 0.369291i
\(581\) −258.625 −0.445138
\(582\) −1.48808 + 4.25268i −0.00255683 + 0.00730701i
\(583\) −771.912 86.9736i −1.32403 0.149183i
\(584\) 338.353 + 269.827i 0.579371 + 0.462033i
\(585\) 80.6975 + 167.570i 0.137944 + 0.286445i
\(586\) −93.8820 + 194.948i −0.160208 + 0.332676i
\(587\) −426.830 535.228i −0.727138 0.911802i 0.271581 0.962416i \(-0.412454\pi\)
−0.998718 + 0.0506138i \(0.983882\pi\)
\(588\) 76.2636 47.9196i 0.129700 0.0814959i
\(589\) −696.238 158.912i −1.18207 0.269799i
\(590\) 56.3994 6.35469i 0.0955922 0.0107707i
\(591\) −159.550 100.252i −0.269966 0.169631i
\(592\) 66.3536 + 66.3536i 0.112084 + 0.112084i
\(593\) 595.317 135.877i 1.00391 0.229135i 0.311192 0.950347i \(-0.399272\pi\)
0.692714 + 0.721212i \(0.256415\pi\)
\(594\) −38.1950 + 13.3650i −0.0643013 + 0.0225000i
\(595\) 15.7986 + 45.1498i 0.0265523 + 0.0758821i
\(596\) 110.197 + 482.804i 0.184894 + 0.810073i
\(597\) −53.1720 + 53.1720i −0.0890653 + 0.0890653i
\(598\) −41.7641 + 66.4672i −0.0698396 + 0.111149i
\(599\) −55.4898 492.486i −0.0926374 0.822180i −0.951012 0.309155i \(-0.899954\pi\)
0.858374 0.513024i \(-0.171475\pi\)
\(600\) −8.46659 + 37.0946i −0.0141110 + 0.0618243i
\(601\) −356.713 567.705i −0.593532 0.944600i −0.999528 0.0307255i \(-0.990218\pi\)
0.405996 0.913875i \(-0.366925\pi\)
\(602\) 48.5926 38.7513i 0.0807185 0.0643709i
\(603\) 564.348 + 271.775i 0.935900 + 0.450706i
\(604\) −41.7128 + 20.0878i −0.0690610 + 0.0332580i
\(605\) −56.0597 + 70.2967i −0.0926607 + 0.116193i
\(606\) −1.67826 + 14.8950i −0.00276941 + 0.0245792i
\(607\) −470.855 164.759i −0.775709 0.271432i −0.0867476 0.996230i \(-0.527647\pi\)
−0.688961 + 0.724798i \(0.741933\pi\)
\(608\) 452.452i 0.744165i
\(609\) 8.06301 + 45.9618i 0.0132398 + 0.0754710i
\(610\) −89.4870 −0.146700
\(611\) −252.783 + 722.413i −0.413721 + 1.18235i
\(612\) −236.611 26.6596i −0.386619 0.0435615i
\(613\) −611.006 487.261i −0.996746 0.794879i −0.0179760 0.999838i \(-0.505722\pi\)
−0.978770 + 0.204960i \(0.934294\pi\)
\(614\) 9.66376 + 20.0670i 0.0157390 + 0.0326824i
\(615\) 7.95959 16.5283i 0.0129424 0.0268752i
\(616\) −54.3429 68.1439i −0.0882190 0.110623i
\(617\) −297.376 + 186.853i −0.481970 + 0.302842i −0.751014 0.660286i \(-0.770435\pi\)
0.269044 + 0.963128i \(0.413292\pi\)
\(618\) −16.9997 3.88008i −0.0275076 0.00627844i
\(619\) −993.041 + 111.889i −1.60427 + 0.180757i −0.868222 0.496176i \(-0.834737\pi\)
−0.736044 + 0.676933i \(0.763309\pi\)
\(620\) 237.185 + 149.033i 0.382557 + 0.240376i
\(621\) −142.275 142.275i −0.229106 0.229106i
\(622\) −152.515 + 34.8106i −0.245201 + 0.0559655i
\(623\) 255.093 89.2611i 0.409460 0.143276i
\(624\) 23.6158 + 67.4902i 0.0378459 + 0.108157i
\(625\) −52.4380 229.746i −0.0839008 0.367594i
\(626\) 7.01339 7.01339i 0.0112035 0.0112035i
\(627\) 64.0734 101.972i 0.102190 0.162635i
\(628\) 73.4083 + 651.517i 0.116892 + 1.03745i
\(629\) 10.9576 48.0084i 0.0174207 0.0763250i
\(630\) 13.3831 + 21.2991i 0.0212430 + 0.0338081i
\(631\) 167.421 133.514i 0.265327 0.211591i −0.481785 0.876290i \(-0.660011\pi\)
0.747112 + 0.664698i \(0.231440\pi\)
\(632\) 172.496 + 83.0699i 0.272937 + 0.131440i
\(633\) 95.9821 46.2225i 0.151630 0.0730214i
\(634\) 96.6939 121.250i 0.152514 0.191246i
\(635\) −24.6160 + 218.473i −0.0387653 + 0.344051i
\(636\) 176.077 + 61.6121i 0.276851 + 0.0968744i
\(637\) 372.735i 0.585141i
\(638\) −110.895 + 32.5931i −0.173816 + 0.0510864i
\(639\) 757.826 1.18596
\(640\) −77.4235 + 221.264i −0.120974 + 0.345724i
\(641\) 331.461 + 37.3467i 0.517100 + 0.0582632i 0.366658 0.930356i \(-0.380502\pi\)
0.150442 + 0.988619i \(0.451930\pi\)
\(642\) 22.8192 + 18.1977i 0.0355439 + 0.0283453i
\(643\) −84.9239 176.346i −0.132075 0.274256i 0.824435 0.565957i \(-0.191493\pi\)
−0.956510 + 0.291701i \(0.905779\pi\)
\(644\) 91.7149 190.448i 0.142414 0.295727i
\(645\) −43.0600 53.9956i −0.0667597 0.0837141i
\(646\) −61.4215 + 38.5937i −0.0950797 + 0.0597425i
\(647\) 193.106 + 44.0752i 0.298464 + 0.0681224i 0.369131 0.929378i \(-0.379656\pi\)
−0.0706667 + 0.997500i \(0.522513\pi\)
\(648\) −245.020 + 27.6071i −0.378117 + 0.0426036i
\(649\) −422.697 265.598i −0.651305 0.409242i
\(650\) 54.3057 + 54.3057i 0.0835472 + 0.0835472i
\(651\) 48.7079 11.1173i 0.0748202 0.0170772i
\(652\) 543.922 190.327i 0.834236 0.291912i
\(653\) −286.599 819.053i −0.438896 1.25429i −0.924858 0.380312i \(-0.875817\pi\)
0.485962 0.873980i \(-0.338469\pi\)
\(654\) 1.47919 + 6.48077i 0.00226176 + 0.00990944i
\(655\) 112.899 112.899i 0.172364 0.172364i
\(656\) −98.5374 + 156.821i −0.150209 + 0.239057i
\(657\) 123.003 + 1091.68i 0.187219 + 1.66162i
\(658\) −23.0341 + 100.919i −0.0350062 + 0.153372i
\(659\) 16.3281 + 25.9861i 0.0247771 + 0.0394326i 0.858883 0.512172i \(-0.171159\pi\)
−0.834106 + 0.551604i \(0.814016\pi\)
\(660\) −36.9329 + 29.4530i −0.0559589 + 0.0446258i
\(661\) 385.398 + 185.598i 0.583053 + 0.280783i 0.702069 0.712109i \(-0.252260\pi\)
−0.119016 + 0.992892i \(0.537974\pi\)
\(662\) −58.4642 + 28.1549i −0.0883145 + 0.0425300i
\(663\) 23.3947 29.3360i 0.0352861 0.0442473i
\(664\) −35.3145 + 313.425i −0.0531845 + 0.472025i
\(665\) −144.016 50.3934i −0.216566 0.0757796i
\(666\) 25.8956i 0.0388823i
\(667\) −385.255 426.476i −0.577594 0.639395i
\(668\) −165.129 −0.247198
\(669\) −68.1588 + 194.787i −0.101882 + 0.291161i
\(670\) −74.3810 8.38073i −0.111016 0.0125086i
\(671\) 615.384 + 490.753i 0.917115 + 0.731375i
\(672\) 13.7337 + 28.5184i 0.0204371 + 0.0424380i
\(673\) 92.9362 192.984i 0.138092 0.286752i −0.820441 0.571731i \(-0.806272\pi\)
0.958534 + 0.284979i \(0.0919866\pi\)
\(674\) 139.457 + 174.873i 0.206909 + 0.259456i
\(675\) −166.679 + 104.731i −0.246931 + 0.155157i
\(676\) −322.986 73.7194i −0.477789 0.109052i
\(677\) 1019.59 114.881i 1.50605 0.169691i 0.679966 0.733243i \(-0.261994\pi\)
0.826080 + 0.563553i \(0.190566\pi\)
\(678\) −36.8695 23.1666i −0.0543798 0.0341691i
\(679\) −35.5022 35.5022i −0.0522860 0.0522860i
\(680\) 56.8739 12.9811i 0.0836380 0.0190898i
\(681\) 66.7445 23.3549i 0.0980096 0.0342950i
\(682\) 40.8725 + 116.807i 0.0599303 + 0.171271i
\(683\) 198.867 + 871.294i 0.291167 + 1.27569i 0.882903 + 0.469555i \(0.155586\pi\)
−0.591736 + 0.806132i \(0.701557\pi\)
\(684\) 537.048 537.048i 0.785159 0.785159i
\(685\) 112.029 178.293i 0.163546 0.260282i
\(686\) −12.3642 109.735i −0.0180236 0.159964i
\(687\) 17.7769 77.8858i 0.0258762 0.113371i
\(688\) 370.962 + 590.382i 0.539188 + 0.858113i
\(689\) 603.564 481.326i 0.875999 0.698586i
\(690\) 10.6291 + 5.11870i 0.0154045 + 0.00741840i
\(691\) −404.223 + 194.664i −0.584983 + 0.281713i −0.702875 0.711313i \(-0.748101\pi\)
0.117892 + 0.993026i \(0.462386\pi\)
\(692\) −342.625 + 429.638i −0.495123 + 0.620865i
\(693\) 24.7727 219.864i 0.0357470 0.317263i
\(694\) −0.259405 0.0907698i −0.000373783 0.000130792i
\(695\) 264.137i 0.380053i
\(696\) 56.8016 3.49552i 0.0816115 0.00502230i
\(697\) 97.1916 0.139443
\(698\) 18.5156 52.9146i 0.0265267 0.0758088i
\(699\) −89.5118 10.0856i −0.128057 0.0144286i
\(700\) −161.687 128.941i −0.230981 0.184201i
\(701\) −112.581 233.776i −0.160600 0.333490i 0.805104 0.593133i \(-0.202109\pi\)
−0.965705 + 0.259644i \(0.916395\pi\)
\(702\) 17.4487 36.2326i 0.0248557 0.0516134i
\(703\) 97.9330 + 122.804i 0.139307 + 0.174686i
\(704\) 357.716 224.768i 0.508120 0.319273i
\(705\) 112.140 + 25.5952i 0.159064 + 0.0363053i
\(706\) 204.328 23.0222i 0.289416 0.0326094i
\(707\) −141.432 88.8676i −0.200045 0.125697i
\(708\) 84.7715 + 84.7715i 0.119734 + 0.119734i
\(709\) 197.905 45.1706i 0.279133 0.0637103i −0.0806624 0.996741i \(-0.525704\pi\)
0.359796 + 0.933031i \(0.382846\pi\)
\(710\) −85.4776 + 29.9099i −0.120391 + 0.0421266i
\(711\) 160.520 + 458.741i 0.225767 + 0.645205i
\(712\) −73.3422 321.333i −0.103009 0.451311i
\(713\) −435.101 + 435.101i −0.610239 + 0.610239i
\(714\) 2.69996 4.29697i 0.00378146 0.00601816i
\(715\) 21.8879 + 194.261i 0.0306125 + 0.271694i
\(716\) 167.731 734.878i 0.234261 1.02637i
\(717\) 108.362 + 172.457i 0.151132 + 0.240526i
\(718\) 102.005 81.3465i 0.142069 0.113296i
\(719\) −202.010 97.2830i −0.280960 0.135303i 0.288097 0.957601i \(-0.406977\pi\)
−0.569057 + 0.822298i \(0.692692\pi\)
\(720\) −254.252 + 122.441i −0.353127 + 0.170057i
\(721\) 121.150 151.918i 0.168031 0.210704i
\(722\) 8.22842 73.0293i 0.0113967 0.101149i
\(723\) 196.164 + 68.6408i 0.271320 + 0.0949389i
\(724\) 640.688i 0.884928i
\(725\) −490.655 + 274.620i −0.676765 + 0.378786i
\(726\) 9.53902 0.0131391
\(727\) 246.577 704.676i 0.339170 0.969293i −0.640374 0.768063i \(-0.721221\pi\)
0.979544 0.201229i \(-0.0644937\pi\)
\(728\) 86.0749 + 9.69832i 0.118235 + 0.0133219i
\(729\) −448.317 357.521i −0.614976 0.490427i
\(730\) −56.9604 118.280i −0.0780280 0.162027i
\(731\) 158.756 329.660i 0.217176 0.450971i
\(732\) −117.853 147.783i −0.161001 0.201889i
\(733\) −963.974 + 605.705i −1.31511 + 0.826337i −0.992740 0.120278i \(-0.961621\pi\)
−0.322367 + 0.946615i \(0.604478\pi\)
\(734\) −67.0594 15.3059i −0.0913616 0.0208527i
\(735\) −55.6649 + 6.27193i −0.0757346 + 0.00853324i
\(736\) −330.091 207.410i −0.448494 0.281807i
\(737\) 465.543 + 465.543i 0.631673 + 0.631673i
\(738\) 49.8291 11.3732i 0.0675190 0.0154108i
\(739\) −584.336 + 204.468i −0.790712 + 0.276682i −0.695266 0.718753i \(-0.744713\pi\)
−0.0954458 + 0.995435i \(0.530428\pi\)
\(740\) −20.3489 58.1538i −0.0274985 0.0785862i
\(741\) 26.6326 + 116.685i 0.0359414 + 0.157470i
\(742\) 73.8291 73.8291i 0.0995001 0.0995001i
\(743\) −590.411 + 939.634i −0.794631 + 1.26465i 0.165808 + 0.986158i \(0.446977\pi\)
−0.960439 + 0.278490i \(0.910166\pi\)
\(744\) −6.82197 60.5467i −0.00916931 0.0813799i
\(745\) 68.5353 300.273i 0.0919937 0.403051i
\(746\) −18.3291 29.1706i −0.0245699 0.0391027i
\(747\) −625.986 + 499.207i −0.838000 + 0.668283i
\(748\) −225.487 108.589i −0.301453 0.145172i
\(749\) −293.037 + 141.119i −0.391238 + 0.188410i
\(750\) 16.4752 20.6593i 0.0219670 0.0275457i
\(751\) 94.5639 839.278i 0.125917 1.11755i −0.758769 0.651360i \(-0.774199\pi\)
0.884686 0.466187i \(-0.154373\pi\)
\(752\) −1096.11 383.544i −1.45759 0.510032i
\(753\) 208.289i 0.276613i
\(754\) 55.0247 100.833i 0.0729770 0.133731i
\(755\) 28.7942 0.0381380
\(756\) −35.7662 + 102.214i −0.0473098 + 0.135204i
\(757\) 548.637 + 61.8166i 0.724752 + 0.0816600i 0.466630 0.884452i \(-0.345468\pi\)
0.258122 + 0.966112i \(0.416896\pi\)
\(758\) −43.8190 34.9445i −0.0578087 0.0461009i
\(759\) −45.0228 93.4908i −0.0593186 0.123176i
\(760\) −80.7362 + 167.650i −0.106232 + 0.220593i
\(761\) −299.966 376.145i −0.394173 0.494278i 0.544657 0.838659i \(-0.316660\pi\)
−0.938830 + 0.344382i \(0.888089\pi\)
\(762\) 19.7497 12.4096i 0.0259182 0.0162855i
\(763\) −72.2192 16.4836i −0.0946517 0.0216036i
\(764\) 56.5484 6.37148i 0.0740163 0.00833963i
\(765\) 125.389 + 78.7874i 0.163908 + 0.102990i
\(766\) 198.170 + 198.170i 0.258707 + 0.258707i
\(767\) 483.684 110.398i 0.630618 0.143935i
\(768\) −77.0974 + 26.9776i −0.100387 + 0.0351270i
\(769\) −138.493 395.791i −0.180095 0.514683i 0.818077 0.575108i \(-0.195040\pi\)
−0.998173 + 0.0604252i \(0.980754\pi\)
\(770\) 5.88340 + 25.7768i 0.00764078 + 0.0334764i
\(771\) −105.961 + 105.961i −0.137433