Properties

Label 29.3.f.a.21.1
Level $29$
Weight $3$
Character 29.21
Analytic conductor $0.790$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 29.f (of order \(28\), degree \(12\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 21.1
Character \(\chi\) \(=\) 29.21
Dual form 29.3.f.a.18.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.23928 + 3.54166i) q^{2} +(4.35885 + 0.491124i) q^{3} +(-7.88021 - 6.28426i) q^{4} +(-0.825141 - 1.71342i) q^{5} +(-7.14123 + 14.8289i) q^{6} +(-2.97342 - 3.72855i) q^{7} +(19.3141 - 12.1359i) q^{8} +(9.98399 + 2.27878i) q^{9} +O(q^{10})\) \(q+(-1.23928 + 3.54166i) q^{2} +(4.35885 + 0.491124i) q^{3} +(-7.88021 - 6.28426i) q^{4} +(-0.825141 - 1.71342i) q^{5} +(-7.14123 + 14.8289i) q^{6} +(-2.97342 - 3.72855i) q^{7} +(19.3141 - 12.1359i) q^{8} +(9.98399 + 2.27878i) q^{9} +(7.09094 - 0.798957i) q^{10} +(8.99985 + 5.65498i) q^{11} +(-31.2623 - 31.2623i) q^{12} +(-14.5195 + 3.31399i) q^{13} +(16.8901 - 5.91011i) q^{14} +(-2.75516 - 7.87379i) q^{15} +(10.0742 + 44.1379i) q^{16} +(-1.89819 + 1.89819i) q^{17} +(-20.4436 + 32.5358i) q^{18} +(-0.860526 - 7.63738i) q^{19} +(-4.26531 + 18.6875i) q^{20} +(-11.1295 - 17.7125i) q^{21} +(-31.1814 + 24.8663i) q^{22} +(-12.8995 - 6.21208i) q^{23} +(90.1475 - 43.4128i) q^{24} +(13.3323 - 16.7182i) q^{25} +(6.25675 - 55.5302i) q^{26} +(5.13702 + 1.79752i) q^{27} +48.0675i q^{28} +(-13.6496 + 25.5869i) q^{29} +31.3007 q^{30} +(-5.75026 + 16.4333i) q^{31} +(-78.1384 - 8.80409i) q^{32} +(36.4517 + 29.0692i) q^{33} +(-4.37035 - 9.07513i) q^{34} +(-3.93509 + 8.17129i) q^{35} +(-64.3555 - 80.6993i) q^{36} +(47.2178 - 29.6689i) q^{37} +(28.1154 + 6.41716i) q^{38} +(-64.9160 + 7.31428i) q^{39} +(-36.7308 - 23.0795i) q^{40} +(52.6192 + 52.6192i) q^{41} +(76.5241 - 17.4661i) q^{42} +(-57.3351 + 20.0624i) q^{43} +(-35.3834 - 101.120i) q^{44} +(-4.33368 - 18.9871i) q^{45} +(37.9872 - 37.9872i) q^{46} +(-14.1131 + 22.4608i) q^{47} +(22.2347 + 197.338i) q^{48} +(5.84268 - 25.5984i) q^{49} +(42.6876 + 67.9369i) q^{50} +(-9.20616 + 7.34167i) q^{51} +(135.243 + 65.1296i) q^{52} +(-7.05587 + 3.39793i) q^{53} +(-12.7324 + 15.9659i) q^{54} +(2.26323 - 20.0867i) q^{55} +(-102.678 - 35.9286i) q^{56} -33.7128i q^{57} +(-73.7045 - 80.0514i) q^{58} -16.5015 q^{59} +(-27.7697 + 79.3613i) q^{60} +(45.2629 + 5.09991i) q^{61} +(-51.0750 - 40.7309i) q^{62} +(-21.1900 - 44.0015i) q^{63} +(49.4436 - 102.671i) q^{64} +(17.6589 + 22.1436i) q^{65} +(-148.127 + 93.0745i) q^{66} +(-9.62187 - 2.19613i) q^{67} +(26.8869 - 3.02942i) q^{68} +(-53.1761 - 33.4128i) q^{69} +(-24.0633 - 24.0633i) q^{70} +(70.8502 - 16.1711i) q^{71} +(220.487 - 77.1517i) q^{72} +(26.3548 + 75.3176i) q^{73} +(46.5611 + 203.997i) q^{74} +(66.3241 - 66.3241i) q^{75} +(-41.2141 + 65.5919i) q^{76} +(-5.67545 - 50.3710i) q^{77} +(54.5445 - 238.975i) q^{78} +(-34.8581 - 55.4763i) q^{79} +(67.3143 - 53.6814i) q^{80} +(-61.5307 - 29.6316i) q^{81} +(-251.569 + 121.149i) q^{82} +(29.5710 - 37.0809i) q^{83} +(-23.6071 + 209.519i) q^{84} +(4.81867 + 1.68613i) q^{85} -227.925i q^{86} +(-72.0626 + 104.826i) q^{87} +242.452 q^{88} +(8.20827 - 23.4579i) q^{89} +(72.6165 + 8.18192i) q^{90} +(55.5290 + 44.2829i) q^{91} +(62.6126 + 130.016i) q^{92} +(-33.1353 + 68.8062i) q^{93} +(-62.0585 - 77.8189i) q^{94} +(-12.3760 + 7.77636i) q^{95} +(-336.270 - 76.7513i) q^{96} +(77.3965 - 8.72049i) q^{97} +(83.4203 + 52.4164i) q^{98} +(76.9680 + 76.9680i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 16q^{2} - 12q^{3} - 14q^{4} - 14q^{5} - 14q^{6} - 10q^{7} + 28q^{8} - 14q^{9} + O(q^{10}) \) \( 48q - 16q^{2} - 12q^{3} - 14q^{4} - 14q^{5} - 14q^{6} - 10q^{7} + 28q^{8} - 14q^{9} - 20q^{10} - 8q^{11} - 68q^{12} - 14q^{13} + 26q^{14} - 4q^{15} + 18q^{16} - 26q^{17} - 34q^{18} + 2q^{19} + 46q^{20} + 218q^{21} + 154q^{22} + 56q^{23} + 154q^{24} - 34q^{25} + 110q^{26} + 126q^{27} - 170q^{29} + 24q^{30} - 88q^{31} - 132q^{32} - 224q^{33} - 224q^{34} - 210q^{35} - 434q^{36} - 56q^{37} - 294q^{38} - 232q^{39} - 492q^{40} - 34q^{41} - 14q^{42} + 176q^{43} + 126q^{44} + 114q^{45} + 744q^{46} + 208q^{47} + 640q^{48} + 506q^{49} + 732q^{50} + 322q^{51} + 690q^{52} - 14q^{53} - 36q^{54} + 284q^{55} + 332q^{56} - 508q^{58} - 44q^{59} - 316q^{60} - 30q^{61} - 504q^{62} - 686q^{63} - 896q^{64} - 554q^{65} - 608q^{66} - 574q^{67} - 796q^{68} - 806q^{69} - 1066q^{70} + 224q^{71} + 748q^{72} - 22q^{73} + 820q^{74} + 768q^{75} + 514q^{76} + 436q^{77} + 282q^{78} + 564q^{79} + 1162q^{80} + 670q^{81} - 18q^{82} - 126q^{83} + 572q^{84} + 38q^{85} - 118q^{87} - 384q^{88} - 160q^{89} - 828q^{90} - 434q^{91} - 1022q^{92} - 406q^{93} - 2q^{94} - 642q^{95} - 1176q^{96} + 604q^{97} - 102q^{98} + 316q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23928 + 3.54166i −0.619640 + 1.77083i 0.0172211 + 0.999852i \(0.494518\pi\)
−0.636861 + 0.770978i \(0.719768\pi\)
\(3\) 4.35885 + 0.491124i 1.45295 + 0.163708i 0.802868 0.596157i \(-0.203306\pi\)
0.650081 + 0.759865i \(0.274735\pi\)
\(4\) −7.88021 6.28426i −1.97005 1.57107i
\(5\) −0.825141 1.71342i −0.165028 0.342685i 0.802012 0.597308i \(-0.203763\pi\)
−0.967040 + 0.254623i \(0.918049\pi\)
\(6\) −7.14123 + 14.8289i −1.19020 + 2.47149i
\(7\) −2.97342 3.72855i −0.424774 0.532649i 0.522686 0.852525i \(-0.324930\pi\)
−0.947459 + 0.319876i \(0.896359\pi\)
\(8\) 19.3141 12.1359i 2.41427 1.51698i
\(9\) 9.98399 + 2.27878i 1.10933 + 0.253198i
\(10\) 7.09094 0.798957i 0.709094 0.0798957i
\(11\) 8.99985 + 5.65498i 0.818169 + 0.514089i 0.874902 0.484300i \(-0.160926\pi\)
−0.0567334 + 0.998389i \(0.518069\pi\)
\(12\) −31.2623 31.2623i −2.60519 2.60519i
\(13\) −14.5195 + 3.31399i −1.11689 + 0.254922i −0.740842 0.671679i \(-0.765573\pi\)
−0.376045 + 0.926601i \(0.622716\pi\)
\(14\) 16.8901 5.91011i 1.20644 0.422151i
\(15\) −2.75516 7.87379i −0.183677 0.524920i
\(16\) 10.0742 + 44.1379i 0.629637 + 2.75862i
\(17\) −1.89819 + 1.89819i −0.111658 + 0.111658i −0.760728 0.649070i \(-0.775158\pi\)
0.649070 + 0.760728i \(0.275158\pi\)
\(18\) −20.4436 + 32.5358i −1.13576 + 1.80755i
\(19\) −0.860526 7.63738i −0.0452908 0.401967i −0.995820 0.0913331i \(-0.970887\pi\)
0.950530 0.310634i \(-0.100541\pi\)
\(20\) −4.26531 + 18.6875i −0.213265 + 0.934377i
\(21\) −11.1295 17.7125i −0.529975 0.843451i
\(22\) −31.1814 + 24.8663i −1.41734 + 1.13029i
\(23\) −12.8995 6.21208i −0.560849 0.270090i 0.131908 0.991262i \(-0.457890\pi\)
−0.692757 + 0.721172i \(0.743604\pi\)
\(24\) 90.1475 43.4128i 3.75615 1.80886i
\(25\) 13.3323 16.7182i 0.533291 0.668726i
\(26\) 6.25675 55.5302i 0.240644 2.13578i
\(27\) 5.13702 + 1.79752i 0.190260 + 0.0665748i
\(28\) 48.0675i 1.71670i
\(29\) −13.6496 + 25.5869i −0.470674 + 0.882307i
\(30\) 31.3007 1.04336
\(31\) −5.75026 + 16.4333i −0.185492 + 0.530107i −0.998650 0.0519363i \(-0.983461\pi\)
0.813158 + 0.582043i \(0.197746\pi\)
\(32\) −78.1384 8.80409i −2.44183 0.275128i
\(33\) 36.4517 + 29.0692i 1.10460 + 0.880886i
\(34\) −4.37035 9.07513i −0.128540 0.266916i
\(35\) −3.93509 + 8.17129i −0.112431 + 0.233466i
\(36\) −64.3555 80.6993i −1.78765 2.24165i
\(37\) 47.2178 29.6689i 1.27616 0.801862i 0.288346 0.957526i \(-0.406895\pi\)
0.987810 + 0.155664i \(0.0497518\pi\)
\(38\) 28.1154 + 6.41716i 0.739880 + 0.168873i
\(39\) −64.9160 + 7.31428i −1.66451 + 0.187546i
\(40\) −36.7308 23.0795i −0.918269 0.576987i
\(41\) 52.6192 + 52.6192i 1.28339 + 1.28339i 0.938724 + 0.344671i \(0.112010\pi\)
0.344671 + 0.938724i \(0.387990\pi\)
\(42\) 76.5241 17.4661i 1.82200 0.415860i
\(43\) −57.3351 + 20.0624i −1.33338 + 0.466568i −0.900488 0.434880i \(-0.856791\pi\)
−0.432887 + 0.901448i \(0.642505\pi\)
\(44\) −35.3834 101.120i −0.804168 2.29818i
\(45\) −4.33368 18.9871i −0.0963041 0.421936i
\(46\) 37.9872 37.9872i 0.825809 0.825809i
\(47\) −14.1131 + 22.4608i −0.300278 + 0.477889i −0.962449 0.271463i \(-0.912492\pi\)
0.662171 + 0.749353i \(0.269635\pi\)
\(48\) 22.2347 + 197.338i 0.463222 + 4.11121i
\(49\) 5.84268 25.5984i 0.119238 0.522417i
\(50\) 42.6876 + 67.9369i 0.853752 + 1.35874i
\(51\) −9.20616 + 7.34167i −0.180513 + 0.143954i
\(52\) 135.243 + 65.1296i 2.60083 + 1.25249i
\(53\) −7.05587 + 3.39793i −0.133130 + 0.0641118i −0.499263 0.866451i \(-0.666396\pi\)
0.366133 + 0.930562i \(0.380681\pi\)
\(54\) −12.7324 + 15.9659i −0.235785 + 0.295666i
\(55\) 2.26323 20.0867i 0.0411496 0.365213i
\(56\) −102.678 35.9286i −1.83354 0.641582i
\(57\) 33.7128i 0.591452i
\(58\) −73.7045 80.0514i −1.27077 1.38020i
\(59\) −16.5015 −0.279686 −0.139843 0.990174i \(-0.544660\pi\)
−0.139843 + 0.990174i \(0.544660\pi\)
\(60\) −27.7697 + 79.3613i −0.462829 + 1.32269i
\(61\) 45.2629 + 5.09991i 0.742015 + 0.0836050i 0.474876 0.880053i \(-0.342493\pi\)
0.267139 + 0.963658i \(0.413922\pi\)
\(62\) −51.0750 40.7309i −0.823790 0.656951i
\(63\) −21.1900 44.0015i −0.336349 0.698437i
\(64\) 49.4436 102.671i 0.772556 1.60423i
\(65\) 17.6589 + 22.1436i 0.271676 + 0.340671i
\(66\) −148.127 + 93.0745i −2.24435 + 1.41022i
\(67\) −9.62187 2.19613i −0.143610 0.0327781i 0.150112 0.988669i \(-0.452037\pi\)
−0.293722 + 0.955891i \(0.594894\pi\)
\(68\) 26.8869 3.02942i 0.395395 0.0445503i
\(69\) −53.1761 33.4128i −0.770668 0.484243i
\(70\) −24.0633 24.0633i −0.343761 0.343761i
\(71\) 70.8502 16.1711i 0.997890 0.227762i 0.307773 0.951460i \(-0.400416\pi\)
0.690117 + 0.723698i \(0.257559\pi\)
\(72\) 220.487 77.1517i 3.06232 1.07155i
\(73\) 26.3548 + 75.3176i 0.361024 + 1.03175i 0.970949 + 0.239288i \(0.0769140\pi\)
−0.609925 + 0.792459i \(0.708800\pi\)
\(74\) 46.5611 + 203.997i 0.629204 + 2.75672i
\(75\) 66.3241 66.3241i 0.884321 0.884321i
\(76\) −41.2141 + 65.5919i −0.542291 + 0.863052i
\(77\) −5.67545 50.3710i −0.0737071 0.654169i
\(78\) 54.5445 238.975i 0.699288 3.06378i
\(79\) −34.8581 55.4763i −0.441241 0.702231i 0.549872 0.835249i \(-0.314676\pi\)
−0.991114 + 0.133017i \(0.957533\pi\)
\(80\) 67.3143 53.6814i 0.841429 0.671017i
\(81\) −61.5307 29.6316i −0.759638 0.365822i
\(82\) −251.569 + 121.149i −3.06792 + 1.47743i
\(83\) 29.5710 37.0809i 0.356278 0.446758i −0.571102 0.820879i \(-0.693484\pi\)
0.927380 + 0.374121i \(0.122055\pi\)
\(84\) −23.6071 + 209.519i −0.281037 + 2.49427i
\(85\) 4.81867 + 1.68613i 0.0566903 + 0.0198368i
\(86\) 227.925i 2.65029i
\(87\) −72.0626 + 104.826i −0.828306 + 1.20489i
\(88\) 242.452 2.75514
\(89\) 8.20827 23.4579i 0.0922277 0.263572i −0.888524 0.458830i \(-0.848269\pi\)
0.980752 + 0.195258i \(0.0625545\pi\)
\(90\) 72.6165 + 8.18192i 0.806850 + 0.0909102i
\(91\) 55.5290 + 44.2829i 0.610209 + 0.486625i
\(92\) 62.6126 + 130.016i 0.680572 + 1.41322i
\(93\) −33.1353 + 68.8062i −0.356294 + 0.739851i
\(94\) −62.0585 77.8189i −0.660197 0.827861i
\(95\) −12.3760 + 7.77636i −0.130274 + 0.0818564i
\(96\) −336.270 76.7513i −3.50281 0.799493i
\(97\) 77.3965 8.72049i 0.797902 0.0899020i 0.296406 0.955062i \(-0.404212\pi\)
0.501496 + 0.865160i \(0.332783\pi\)
\(98\) 83.4203 + 52.4164i 0.851227 + 0.534861i
\(99\) 76.9680 + 76.9680i 0.777454 + 0.777454i
\(100\) −210.123 + 47.9591i −2.10123 + 0.479591i
\(101\) −21.8831 + 7.65721i −0.216664 + 0.0758140i −0.436428 0.899739i \(-0.643757\pi\)
0.219765 + 0.975553i \(0.429471\pi\)
\(102\) −14.5927 41.7035i −0.143065 0.408858i
\(103\) −22.1646 97.1094i −0.215190 0.942810i −0.960978 0.276626i \(-0.910784\pi\)
0.745787 0.666184i \(-0.232073\pi\)
\(104\) −240.214 + 240.214i −2.30975 + 2.30975i
\(105\) −21.1656 + 33.6848i −0.201577 + 0.320808i
\(106\) −3.29010 29.2005i −0.0310387 0.275476i
\(107\) −29.0126 + 127.113i −0.271146 + 1.18797i 0.637516 + 0.770437i \(0.279962\pi\)
−0.908662 + 0.417532i \(0.862895\pi\)
\(108\) −29.1847 46.4472i −0.270229 0.430067i
\(109\) 79.7825 63.6245i 0.731950 0.583711i −0.184988 0.982741i \(-0.559225\pi\)
0.916938 + 0.399030i \(0.130653\pi\)
\(110\) 68.3355 + 32.9087i 0.621232 + 0.299170i
\(111\) 220.386 106.132i 1.98546 0.956147i
\(112\) 134.616 168.803i 1.20192 1.50717i
\(113\) −1.99049 + 17.6661i −0.0176149 + 0.156337i −0.999440 0.0334490i \(-0.989351\pi\)
0.981825 + 0.189786i \(0.0607794\pi\)
\(114\) 119.399 + 41.7796i 1.04736 + 0.366488i
\(115\) 27.2282i 0.236767i
\(116\) 268.356 115.853i 2.31342 0.998732i
\(117\) −152.515 −1.30354
\(118\) 20.4499 58.4426i 0.173305 0.495276i
\(119\) 12.7216 + 1.43338i 0.106904 + 0.0120452i
\(120\) −148.769 118.639i −1.23974 0.988660i
\(121\) −3.48139 7.22918i −0.0287718 0.0597453i
\(122\) −74.1556 + 153.986i −0.607833 + 1.26218i
\(123\) 203.516 + 255.201i 1.65460 + 2.07481i
\(124\) 148.584 93.3618i 1.19826 0.752918i
\(125\) −85.9982 19.6285i −0.687985 0.157028i
\(126\) 182.099 20.5176i 1.44523 0.162838i
\(127\) −130.785 82.1776i −1.02980 0.647067i −0.0925455 0.995708i \(-0.529500\pi\)
−0.937256 + 0.348641i \(0.886643\pi\)
\(128\) 79.9428 + 79.9428i 0.624554 + 0.624554i
\(129\) −259.768 + 59.2904i −2.01371 + 0.459616i
\(130\) −100.309 + 35.0998i −0.771611 + 0.269998i
\(131\) −61.2906 175.158i −0.467867 1.33709i −0.900241 0.435392i \(-0.856610\pi\)
0.432374 0.901694i \(-0.357676\pi\)
\(132\) −104.568 458.144i −0.792184 3.47079i
\(133\) −25.9176 + 25.9176i −0.194869 + 0.194869i
\(134\) 19.7021 31.3558i 0.147031 0.233998i
\(135\) −1.15885 10.2851i −0.00858408 0.0761859i
\(136\) −13.6257 + 59.6980i −0.100189 + 0.438956i
\(137\) −105.668 168.169i −0.771297 1.22751i −0.968954 0.247241i \(-0.920476\pi\)
0.197657 0.980271i \(-0.436667\pi\)
\(138\) 184.237 146.924i 1.33505 1.06467i
\(139\) 175.733 + 84.6283i 1.26426 + 0.608837i 0.941299 0.337574i \(-0.109606\pi\)
0.322964 + 0.946411i \(0.395321\pi\)
\(140\) 82.3599 39.6624i 0.588285 0.283303i
\(141\) −72.5477 + 90.9719i −0.514523 + 0.645191i
\(142\) −30.5307 + 270.968i −0.215005 + 1.90822i
\(143\) −149.414 52.2823i −1.04486 0.365611i
\(144\) 463.630i 3.21965i
\(145\) 55.1040 + 2.27465i 0.380028 + 0.0156872i
\(146\) −299.410 −2.05075
\(147\) 38.0393 108.710i 0.258771 0.739525i
\(148\) −558.533 62.9316i −3.77387 0.425213i
\(149\) 82.4611 + 65.7605i 0.553430 + 0.441346i 0.859847 0.510552i \(-0.170559\pi\)
−0.306417 + 0.951897i \(0.599130\pi\)
\(150\) 152.703 + 317.091i 1.01802 + 2.11394i
\(151\) 28.0926 58.3349i 0.186044 0.386324i −0.786997 0.616957i \(-0.788365\pi\)
0.973041 + 0.230633i \(0.0740796\pi\)
\(152\) −109.307 137.066i −0.719122 0.901750i
\(153\) −23.2771 + 14.6259i −0.152138 + 0.0955944i
\(154\) 185.430 + 42.3233i 1.20409 + 0.274826i
\(155\) 32.9020 3.70716i 0.212271 0.0239172i
\(156\) 557.517 + 350.311i 3.57383 + 2.24558i
\(157\) −1.83043 1.83043i −0.0116588 0.0116588i 0.701253 0.712912i \(-0.252624\pi\)
−0.712912 + 0.701253i \(0.752624\pi\)
\(158\) 239.677 54.7047i 1.51694 0.346232i
\(159\) −32.4243 + 11.3457i −0.203926 + 0.0713568i
\(160\) 49.3901 + 141.149i 0.308688 + 0.882180i
\(161\) 15.1936 + 66.5675i 0.0943702 + 0.413463i
\(162\) 181.199 181.199i 1.11851 1.11851i
\(163\) −41.5519 + 66.1295i −0.254920 + 0.405702i −0.949526 0.313687i \(-0.898436\pi\)
0.694607 + 0.719390i \(0.255578\pi\)
\(164\) −83.9777 745.323i −0.512059 4.54465i
\(165\) 19.7301 86.4434i 0.119577 0.523899i
\(166\) 94.6812 + 150.684i 0.570369 + 0.907737i
\(167\) −225.933 + 180.176i −1.35289 + 1.07890i −0.363819 + 0.931470i \(0.618527\pi\)
−0.989073 + 0.147426i \(0.952901\pi\)
\(168\) −429.912 207.035i −2.55900 1.23235i
\(169\) 47.5707 22.9088i 0.281483 0.135555i
\(170\) −11.9434 + 14.9765i −0.0702552 + 0.0880972i
\(171\) 8.81242 78.2124i 0.0515346 0.457383i
\(172\) 577.891 + 202.213i 3.35983 + 1.17566i
\(173\) 62.9477i 0.363859i −0.983312 0.181930i \(-0.941766\pi\)
0.983312 0.181930i \(-0.0582343\pi\)
\(174\) −281.951 385.130i −1.62041 2.21339i
\(175\) −101.977 −0.582725
\(176\) −158.933 + 454.205i −0.903029 + 2.58071i
\(177\) −71.9274 8.10427i −0.406369 0.0457868i
\(178\) 72.9075 + 58.1418i 0.409593 + 0.326639i
\(179\) −8.61975 17.8991i −0.0481551 0.0999950i 0.875503 0.483213i \(-0.160530\pi\)
−0.923658 + 0.383218i \(0.874816\pi\)
\(180\) −85.1696 + 176.856i −0.473164 + 0.982536i
\(181\) 216.692 + 271.724i 1.19720 + 1.50124i 0.817305 + 0.576205i \(0.195467\pi\)
0.379891 + 0.925031i \(0.375962\pi\)
\(182\) −225.651 + 141.786i −1.23984 + 0.779043i
\(183\) 194.789 + 44.4594i 1.06442 + 0.242948i
\(184\) −324.532 + 36.5660i −1.76376 + 0.198728i
\(185\) −89.7967 56.4230i −0.485387 0.304989i
\(186\) −202.624 202.624i −1.08938 1.08938i
\(187\) −27.8177 + 6.34920i −0.148758 + 0.0339529i
\(188\) 252.364 88.3058i 1.34236 0.469712i
\(189\) −8.57235 24.4984i −0.0453564 0.129621i
\(190\) −12.2039 53.4687i −0.0642309 0.281414i
\(191\) 141.225 141.225i 0.739396 0.739396i −0.233065 0.972461i \(-0.574876\pi\)
0.972461 + 0.233065i \(0.0748756\pi\)
\(192\) 265.941 423.243i 1.38511 2.20439i
\(193\) −11.1053 98.5623i −0.0575404 0.510685i −0.989116 0.147138i \(-0.952994\pi\)
0.931576 0.363548i \(-0.118435\pi\)
\(194\) −65.0310 + 284.919i −0.335211 + 1.46866i
\(195\) 66.0973 + 105.193i 0.338961 + 0.539453i
\(196\) −206.909 + 165.004i −1.05566 + 0.841859i
\(197\) 188.915 + 90.9767i 0.958960 + 0.461811i 0.846819 0.531881i \(-0.178515\pi\)
0.112141 + 0.993692i \(0.464229\pi\)
\(198\) −367.979 + 177.209i −1.85848 + 0.894997i
\(199\) −37.9160 + 47.5452i −0.190533 + 0.238920i −0.867917 0.496708i \(-0.834542\pi\)
0.677385 + 0.735629i \(0.263113\pi\)
\(200\) 54.6121 484.695i 0.273060 2.42348i
\(201\) −40.8617 14.2981i −0.203292 0.0711349i
\(202\) 86.9918i 0.430652i
\(203\) 135.988 25.1875i 0.669890 0.124077i
\(204\) 118.683 0.581782
\(205\) 46.7407 133.577i 0.228003 0.651596i
\(206\) 371.397 + 41.8464i 1.80290 + 0.203138i
\(207\) −114.633 91.4165i −0.553781 0.441626i
\(208\) −292.545 607.477i −1.40647 2.92056i
\(209\) 35.4446 73.6015i 0.169592 0.352160i
\(210\) −93.0700 116.706i −0.443191 0.555744i
\(211\) 68.7153 43.1767i 0.325665 0.204629i −0.359269 0.933234i \(-0.616974\pi\)
0.684934 + 0.728605i \(0.259831\pi\)
\(212\) 76.9552 + 17.5645i 0.362996 + 0.0828516i
\(213\) 316.767 35.6911i 1.48717 0.167564i
\(214\) −414.235 260.281i −1.93568 1.21627i
\(215\) 81.6850 + 81.6850i 0.379930 + 0.379930i
\(216\) 121.031 27.6246i 0.560331 0.127892i
\(217\) 78.3702 27.4229i 0.361153 0.126373i
\(218\) 126.463 + 361.411i 0.580107 + 1.65785i
\(219\) 77.8861 + 341.241i 0.355644 + 1.55818i
\(220\) −144.065 + 144.065i −0.654840 + 0.654840i
\(221\) 21.2703 33.8514i 0.0962455 0.153174i
\(222\) 102.765 + 912.061i 0.462903 + 4.10838i
\(223\) 38.3341 167.952i 0.171902 0.753150i −0.813313 0.581826i \(-0.802338\pi\)
0.985215 0.171324i \(-0.0548045\pi\)
\(224\) 199.512 + 317.521i 0.890677 + 1.41750i
\(225\) 171.206 136.533i 0.760917 0.606811i
\(226\) −60.1005 28.9429i −0.265931 0.128066i
\(227\) 73.5809 35.4347i 0.324145 0.156100i −0.264734 0.964322i \(-0.585284\pi\)
0.588878 + 0.808222i \(0.299570\pi\)
\(228\) −211.860 + 265.664i −0.929210 + 1.16519i
\(229\) −49.0011 + 434.897i −0.213979 + 1.89911i 0.185936 + 0.982562i \(0.440468\pi\)
−0.399914 + 0.916553i \(0.630960\pi\)
\(230\) −96.4329 33.7433i −0.419274 0.146710i
\(231\) 222.347i 0.962540i
\(232\) 46.8902 + 659.838i 0.202113 + 2.84413i
\(233\) −387.776 −1.66428 −0.832138 0.554568i \(-0.812883\pi\)
−0.832138 + 0.554568i \(0.812883\pi\)
\(234\) 189.009 540.155i 0.807729 2.30836i
\(235\) 50.1301 + 5.64831i 0.213320 + 0.0240354i
\(236\) 130.035 + 103.700i 0.550996 + 0.439405i
\(237\) −124.695 258.932i −0.526140 1.09254i
\(238\) −20.8422 + 43.2792i −0.0875721 + 0.181845i
\(239\) −152.868 191.691i −0.639616 0.802054i 0.351339 0.936248i \(-0.385727\pi\)
−0.990955 + 0.134195i \(0.957155\pi\)
\(240\) 319.777 200.929i 1.33240 0.837205i
\(241\) −239.467 54.6568i −0.993639 0.226792i −0.305360 0.952237i \(-0.598777\pi\)
−0.688280 + 0.725445i \(0.741634\pi\)
\(242\) 29.9177 3.37092i 0.123627 0.0139294i
\(243\) −295.124 185.439i −1.21450 0.763122i
\(244\) −324.632 324.632i −1.33046 1.33046i
\(245\) −48.6820 + 11.1113i −0.198702 + 0.0453524i
\(246\) −1156.05 + 404.520i −4.69939 + 1.64439i
\(247\) 37.8046 + 108.039i 0.153055 + 0.437407i
\(248\) 88.3712 + 387.179i 0.356335 + 1.56121i
\(249\) 147.107 147.107i 0.590791 0.590791i
\(250\) 176.093 280.251i 0.704374 1.12100i
\(251\) 28.1181 + 249.555i 0.112024 + 0.994243i 0.916439 + 0.400175i \(0.131051\pi\)
−0.804415 + 0.594068i \(0.797521\pi\)
\(252\) −109.535 + 479.905i −0.434663 + 1.90438i
\(253\) −80.9646 128.854i −0.320018 0.509306i
\(254\) 453.124 361.354i 1.78395 1.42266i
\(255\) 20.1758 + 9.71614i 0.0791206 + 0.0381025i
\(256\) 28.4807 13.7156i 0.111253 0.0535765i
\(257\) −95.7102 + 120.017i −0.372413 + 0.466992i −0.932357 0.361539i \(-0.882251\pi\)
0.559944 + 0.828531i \(0.310823\pi\)
\(258\) 111.939 993.488i 0.433873 3.85073i
\(259\) −251.020 87.8357i −0.969189 0.339134i
\(260\) 285.470i 1.09796i
\(261\) −194.584 + 224.355i −0.745532 + 0.859598i
\(262\) 696.308 2.65766
\(263\) −105.208 + 300.667i −0.400030 + 1.14322i 0.551102 + 0.834438i \(0.314207\pi\)
−0.951133 + 0.308783i \(0.900078\pi\)
\(264\) 1056.81 + 119.074i 4.00308 + 0.451039i
\(265\) 11.6442 + 9.28592i 0.0439403 + 0.0350412i
\(266\) −59.6722 123.911i −0.224331 0.465829i
\(267\) 47.2993 98.2180i 0.177151 0.367858i
\(268\) 62.0214 + 77.7723i 0.231423 + 0.290195i
\(269\) −7.77269 + 4.88391i −0.0288948 + 0.0181558i −0.546402 0.837523i \(-0.684003\pi\)
0.517507 + 0.855679i \(0.326860\pi\)
\(270\) 37.8624 + 8.64185i 0.140231 + 0.0320069i
\(271\) −268.279 + 30.2278i −0.989959 + 0.111542i −0.592065 0.805890i \(-0.701687\pi\)
−0.397894 + 0.917432i \(0.630259\pi\)
\(272\) −102.905 64.6594i −0.378327 0.237719i
\(273\) 220.294 + 220.294i 0.806937 + 0.806937i
\(274\) 726.550 165.830i 2.65164 0.605220i
\(275\) 214.530 75.0671i 0.780107 0.272971i
\(276\) 209.065 + 597.472i 0.757481 + 2.16476i
\(277\) −11.0452 48.3921i −0.0398743 0.174701i 0.951070 0.308976i \(-0.0999864\pi\)
−0.990944 + 0.134276i \(0.957129\pi\)
\(278\) −517.507 + 517.507i −1.86153 + 1.86153i
\(279\) −94.8584 + 150.966i −0.339994 + 0.541098i
\(280\) 23.1630 + 205.577i 0.0827249 + 0.734204i
\(281\) 43.7617 191.733i 0.155736 0.682323i −0.835419 0.549613i \(-0.814775\pi\)
0.991155 0.132709i \(-0.0423677\pi\)
\(282\) −232.285 369.679i −0.823705 1.31092i
\(283\) −274.851 + 219.186i −0.971205 + 0.774510i −0.974247 0.225486i \(-0.927603\pi\)
0.00304189 + 0.999995i \(0.499032\pi\)
\(284\) −659.938 317.809i −2.32372 1.11905i
\(285\) −57.7642 + 27.8178i −0.202682 + 0.0976063i
\(286\) 370.332 464.382i 1.29487 1.62371i
\(287\) 39.7343 352.652i 0.138447 1.22875i
\(288\) −760.071 265.960i −2.63913 0.923473i
\(289\) 281.794i 0.975065i
\(290\) −76.3453 + 192.341i −0.263260 + 0.663244i
\(291\) 341.642 1.17403
\(292\) 265.634 759.139i 0.909706 2.59979i
\(293\) 121.356 + 13.6736i 0.414186 + 0.0466675i 0.316599 0.948559i \(-0.397459\pi\)
0.0975868 + 0.995227i \(0.468888\pi\)
\(294\) 337.873 + 269.445i 1.14923 + 0.916479i
\(295\) 13.6160 + 28.2740i 0.0461561 + 0.0958440i
\(296\) 551.912 1146.06i 1.86457 3.87182i
\(297\) 36.0675 + 45.2272i 0.121439 + 0.152280i
\(298\) −335.094 + 210.553i −1.12448 + 0.706555i
\(299\) 207.882 + 47.4477i 0.695257 + 0.158688i
\(300\) −939.446 + 105.850i −3.13149 + 0.352834i
\(301\) 245.285 + 154.123i 0.814900 + 0.512036i
\(302\) 171.788 + 171.788i 0.568834 + 0.568834i
\(303\) −99.1455 + 22.6293i −0.327213 + 0.0746842i
\(304\) 328.429 114.922i 1.08036 0.378034i
\(305\) −28.6100 81.7627i −0.0938032 0.268074i
\(306\) −22.9533 100.565i −0.0750108 0.328644i
\(307\) 131.491 131.491i 0.428308 0.428308i −0.459743 0.888052i \(-0.652059\pi\)
0.888052 + 0.459743i \(0.152059\pi\)
\(308\) −271.821 + 432.600i −0.882535 + 1.40455i
\(309\) −48.9193 434.171i −0.158315 1.40508i
\(310\) −27.6453 + 121.122i −0.0891783 + 0.390716i
\(311\) 37.2084 + 59.2169i 0.119641 + 0.190408i 0.901176 0.433454i \(-0.142705\pi\)
−0.781534 + 0.623862i \(0.785563\pi\)
\(312\) −1165.03 + 929.081i −3.73407 + 2.97782i
\(313\) −113.121 54.4761i −0.361408 0.174045i 0.244363 0.969684i \(-0.421421\pi\)
−0.605771 + 0.795639i \(0.707135\pi\)
\(314\) 8.75117 4.21434i 0.0278700 0.0134215i
\(315\) −57.9084 + 72.6149i −0.183836 + 0.230523i
\(316\) −73.9385 + 656.222i −0.233983 + 2.07665i
\(317\) 88.6738 + 31.0283i 0.279728 + 0.0978811i 0.466497 0.884523i \(-0.345516\pi\)
−0.186769 + 0.982404i \(0.559802\pi\)
\(318\) 128.896i 0.405334i
\(319\) −267.537 + 153.090i −0.838676 + 0.479907i
\(320\) −216.716 −0.677238
\(321\) −188.890 + 539.816i −0.588442 + 1.68167i
\(322\) −254.589 28.6853i −0.790648 0.0890847i
\(323\) 16.1306 + 12.8637i 0.0499400 + 0.0398258i
\(324\) 298.662 + 620.178i 0.921796 + 1.91413i
\(325\) −138.175 + 286.923i −0.425153 + 0.882840i
\(326\) −182.714 229.116i −0.560472 0.702809i
\(327\) 379.007 238.146i 1.15904 0.728276i
\(328\) 1654.87 + 377.714i 5.04534 + 1.15157i
\(329\) 125.710 14.1641i 0.382098 0.0430521i
\(330\) 281.702 + 177.005i 0.853642 + 0.536379i
\(331\) −374.103 374.103i −1.13022 1.13022i −0.990140 0.140079i \(-0.955264\pi\)
−0.140079 0.990140i \(-0.544736\pi\)
\(332\) −466.052 + 106.373i −1.40377 + 0.320402i
\(333\) 539.031 188.615i 1.61871 0.566411i
\(334\) −358.126 1023.47i −1.07223 3.06427i
\(335\) 4.17650 + 18.2985i 0.0124672 + 0.0546222i
\(336\) 669.672 669.672i 1.99307 1.99307i
\(337\) 286.168 455.434i 0.849164 1.35144i −0.0856601 0.996324i \(-0.527300\pi\)
0.934824 0.355112i \(-0.115557\pi\)
\(338\) 22.1819 + 196.870i 0.0656269 + 0.582455i
\(339\) −17.3525 + 76.0261i −0.0511872 + 0.224266i
\(340\) −27.3761 43.5689i −0.0805180 0.128144i
\(341\) −144.682 + 115.380i −0.424286 + 0.338357i
\(342\) 266.081 + 128.138i 0.778014 + 0.374672i
\(343\) −323.356 + 155.720i −0.942730 + 0.453995i
\(344\) −863.903 + 1083.30i −2.51135 + 3.14913i
\(345\) −13.3724 + 118.683i −0.0387606 + 0.344010i
\(346\) 222.939 + 78.0098i 0.644333 + 0.225462i
\(347\) 178.685i 0.514941i 0.966286 + 0.257471i \(0.0828890\pi\)
−0.966286 + 0.257471i \(0.917111\pi\)
\(348\) 1226.62 373.189i 3.52477 1.07238i
\(349\) −139.403 −0.399435 −0.199718 0.979853i \(-0.564002\pi\)
−0.199718 + 0.979853i \(0.564002\pi\)
\(350\) 126.378 361.167i 0.361080 1.03191i
\(351\) −80.5441 9.07514i −0.229470 0.0258551i
\(352\) −653.448 521.107i −1.85639 1.48042i
\(353\) 92.9580 + 193.029i 0.263337 + 0.546825i 0.990150 0.140010i \(-0.0447135\pi\)
−0.726813 + 0.686836i \(0.758999\pi\)
\(354\) 117.841 244.699i 0.332883 0.691240i
\(355\) −86.1693 108.053i −0.242730 0.304374i
\(356\) −212.098 + 133.270i −0.595782 + 0.374355i
\(357\) 54.7475 + 12.4958i 0.153354 + 0.0350021i
\(358\) 74.0748 8.34623i 0.206913 0.0233135i
\(359\) 247.342 + 155.415i 0.688975 + 0.432911i 0.830497 0.557024i \(-0.188057\pi\)
−0.141522 + 0.989935i \(0.545200\pi\)
\(360\) −314.126 314.126i −0.872573 0.872573i
\(361\) 294.360 67.1857i 0.815402 0.186110i
\(362\) −1230.90 + 430.709i −3.40027 + 1.18980i
\(363\) −11.6244 33.2207i −0.0320232 0.0915171i
\(364\) −159.295 697.917i −0.437624 1.91736i
\(365\) 107.304 107.304i 0.293985 0.293985i
\(366\) −398.859 + 634.780i −1.08978 + 1.73437i
\(367\) −40.7326 361.512i −0.110988 0.985045i −0.918561 0.395278i \(-0.870648\pi\)
0.807573 0.589767i \(-0.200780\pi\)
\(368\) 144.236 631.940i 0.391946 1.71723i
\(369\) 405.442 + 645.257i 1.09876 + 1.74866i
\(370\) 311.114 248.105i 0.840850 0.670555i
\(371\) 33.6494 + 16.2047i 0.0906991 + 0.0436784i
\(372\) 693.509 333.976i 1.86427 0.897786i
\(373\) 215.373 270.069i 0.577408 0.724047i −0.404260 0.914644i \(-0.632471\pi\)
0.981668 + 0.190597i \(0.0610424\pi\)
\(374\) 11.9872 106.389i 0.0320513 0.284463i
\(375\) −365.213 127.793i −0.973901 0.340783i
\(376\) 605.085i 1.60927i
\(377\) 113.390 416.745i 0.300770 1.10542i
\(378\) 97.3885 0.257641
\(379\) −153.162 + 437.711i −0.404121 + 1.15491i 0.544573 + 0.838714i \(0.316692\pi\)
−0.948693 + 0.316197i \(0.897594\pi\)
\(380\) 146.394 + 16.4947i 0.385248 + 0.0434070i
\(381\) −529.712 422.431i −1.39032 1.10874i
\(382\) 325.153 + 675.186i 0.851185 + 1.76750i
\(383\) −180.735 + 375.300i −0.471893 + 0.979895i 0.520160 + 0.854069i \(0.325872\pi\)
−0.992052 + 0.125826i \(0.959842\pi\)
\(384\) 309.197 + 387.720i 0.805200 + 1.00969i
\(385\) −81.6237 + 51.2876i −0.212010 + 0.133215i
\(386\) 362.837 + 82.8151i 0.939992 + 0.214547i
\(387\) −618.151 + 69.6489i −1.59729 + 0.179971i
\(388\) −664.703 417.661i −1.71315 1.07644i
\(389\) 161.284 + 161.284i 0.414612 + 0.414612i 0.883341 0.468730i \(-0.155288\pi\)
−0.468730 + 0.883341i \(0.655288\pi\)
\(390\) −454.472 + 103.730i −1.16531 + 0.265975i
\(391\) 36.2774 12.6940i 0.0927812 0.0324655i
\(392\) −197.813 565.317i −0.504625 1.44214i
\(393\) −181.132 793.590i −0.460895 2.01931i
\(394\) −556.328 + 556.328i −1.41200 + 1.41200i
\(395\) −66.2915 + 105.502i −0.167827 + 0.267095i
\(396\) −122.837 1090.21i −0.310195 2.75306i
\(397\) 50.2171 220.015i 0.126491 0.554195i −0.871474 0.490441i \(-0.836836\pi\)
0.997966 0.0637538i \(-0.0203072\pi\)
\(398\) −121.400 193.207i −0.305026 0.485446i
\(399\) −125.700 + 100.242i −0.315037 + 0.251233i
\(400\) 872.217 + 420.038i 2.18054 + 1.05009i
\(401\) −103.557 + 49.8706i −0.258248 + 0.124366i −0.558529 0.829485i \(-0.688634\pi\)
0.300281 + 0.953851i \(0.402920\pi\)
\(402\) 101.278 126.999i 0.251936 0.315917i
\(403\) 29.0313 257.660i 0.0720381 0.639356i
\(404\) 220.563 + 77.1784i 0.545948 + 0.191036i
\(405\) 129.878i 0.320687i
\(406\) −79.3213 + 512.837i −0.195373 + 1.26314i
\(407\) 592.730 1.45634
\(408\) −88.7114 + 253.523i −0.217430 + 0.621379i
\(409\) 202.526 + 22.8191i 0.495172 + 0.0557925i 0.356020 0.934478i \(-0.384134\pi\)
0.139153 + 0.990271i \(0.455562\pi\)
\(410\) 415.160 + 331.079i 1.01259 + 0.807510i
\(411\) −377.997 784.920i −0.919702 1.90978i
\(412\) −435.599 + 904.531i −1.05728 + 2.19546i
\(413\) 49.0657 + 61.5265i 0.118803 + 0.148975i
\(414\) 465.828 292.699i 1.12519 0.707003i
\(415\) −87.9356 20.0707i −0.211893 0.0483632i
\(416\) 1163.71 131.119i 2.79738 0.315189i
\(417\) 724.428 + 455.188i 1.73724 + 1.09158i
\(418\) 216.746 + 216.746i 0.518531 + 0.518531i
\(419\) −255.808 + 58.3864i −0.610519 + 0.139347i −0.516592 0.856232i \(-0.672799\pi\)
−0.0939279 + 0.995579i \(0.529942\pi\)
\(420\) 378.473 132.434i 0.901127 0.315318i
\(421\) −43.6026 124.609i −0.103569 0.295984i 0.880425 0.474186i \(-0.157258\pi\)
−0.983994 + 0.178202i \(0.942972\pi\)
\(422\) 67.7596 + 296.874i 0.160568 + 0.703493i
\(423\) −192.088 + 192.088i −0.454108 + 0.454108i
\(424\) −95.0411 + 151.257i −0.224154 + 0.356738i
\(425\) 6.42703 + 57.0414i 0.0151224 + 0.134215i
\(426\) −266.157 + 1166.11i −0.624783 + 2.73735i
\(427\) −115.570 183.929i −0.270656 0.430747i
\(428\) 1027.44 819.352i 2.40055 1.91437i
\(429\) −625.597 301.272i −1.45827 0.702265i
\(430\) −390.531 + 188.070i −0.908212 + 0.437372i
\(431\) 509.988 639.505i 1.18327 1.48377i 0.344921 0.938632i \(-0.387906\pi\)
0.838346 0.545138i \(-0.183523\pi\)
\(432\) −27.5875 + 244.846i −0.0638600 + 0.566773i
\(433\) 531.332 + 185.921i 1.22710 + 0.429379i 0.864531 0.502579i \(-0.167615\pi\)
0.362565 + 0.931959i \(0.381901\pi\)
\(434\) 311.545i 0.717847i
\(435\) 239.073 + 36.9777i 0.549592 + 0.0850063i
\(436\) −1028.54 −2.35903
\(437\) −36.3436 + 103.864i −0.0831662 + 0.237675i
\(438\) −1305.08 147.048i −2.97964 0.335725i
\(439\) −24.2672 19.3524i −0.0552783 0.0440829i 0.595461 0.803384i \(-0.296969\pi\)
−0.650739 + 0.759301i \(0.725541\pi\)
\(440\) −200.057 415.424i −0.454676 0.944144i
\(441\) 116.666 242.260i 0.264550 0.549343i
\(442\) 93.5304 + 117.283i 0.211607 + 0.265347i
\(443\) 369.407 232.114i 0.833876 0.523959i −0.0461226 0.998936i \(-0.514686\pi\)
0.879998 + 0.474977i \(0.157544\pi\)
\(444\) −2403.65 548.618i −5.41363 1.23563i
\(445\) −46.9662 + 5.29182i −0.105542 + 0.0118917i
\(446\) 547.324 + 343.906i 1.22718 + 0.771091i
\(447\) 327.139 + 327.139i 0.731854 + 0.731854i
\(448\) −529.829 + 120.930i −1.18265 + 0.269933i
\(449\) 146.230 51.1681i 0.325679 0.113960i −0.162487 0.986711i \(-0.551952\pi\)
0.488166 + 0.872751i \(0.337666\pi\)
\(450\) 271.379 + 775.557i 0.603065 + 1.72346i
\(451\) 176.004 + 771.126i 0.390254 + 1.70981i
\(452\) 126.704 126.704i 0.280318 0.280318i
\(453\) 151.101 240.476i 0.333557 0.530852i
\(454\) 34.3102 + 304.512i 0.0755732 + 0.670731i
\(455\) 30.0561 131.684i 0.0660573 0.289416i
\(456\) −409.134 651.133i −0.897223 1.42792i
\(457\) −108.959 + 86.8918i −0.238422 + 0.190135i −0.735410 0.677622i \(-0.763011\pi\)
0.496988 + 0.867757i \(0.334439\pi\)
\(458\) −1479.53 712.505i −3.23042 1.55569i
\(459\) −13.1631 + 6.33900i −0.0286777 + 0.0138105i
\(460\) 171.109 214.564i 0.371976 0.466443i
\(461\) −79.8883 + 709.028i −0.173293 + 1.53802i 0.542707 + 0.839922i \(0.317399\pi\)
−0.716000 + 0.698100i \(0.754029\pi\)
\(462\) 787.476 + 275.550i 1.70449 + 0.596428i
\(463\) 260.818i 0.563321i 0.959514 + 0.281660i \(0.0908852\pi\)
−0.959514 + 0.281660i \(0.909115\pi\)
\(464\) −1266.86 344.696i −2.73031 0.742879i
\(465\) 145.235 0.312334
\(466\) 480.564 1373.37i 1.03125 2.94715i
\(467\) 422.279 + 47.5794i 0.904237 + 0.101883i 0.551823 0.833961i \(-0.313932\pi\)
0.352414 + 0.935844i \(0.385361\pi\)
\(468\) 1201.85 + 958.442i 2.56805 + 2.04795i
\(469\) 20.4215 + 42.4056i 0.0435426 + 0.0904170i
\(470\) −82.1297 + 170.544i −0.174744 + 0.362860i
\(471\) −7.07959 8.87753i −0.0150310 0.0188482i
\(472\) −318.711 + 200.260i −0.675236 + 0.424279i
\(473\) −629.461 143.670i −1.33078 0.303743i
\(474\) 1071.58 120.738i 2.26072 0.254722i
\(475\) −139.156 87.4373i −0.292959 0.184078i
\(476\) −91.2411 91.2411i −0.191683 0.191683i
\(477\) −78.1888 + 17.8461i −0.163918 + 0.0374132i
\(478\) 868.350 303.849i 1.81663 0.635667i
\(479\) 250.556 + 716.048i 0.523081 + 1.49488i 0.837951 + 0.545746i \(0.183754\pi\)
−0.314869 + 0.949135i \(0.601961\pi\)
\(480\) 145.962 + 639.503i 0.304088 + 1.33230i
\(481\) −587.258 + 587.258i −1.22091 + 1.22091i
\(482\) 490.343 780.376i 1.01731 1.61904i
\(483\) 33.5337 + 297.620i 0.0694279 + 0.616190i
\(484\) −17.9960 + 78.8455i −0.0371818 + 0.162904i
\(485\) −78.8049 125.417i −0.162484 0.258592i
\(486\) 1022.50 815.418i 2.10391 1.67782i
\(487\) 217.553 + 104.768i 0.446720 + 0.215129i 0.643699 0.765279i \(-0.277399\pi\)
−0.196979 + 0.980408i \(0.563113\pi\)
\(488\) 936.105 450.805i 1.91825 0.923780i
\(489\) −213.596 + 267.841i −0.436802 + 0.547732i
\(490\) 20.9780 186.185i 0.0428123 0.379970i
\(491\) −234.084 81.9096i −0.476750 0.166822i 0.0811980 0.996698i \(-0.474125\pi\)
−0.557948 + 0.829876i \(0.688411\pi\)
\(492\) 3289.99i 6.68698i
\(493\) −22.6594 74.4782i −0.0459622 0.151071i
\(494\) −429.489 −0.869412
\(495\) 68.3692 195.388i 0.138120 0.394723i
\(496\) −783.262 88.2524i −1.57916 0.177928i
\(497\) −270.962 216.085i −0.545194 0.434778i
\(498\) 338.696 + 703.310i 0.680113 + 1.41227i
\(499\) 371.665 771.771i 0.744821 1.54664i −0.0898930 0.995951i \(-0.528653\pi\)
0.834714 0.550684i \(-0.185633\pi\)
\(500\) 554.333 + 695.112i 1.10867 + 1.39022i
\(501\) −1073.30 + 674.396i −2.14231 + 1.34610i
\(502\) −918.685 209.684i −1.83005 0.417697i
\(503\) 150.656 16.9748i 0.299514 0.0337471i 0.0390713 0.999236i \(-0.487560\pi\)
0.260443 + 0.965489i \(0.416131\pi\)
\(504\) −943.263 592.691i −1.87155 1.17598i
\(505\) 31.1766 + 31.1766i 0.0617359 + 0.0617359i
\(506\) 556.696 127.062i 1.10019 0.251111i
\(507\) 218.604 76.4930i 0.431173 0.150874i
\(508\) 514.187 + 1469.46i 1.01218 + 2.89264i
\(509\) −86.8522 380.524i −0.170633 0.747592i −0.985739 0.168280i \(-0.946179\pi\)
0.815106 0.579311i \(-0.196678\pi\)
\(510\) −59.4147 + 59.4147i −0.116499 + 0.116499i
\(511\) 202.461 322.215i 0.396206 0.630558i
\(512\) 63.9135 + 567.248i 0.124831 + 1.10791i
\(513\) 9.30780 40.7801i 0.0181439 0.0794935i
\(514\) −306.447 487.708i −0.596200 0.948848i
\(515\) −148.101 + 118.106i −0.287574 + 0.229333i
\(516\) 2419.63 + 1165.23i 4.68920 + 2.25820i
\(517\) −254.031 + 122.335i −0.491356 + 0.236624i
\(518\) 622.168 780.174i 1.20110 1.50613i
\(519\) 30.9151 274.379i 0.0595667 0.528669i
\(520\) 609.799 + 213.378i 1.17269 + 0.410342i
\(521\) 732.499i 1.40595i 0.711215 + 0.702974i \(0.248145\pi\)
−0.711215 + 0.702974i \(0.751855\pi\)
\(522\) −553.445 967.189i −1.06024 1.85285i
\(523\) 165.620 0.316672 0.158336 0.987385i \(-0.449387\pi\)
0.158336 + 0.987385i \(0.449387\pi\)
\(524\) −617.758 + 1765.45i −1.17893 + 3.36918i
\(525\) −444.501 50.0833i −0.846669 0.0953967i
\(526\) −934.478 745.221i −1.77657 1.41677i
\(527\) −20.2784 42.1086i −0.0384790 0.0799025i
\(528\) −915.835 + 1901.75i −1.73454 + 3.60180i
\(529\) −202.018 253.323i −0.381887 0.478872i
\(530\) −47.3180 + 29.7318i −0.0892792 + 0.0560978i
\(531\) −164.750 37.6032i −0.310264 0.0708158i
\(532\) 367.109 41.3633i 0.690055 0.0777505i
\(533\) −938.386 589.627i −1.76057 1.10624i
\(534\) 289.238 + 289.238i 0.541644 + 0.541644i
\(535\) 241.737 55.1750i 0.451846 0.103131i
\(536\) −212.490 + 74.3535i −0.396437 + 0.138719i
\(537\) −28.7815 82.2528i −0.0535968 0.153171i
\(538\) −7.66459 33.5808i −0.0142465 0.0624178i
\(539\) 197.342 197.342i 0.366126 0.366126i
\(540\) −55.5022 + 88.3312i −0.102782 + 0.163576i
\(541\) −10.2581 91.0431i −0.0189614 0.168287i 0.980663 0.195706i \(-0.0626997\pi\)
−0.999624 + 0.0274190i \(0.991271\pi\)
\(542\) 225.416 987.613i 0.415897 1.82217i
\(543\) 811.079 + 1290.83i 1.49370 + 2.37721i
\(544\) 165.033 131.610i 0.303370 0.241930i
\(545\) −174.847 84.2021i −0.320821 0.154499i
\(546\) −1053.21 + 507.200i −1.92896 + 0.928938i
\(547\) −610.593 + 765.660i −1.11626 + 1.39974i −0.209646 + 0.977777i \(0.567231\pi\)
−0.906612 + 0.421966i \(0.861340\pi\)
\(548\) −224.135 + 1989.25i −0.409005 + 3.63002i
\(549\) 440.283 + 154.062i 0.801972 + 0.280622i
\(550\) 852.820i 1.55058i
\(551\) 207.163 + 82.2286i 0.375976 + 0.149235i
\(552\) −1432.54 −2.59519
\(553\) −103.198 + 294.924i −0.186615 + 0.533316i
\(554\) 185.076 + 20.8531i 0.334073 + 0.0376410i
\(555\) −363.699 290.040i −0.655314 0.522595i
\(556\) −852.984 1771.24i −1.53414 3.18568i
\(557\) 80.1457 166.424i 0.143888 0.298787i −0.816553 0.577271i \(-0.804118\pi\)
0.960441 + 0.278484i \(0.0898320\pi\)
\(558\) −417.115 523.046i −0.747518 0.937358i
\(559\) 765.993 481.305i 1.37029 0.861011i
\(560\) −400.307 91.3675i −0.714834 0.163156i
\(561\) −124.371 + 14.0133i −0.221695 + 0.0249791i
\(562\) 624.819 + 392.600i 1.11178 + 0.698576i
\(563\) −686.067 686.067i −1.21859 1.21859i −0.968125 0.250466i \(-0.919416\pi\)
−0.250466 0.968125i \(-0.580584\pi\)
\(564\) 1143.38 260.970i 2.02727 0.462712i
\(565\) 31.9119 11.1665i 0.0564812 0.0197636i
\(566\) −435.666 1245.06i −0.769728 2.19976i
\(567\) 72.4734 + 317.527i 0.127819 + 0.560012i
\(568\) 1172.16 1172.16i 2.06366 2.06366i
\(569\) 533.544 849.131i 0.937688 1.49232i 0.0686111 0.997643i \(-0.478143\pi\)
0.869076 0.494678i \(-0.164714\pi\)
\(570\) −26.9351 239.055i −0.0472545 0.419395i
\(571\) −31.8431 + 139.514i −0.0557673 + 0.244332i −0.995127 0.0986008i \(-0.968563\pi\)
0.939360 + 0.342933i \(0.111420\pi\)
\(572\) 848.861 + 1350.95i 1.48402 + 2.36181i
\(573\) 684.935 546.217i 1.19535 0.953259i
\(574\) 1199.73 + 577.760i 2.09012 + 1.00655i
\(575\) −275.835 + 132.835i −0.479712 + 0.231017i
\(576\) 727.608 912.392i 1.26321 1.58401i
\(577\) 31.8424 282.609i 0.0551861 0.489790i −0.935470 0.353406i \(-0.885023\pi\)
0.990656 0.136384i \(-0.0435481\pi\)
\(578\) −998.018 349.222i −1.72667 0.604189i
\(579\) 435.072i 0.751420i
\(580\) −419.937 364.213i −0.724029 0.627953i
\(581\) −226.185 −0.389303
\(582\) −423.391 + 1209.98i −0.727476 + 2.07901i
\(583\) −82.7170 9.31997i −0.141882 0.0159862i
\(584\) 1423.06 + 1134.86i 2.43675 + 1.94325i
\(585\) 125.846 + 261.322i 0.215122 + 0.446705i
\(586\) −198.822 + 412.858i −0.339286 + 0.704535i
\(587\) −374.892 470.100i −0.638658 0.800852i 0.352176 0.935934i \(-0.385442\pi\)
−0.990834 + 0.135082i \(0.956870\pi\)
\(588\) −982.921 + 617.610i −1.67163 + 1.05036i
\(589\) 130.456 + 29.7756i 0.221487 + 0.0505529i
\(590\) −117.011 + 13.1840i −0.198324 + 0.0223457i
\(591\) 778.771 + 489.334i 1.31772 + 0.827977i
\(592\) 1785.21 + 1785.21i 3.01555 + 3.01555i
\(593\) −568.471 + 129.750i −0.958635 + 0.218802i −0.673088 0.739562i \(-0.735033\pi\)
−0.285547 + 0.958365i \(0.592175\pi\)
\(594\) −204.877 + 71.6895i −0.344911 + 0.120689i
\(595\) −8.04112 22.9802i −0.0135145 0.0386222i
\(596\) −236.555 1036.41i −0.396904 1.73895i
\(597\) −188.621 + 188.621i −0.315947 + 0.315947i
\(598\) −425.667 + 677.446i −0.711818 + 1.13285i
\(599\) 27.8771 + 247.416i 0.0465394 + 0.413049i 0.995284 + 0.0970048i \(0.0309262\pi\)
−0.948744 + 0.316044i \(0.897645\pi\)
\(600\) 476.091 2085.89i 0.793485 3.47649i
\(601\) −200.610 319.269i −0.333794 0.531230i 0.637087 0.770792i \(-0.280139\pi\)
−0.970881 + 0.239562i \(0.922996\pi\)
\(602\) −849.827 + 677.715i −1.41167 + 1.12577i
\(603\) −91.0601 43.8523i −0.151012 0.0727235i
\(604\) −587.968 + 283.150i −0.973457 + 0.468792i
\(605\) −9.51401 + 11.9302i −0.0157256 + 0.0197193i
\(606\) 42.7237 379.184i 0.0705012 0.625716i
\(607\) −419.731 146.870i −0.691484 0.241961i −0.0384179 0.999262i \(-0.512232\pi\)
−0.653066 + 0.757301i \(0.726518\pi\)
\(608\) 604.349i 0.993995i
\(609\) 605.120 43.0017i 0.993629 0.0706104i
\(610\) 325.031 0.532838
\(611\) 130.480 372.891i 0.213552 0.610296i
\(612\) 275.341 + 31.0235i 0.449904 + 0.0506920i
\(613\) 573.077 + 457.014i 0.934873 + 0.745536i 0.967220 0.253941i \(-0.0817268\pi\)
−0.0323471 + 0.999477i \(0.510298\pi\)
\(614\) 302.741 + 628.649i 0.493064 + 1.02386i
\(615\) 269.338 559.287i 0.437948 0.909409i
\(616\) −720.912 903.995i −1.17031 1.46752i
\(617\) −493.555 + 310.121i −0.799927 + 0.502628i −0.868898 0.494991i \(-0.835171\pi\)
0.0689708 + 0.997619i \(0.478028\pi\)
\(618\) 1598.31 + 364.804i 2.58626 + 0.590297i
\(619\) 352.200 39.6834i 0.568983 0.0641089i 0.177213 0.984172i \(-0.443292\pi\)
0.391769 + 0.920064i \(0.371863\pi\)
\(620\) −282.571 177.551i −0.455760 0.286373i
\(621\) −55.0987 55.0987i −0.0887258 0.0887258i
\(622\) −255.838 + 58.3933i −0.411315 + 0.0938799i
\(623\) −111.870 + 39.1451i −0.179567 + 0.0628333i
\(624\) −976.814 2791.57i −1.56541 4.47368i
\(625\) −81.6273 357.632i −0.130604 0.572212i
\(626\) 333.124 333.124i 0.532147 0.532147i
\(627\) 190.645 303.410i 0.304059 0.483908i
\(628\) 2.92128 + 25.9271i 0.00465172 + 0.0412851i
\(629\) −33.3111 + 145.945i −0.0529588 + 0.232028i
\(630\) −185.412 295.082i −0.294305 0.468384i
\(631\) −310.106 + 247.301i −0.491451 + 0.391919i −0.837620 0.546253i \(-0.816054\pi\)
0.346169 + 0.938172i \(0.387482\pi\)
\(632\) −1346.51 648.443i −2.13055 1.02602i
\(633\) 320.724 154.453i 0.506674 0.244001i
\(634\) −219.783 + 275.600i −0.346661 + 0.434700i
\(635\) −32.8890 + 291.898i −0.0517937 + 0.459682i
\(636\) 326.810 + 114.356i 0.513852 + 0.179804i
\(637\) 391.040i 0.613878i
\(638\) −210.640 1137.25i −0.330157 1.78252i
\(639\) 744.217 1.16466
\(640\) 71.0118 202.940i 0.110956 0.317094i
\(641\) −991.304 111.693i −1.54650 0.174248i −0.702924 0.711265i \(-0.748123\pi\)
−0.843572 + 0.537016i \(0.819551\pi\)
\(642\) −1677.76 1337.97i −2.61333 2.08406i
\(643\) 398.229 + 826.931i 0.619329 + 1.28605i 0.940746 + 0.339113i \(0.110127\pi\)
−0.321416 + 0.946938i \(0.604159\pi\)
\(644\) 298.599 620.047i 0.463663 0.962806i
\(645\) 315.935 + 396.170i 0.489822 + 0.614217i
\(646\) −65.5494 + 41.1874i −0.101470 + 0.0637576i
\(647\) −338.253 77.2040i −0.522802 0.119326i −0.0470276 0.998894i \(-0.514975\pi\)
−0.475774 + 0.879568i \(0.657832\pi\)
\(648\) −1548.02 + 174.420i −2.38891 + 0.269166i
\(649\) −148.511 93.3155i −0.228830 0.143784i
\(650\) −844.946 844.946i −1.29992 1.29992i
\(651\) 355.072 81.0428i 0.545425 0.124490i
\(652\) 743.013 259.992i 1.13959 0.398760i
\(653\) 207.982 + 594.378i 0.318502 + 0.910226i 0.986166 + 0.165763i \(0.0530087\pi\)
−0.667664 + 0.744463i \(0.732706\pi\)
\(654\) 373.736 + 1637.44i 0.571462 + 2.50374i
\(655\) −249.547 + 249.547i −0.380988 + 0.380988i
\(656\) −1792.41 + 2852.60i −2.73233 + 4.34847i
\(657\) 91.4934 + 812.026i 0.139259 + 1.23596i
\(658\) −105.626 + 462.776i −0.160525 + 0.703307i
\(659\) −129.184 205.595i −0.196030 0.311980i 0.734216 0.678915i \(-0.237550\pi\)
−0.930246 + 0.366936i \(0.880407\pi\)
\(660\) −698.710 + 557.203i −1.05865 + 0.844247i
\(661\) 833.137 + 401.218i 1.26042 + 0.606986i 0.940286 0.340386i \(-0.110558\pi\)
0.320134 + 0.947372i \(0.396272\pi\)
\(662\) 1788.56 861.326i 2.70176 1.30110i
\(663\) 109.339 137.107i 0.164916 0.206798i
\(664\) 121.130 1075.06i 0.182424 1.61906i
\(665\) 65.7935 + 23.0221i 0.0989376 + 0.0346198i
\(666\) 2142.81i 3.21743i
\(667\) 335.021 245.267i 0.502280 0.367716i
\(668\) 2912.67 4.36029
\(669\) 249.578 713.252i 0.373061 1.06615i
\(670\) −69.9828 7.88516i −0.104452 0.0117689i
\(671\) 378.520 + 301.859i 0.564113 + 0.449865i
\(672\) 713.698 + 1482.01i 1.06205 + 2.20537i
\(673\) 443.126 920.161i 0.658434 1.36725i −0.257639 0.966241i \(-0.582945\pi\)
0.916073 0.401011i \(-0.131341\pi\)
\(674\) 1258.35 + 1577.92i 1.86699 + 2.34113i
\(675\) 98.5394 61.9164i 0.145984 0.0917280i
\(676\) −518.833 118.420i −0.767504 0.175178i
\(677\) 920.740 103.742i 1.36003 0.153238i 0.598372 0.801219i \(-0.295815\pi\)
0.761657 + 0.647980i \(0.224386\pi\)
\(678\) −247.754 155.674i −0.365419 0.229608i
\(679\) −262.647 262.647i −0.386814 0.386814i
\(680\) 113.531 25.9127i 0.166958 0.0381070i
\(681\) 338.130 118.317i 0.496520 0.173740i
\(682\) −229.335 655.401i −0.336268 0.960998i
\(683\) 27.4033 + 120.062i 0.0401220 + 0.175786i 0.991019 0.133722i \(-0.0426929\pi\)
−0.950897 + 0.309508i \(0.899836\pi\)
\(684\) −560.951 + 560.951i −0.820104 + 0.820104i
\(685\) −200.954 + 319.817i −0.293364 + 0.466886i
\(686\) −150.779 1338.20i −0.219794 1.95073i
\(687\) −427.177 + 1871.58i −0.621800 + 2.72429i
\(688\) −1463.12 2328.54i −2.12663 3.38451i
\(689\) 91.1873 72.7194i 0.132347 0.105543i
\(690\) −403.764 194.443i −0.585165 0.281801i
\(691\) 703.783 338.924i 1.01850 0.490483i 0.151323 0.988484i \(-0.451647\pi\)
0.867176 + 0.498001i \(0.165932\pi\)
\(692\) −395.580 + 496.041i −0.571647 + 0.716823i
\(693\) 58.1208 515.836i 0.0838684 0.744352i
\(694\) −632.840 221.440i −0.911873 0.319078i
\(695\) 370.934i 0.533719i
\(696\) −119.675 + 2899.16i −0.171947 + 4.16546i
\(697\) −199.762 −0.286603
\(698\) 172.759 493.718i 0.247506 0.707332i
\(699\) −1690.26 190.446i −2.41811 0.272455i
\(700\) 803.599 + 640.849i 1.14800 + 0.915499i
\(701\) −52.0584 108.100i −0.0742631 0.154209i 0.860532 0.509396i \(-0.170131\pi\)
−0.934795 + 0.355188i \(0.884417\pi\)
\(702\) 131.958 274.013i 0.187974 0.390332i
\(703\) −267.225 335.089i −0.380120 0.476656i
\(704\) 1025.59 644.418i 1.45680 0.915367i
\(705\) 215.735 + 49.2402i 0.306008 + 0.0698443i
\(706\) −798.846 + 90.0083i −1.13151 + 0.127490i
\(707\) 93.6177 + 58.8239i 0.132415 + 0.0832021i
\(708\) 515.874 + 515.874i 0.728635 + 0.728635i
\(709\) −393.730 + 89.8662i −0.555331 + 0.126751i −0.490971 0.871176i \(-0.663358\pi\)
−0.0643603 + 0.997927i \(0.520501\pi\)
\(710\) 489.474 171.274i 0.689401 0.241232i
\(711\) −221.604 633.308i −0.311680 0.890729i
\(712\) −126.146 552.683i −0.177172 0.776240i
\(713\) 176.261 176.261i 0.247210 0.247210i
\(714\) −112.103 + 178.411i −0.157007 + 0.249876i
\(715\) 33.7061 + 299.150i 0.0471414 + 0.418392i
\(716\) −44.5571 + 195.218i −0.0622306 + 0.272650i
\(717\) −572.185 910.628i −0.798027 1.27005i
\(718\) −856.954 + 683.398i −1.19353 + 0.951808i
\(719\) −501.247 241.388i −0.697144 0.335727i 0.0515242 0.998672i \(-0.483592\pi\)
−0.748668 + 0.662945i \(0.769306\pi\)
\(720\) 794.393 382.560i 1.10332 0.531333i
\(721\) −296.172 + 371.388i −0.410780 + 0.515102i
\(722\) −126.845 + 1125.78i −0.175686 + 1.55926i
\(723\) −1016.96 355.849i −1.40658 0.492183i
\(724\) 3502.99i 4.83839i
\(725\) 245.786 + 569.327i 0.339015 + 0.785279i
\(726\) 132.062 0.181904
\(727\) 136.257 389.401i 0.187424 0.535628i −0.811380 0.584519i \(-0.801283\pi\)
0.998804 + 0.0488914i \(0.0155688\pi\)
\(728\) 1609.91 + 181.393i 2.21141 + 0.249166i
\(729\) −714.778 570.016i −0.980491 0.781915i
\(730\) 247.056 + 513.016i 0.338432 + 0.702762i
\(731\) 70.7507 146.915i 0.0967861 0.200978i
\(732\) −1255.59 1574.46i −1.71528 2.15090i
\(733\) 1161.29 729.688i 1.58430 0.995482i 0.604235 0.796806i \(-0.293479\pi\)
0.980065 0.198675i \(-0.0636640\pi\)
\(734\) 1330.83 + 303.753i 1.81312 + 0.413833i
\(735\) −217.654 + 24.5238i −0.296128 + 0.0333656i
\(736\) 953.257 + 598.971i 1.29519 + 0.813819i
\(737\) −74.1764 74.1764i −0.100646 0.100646i
\(738\) −2787.74 + 636.283i −3.77742 + 0.862171i
\(739\) −1004.30 + 351.421i −1.35900 + 0.475535i −0.908741 0.417361i \(-0.862955\pi\)
−0.450262 + 0.892897i \(0.648669\pi\)
\(740\) 353.040 + 1008.93i 0.477081 + 1.36342i
\(741\) 111.724 + 489.494i 0.150774 + 0.660586i
\(742\) −99.0925 + 99.0925i −0.133548 + 0.133548i
\(743\) −679.565 + 1081.52i −0.914624 + 1.45562i −0.0246019 + 0.999697i \(0.507832\pi\)
−0.890022 + 0.455918i \(0.849311\pi\)
\(744\) 195.043 + 1731.06i 0.262155 + 2.32669i
\(745\) 44.6336 195.552i 0.0599108 0.262487i
\(746\) 689.586 + 1097.47i 0.924379 + 1.47114i
\(747\) 379.736 302.829i 0.508348 0.405394i
\(748\) 259.109 + 124.780i 0.346403 + 0.166819i
\(749\) 560.212 269.784i 0.747947 0.360192i
\(750\) 905.202 1135.09i 1.20694 1.51345i
\(751\) 13.2850 117.908i 0.0176898 0.157001i −0.981762 0.190115i \(-0.939114\pi\)
0.999452 + 0.0331141i \(0.0105425\pi\)
\(752\) −1133.55 396.647i −1.50738 0.527456i
\(753\) 1101.58i 1.46292i
\(754\) 1335.44 + 918.054i 1.77115 + 1.21758i
\(755\) −123.133 −0.163090
\(756\) −86.4022 + 246.923i −0.114289 + 0.326618i
\(757\) 1357.43 + 152.945i 1.79317 + 0.202041i 0.944863 0.327467i \(-0.106195\pi\)
0.848305 + 0.529508i \(0.177624\pi\)
\(758\) −1360.41 1084.89i −1.79474 1.43126i
\(759\) −289.629 601.420i −0.381592 0.792385i
\(760\) −144.659 + 300.387i −0.190341 + 0.395246i
\(761\) −424.017 531.701i −0.557184 0.698687i 0.420850 0.907130i \(-0.361732\pi\)
−0.978034 + 0.208443i \(0.933160\pi\)
\(762\) 2152.57 1352.55i 2.82489 1.77500i
\(763\) −474.453 108.291i −0.621826 0.141928i
\(764\) −2000.37 + 225.388i −2.61829 + 0.295010i
\(765\) 44.2673 + 27.8150i 0.0578657 + 0.0363594i
\(766\) −1105.20 1105.20i −1.44282 1.44282i
\(767\) 239.594 54.6857i 0.312378 0.0712982i
\(768\) 130.879 45.7966i 0.170415 0.0596310i
\(769\) −23.6521 67.5938i −0.0307569 0.0878983i 0.927481 0.373870i \(-0.121969\pi\)
−0.958238 + 0.285972i \(0.907684\pi\)
\(770\) −80.4885 352.643i −0.104531 0.457978i
\(771\) −476.129 + 476.129i −0.617548 + 0.617548i
\(772\)