Properties

Label 29.3.f.a.19.2
Level $29$
Weight $3$
Character 29.19
Analytic conductor $0.790$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 29.f (of order \(28\), degree \(12\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 19.2
Character \(\chi\) \(=\) 29.19
Dual form 29.3.f.a.26.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.448531 - 0.713833i) q^{2} +(0.187106 - 0.534719i) q^{3} +(1.42716 - 2.96352i) q^{4} +(4.21883 + 0.962920i) q^{5} +(-0.465623 + 0.106276i) q^{6} +(-10.1429 + 4.88457i) q^{7} +(-6.10659 + 0.688048i) q^{8} +(6.78557 + 5.41131i) q^{9} +O(q^{10})\) \(q+(-0.448531 - 0.713833i) q^{2} +(0.187106 - 0.534719i) q^{3} +(1.42716 - 2.96352i) q^{4} +(4.21883 + 0.962920i) q^{5} +(-0.465623 + 0.106276i) q^{6} +(-10.1429 + 4.88457i) q^{7} +(-6.10659 + 0.688048i) q^{8} +(6.78557 + 5.41131i) q^{9} +(-1.20491 - 3.44344i) q^{10} +(1.54207 + 0.173749i) q^{11} +(-1.31762 - 1.31762i) q^{12} +(-11.3208 + 9.02803i) q^{13} +(8.03618 + 5.04946i) q^{14} +(1.30426 - 2.07572i) q^{15} +(-4.97314 - 6.23612i) q^{16} +(16.8448 - 16.8448i) q^{17} +(0.819234 - 7.27090i) q^{18} +(0.448791 - 0.157039i) q^{19} +(8.87457 - 11.1284i) q^{20} +(0.714070 + 6.33754i) q^{21} +(-0.567637 - 1.17871i) q^{22} +(1.55197 + 6.79962i) q^{23} +(-0.774670 + 3.39405i) q^{24} +(-5.65292 - 2.72230i) q^{25} +(11.5222 + 4.03180i) q^{26} +(8.48025 - 5.32850i) q^{27} +37.0298i q^{28} +(-20.2766 - 20.7330i) q^{29} -2.06672 q^{30} +(-7.88671 - 12.5516i) q^{31} +(-10.3395 + 29.5486i) q^{32} +(0.381437 - 0.792063i) q^{33} +(-19.5798 - 4.46896i) q^{34} +(-47.4946 + 10.8403i) q^{35} +(25.7206 - 12.3864i) q^{36} +(26.2932 - 2.96253i) q^{37} +(-0.313396 - 0.249925i) q^{38} +(2.70927 + 7.74264i) q^{39} +(-26.4252 - 2.97741i) q^{40} +(46.1225 + 46.1225i) q^{41} +(4.20367 - 3.35231i) q^{42} +(-53.7324 - 33.7623i) q^{43} +(2.71568 - 4.32198i) q^{44} +(23.4165 + 29.3633i) q^{45} +(4.15769 - 4.15769i) q^{46} +(5.72285 - 50.7917i) q^{47} +(-4.26508 + 1.49242i) q^{48} +(48.4686 - 60.7777i) q^{49} +(0.592241 + 5.25628i) q^{50} +(-5.85548 - 12.1590i) q^{51} +(10.5982 + 46.4338i) q^{52} +(-9.09960 + 39.8680i) q^{53} +(-7.60732 - 3.66349i) q^{54} +(6.33841 + 2.21790i) q^{55} +(58.5778 - 36.8069i) q^{56} -0.269360i q^{57} +(-5.70521 + 23.7735i) q^{58} +23.8690 q^{59} +(-4.29006 - 6.82759i) q^{60} +(23.8851 - 68.2596i) q^{61} +(-5.42233 + 11.2596i) q^{62} +(-95.2573 - 21.7419i) q^{63} +(-5.37487 + 1.22678i) q^{64} +(-56.4537 + 27.1867i) q^{65} +(-0.736487 + 0.0829822i) q^{66} +(89.8491 + 71.6523i) q^{67} +(-25.8798 - 73.9602i) q^{68} +(3.92627 + 0.442385i) q^{69} +(29.0410 + 29.0410i) q^{70} +(-54.7070 + 43.6274i) q^{71} +(-45.1599 - 28.3759i) q^{72} +(-43.5770 + 69.3524i) q^{73} +(-13.9081 - 17.4402i) q^{74} +(-2.51337 + 2.51337i) q^{75} +(0.175107 - 1.55412i) q^{76} +(-16.4897 + 5.77000i) q^{77} +(4.31177 - 5.40678i) q^{78} +(12.9255 + 114.717i) q^{79} +(-14.9759 - 31.0978i) q^{80} +(16.1189 + 70.6216i) q^{81} +(12.2364 - 53.6111i) q^{82} +(-1.11626 - 0.537563i) q^{83} +(19.8005 + 6.92851i) q^{84} +(87.2856 - 54.8452i) q^{85} +53.4995i q^{86} +(-14.8802 + 6.96303i) q^{87} -9.53632 q^{88} +(-35.1684 - 55.9701i) q^{89} +(10.4575 - 29.8858i) q^{90} +(70.7277 - 146.868i) q^{91} +(22.3657 + 5.10483i) q^{92} +(-8.18725 + 1.86869i) q^{93} +(-38.8237 + 18.6965i) q^{94} +(2.04459 - 0.230370i) q^{95} +(13.8656 + 11.0575i) q^{96} +(-26.0062 - 74.3215i) q^{97} +(-65.1248 - 7.33780i) q^{98} +(9.52358 + 9.52358i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 16q^{2} - 12q^{3} - 14q^{4} - 14q^{5} - 14q^{6} - 10q^{7} + 28q^{8} - 14q^{9} + O(q^{10}) \) \( 48q - 16q^{2} - 12q^{3} - 14q^{4} - 14q^{5} - 14q^{6} - 10q^{7} + 28q^{8} - 14q^{9} - 20q^{10} - 8q^{11} - 68q^{12} - 14q^{13} + 26q^{14} - 4q^{15} + 18q^{16} - 26q^{17} - 34q^{18} + 2q^{19} + 46q^{20} + 218q^{21} + 154q^{22} + 56q^{23} + 154q^{24} - 34q^{25} + 110q^{26} + 126q^{27} - 170q^{29} + 24q^{30} - 88q^{31} - 132q^{32} - 224q^{33} - 224q^{34} - 210q^{35} - 434q^{36} - 56q^{37} - 294q^{38} - 232q^{39} - 492q^{40} - 34q^{41} - 14q^{42} + 176q^{43} + 126q^{44} + 114q^{45} + 744q^{46} + 208q^{47} + 640q^{48} + 506q^{49} + 732q^{50} + 322q^{51} + 690q^{52} - 14q^{53} - 36q^{54} + 284q^{55} + 332q^{56} - 508q^{58} - 44q^{59} - 316q^{60} - 30q^{61} - 504q^{62} - 686q^{63} - 896q^{64} - 554q^{65} - 608q^{66} - 574q^{67} - 796q^{68} - 806q^{69} - 1066q^{70} + 224q^{71} + 748q^{72} - 22q^{73} + 820q^{74} + 768q^{75} + 514q^{76} + 436q^{77} + 282q^{78} + 564q^{79} + 1162q^{80} + 670q^{81} - 18q^{82} - 126q^{83} + 572q^{84} + 38q^{85} - 118q^{87} - 384q^{88} - 160q^{89} - 828q^{90} - 434q^{91} - 1022q^{92} - 406q^{93} - 2q^{94} - 642q^{95} - 1176q^{96} + 604q^{97} - 102q^{98} + 316q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{9}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.448531 0.713833i −0.224266 0.356917i 0.715572 0.698539i \(-0.246166\pi\)
−0.939837 + 0.341623i \(0.889023\pi\)
\(3\) 0.187106 0.534719i 0.0623688 0.178240i −0.908482 0.417923i \(-0.862758\pi\)
0.970851 + 0.239684i \(0.0770437\pi\)
\(4\) 1.42716 2.96352i 0.356789 0.740881i
\(5\) 4.21883 + 0.962920i 0.843766 + 0.192584i 0.622490 0.782627i \(-0.286121\pi\)
0.221275 + 0.975211i \(0.428978\pi\)
\(6\) −0.465623 + 0.106276i −0.0776039 + 0.0177126i
\(7\) −10.1429 + 4.88457i −1.44899 + 0.697795i −0.982419 0.186690i \(-0.940224\pi\)
−0.466568 + 0.884485i \(0.654510\pi\)
\(8\) −6.10659 + 0.688048i −0.763324 + 0.0860060i
\(9\) 6.78557 + 5.41131i 0.753952 + 0.601257i
\(10\) −1.20491 3.44344i −0.120491 0.344344i
\(11\) 1.54207 + 0.173749i 0.140188 + 0.0157954i 0.181780 0.983339i \(-0.441814\pi\)
−0.0415917 + 0.999135i \(0.513243\pi\)
\(12\) −1.31762 1.31762i −0.109802 0.109802i
\(13\) −11.3208 + 9.02803i −0.870830 + 0.694464i −0.953266 0.302133i \(-0.902301\pi\)
0.0824361 + 0.996596i \(0.473730\pi\)
\(14\) 8.03618 + 5.04946i 0.574013 + 0.360676i
\(15\) 1.30426 2.07572i 0.0869508 0.138381i
\(16\) −4.97314 6.23612i −0.310821 0.389757i
\(17\) 16.8448 16.8448i 0.990872 0.990872i −0.00908711 0.999959i \(-0.502893\pi\)
0.999959 + 0.00908711i \(0.00289256\pi\)
\(18\) 0.819234 7.27090i 0.0455130 0.403939i
\(19\) 0.448791 0.157039i 0.0236206 0.00826520i −0.318443 0.947942i \(-0.603160\pi\)
0.342064 + 0.939677i \(0.388874\pi\)
\(20\) 8.87457 11.1284i 0.443728 0.556418i
\(21\) 0.714070 + 6.33754i 0.0340033 + 0.301788i
\(22\) −0.567637 1.17871i −0.0258017 0.0535777i
\(23\) 1.55197 + 6.79962i 0.0674769 + 0.295636i 0.997395 0.0721306i \(-0.0229798\pi\)
−0.929918 + 0.367766i \(0.880123\pi\)
\(24\) −0.774670 + 3.39405i −0.0322779 + 0.141419i
\(25\) −5.65292 2.72230i −0.226117 0.108892i
\(26\) 11.5222 + 4.03180i 0.443163 + 0.155069i
\(27\) 8.48025 5.32850i 0.314083 0.197352i
\(28\) 37.0298i 1.32249i
\(29\) −20.2766 20.7330i −0.699195 0.714931i
\(30\) −2.06672 −0.0688907
\(31\) −7.88671 12.5516i −0.254410 0.404891i 0.694962 0.719047i \(-0.255421\pi\)
−0.949371 + 0.314156i \(0.898279\pi\)
\(32\) −10.3395 + 29.5486i −0.323110 + 0.923394i
\(33\) 0.381437 0.792063i 0.0115587 0.0240019i
\(34\) −19.5798 4.46896i −0.575877 0.131440i
\(35\) −47.4946 + 10.8403i −1.35699 + 0.309724i
\(36\) 25.7206 12.3864i 0.714461 0.344066i
\(37\) 26.2932 2.96253i 0.710627 0.0800685i 0.250751 0.968052i \(-0.419322\pi\)
0.459876 + 0.887983i \(0.347894\pi\)
\(38\) −0.313396 0.249925i −0.00824727 0.00657698i
\(39\) 2.70927 + 7.74264i 0.0694684 + 0.198529i
\(40\) −26.4252 2.97741i −0.660630 0.0744351i
\(41\) 46.1225 + 46.1225i 1.12494 + 1.12494i 0.990988 + 0.133950i \(0.0427662\pi\)
0.133950 + 0.990988i \(0.457234\pi\)
\(42\) 4.20367 3.35231i 0.100087 0.0798169i
\(43\) −53.7324 33.7623i −1.24959 0.785170i −0.265721 0.964050i \(-0.585610\pi\)
−0.983871 + 0.178880i \(0.942753\pi\)
\(44\) 2.71568 4.32198i 0.0617200 0.0982268i
\(45\) 23.4165 + 29.3633i 0.520366 + 0.652519i
\(46\) 4.15769 4.15769i 0.0903845 0.0903845i
\(47\) 5.72285 50.7917i 0.121763 1.08067i −0.773085 0.634302i \(-0.781287\pi\)
0.894848 0.446372i \(-0.147284\pi\)
\(48\) −4.26508 + 1.49242i −0.0888558 + 0.0310920i
\(49\) 48.4686 60.7777i 0.989155 1.24036i
\(50\) 0.592241 + 5.25628i 0.0118448 + 0.105126i
\(51\) −5.85548 12.1590i −0.114813 0.238412i
\(52\) 10.5982 + 46.4338i 0.203812 + 0.892958i
\(53\) −9.09960 + 39.8680i −0.171691 + 0.752226i 0.813612 + 0.581408i \(0.197498\pi\)
−0.985303 + 0.170818i \(0.945359\pi\)
\(54\) −7.60732 3.66349i −0.140876 0.0678424i
\(55\) 6.33841 + 2.21790i 0.115244 + 0.0403255i
\(56\) 58.5778 36.8069i 1.04603 0.657265i
\(57\) 0.269360i 0.00472562i
\(58\) −5.70521 + 23.7735i −0.0983656 + 0.409889i
\(59\) 23.8690 0.404559 0.202280 0.979328i \(-0.435165\pi\)
0.202280 + 0.979328i \(0.435165\pi\)
\(60\) −4.29006 6.82759i −0.0715010 0.113793i
\(61\) 23.8851 68.2596i 0.391559 1.11901i −0.564398 0.825503i \(-0.690892\pi\)
0.955957 0.293507i \(-0.0948225\pi\)
\(62\) −5.42233 + 11.2596i −0.0874569 + 0.181606i
\(63\) −95.2573 21.7419i −1.51202 0.345109i
\(64\) −5.37487 + 1.22678i −0.0839824 + 0.0191684i
\(65\) −56.4537 + 27.1867i −0.868519 + 0.418257i
\(66\) −0.736487 + 0.0829822i −0.0111589 + 0.00125731i
\(67\) 89.8491 + 71.6523i 1.34103 + 1.06944i 0.991165 + 0.132637i \(0.0423445\pi\)
0.349866 + 0.936800i \(0.386227\pi\)
\(68\) −25.8798 73.9602i −0.380585 1.08765i
\(69\) 3.92627 + 0.442385i 0.0569025 + 0.00641137i
\(70\) 29.0410 + 29.0410i 0.414872 + 0.414872i
\(71\) −54.7070 + 43.6274i −0.770521 + 0.614470i −0.927797 0.373085i \(-0.878300\pi\)
0.157276 + 0.987555i \(0.449729\pi\)
\(72\) −45.1599 28.3759i −0.627221 0.394109i
\(73\) −43.5770 + 69.3524i −0.596945 + 0.950032i 0.402457 + 0.915439i \(0.368156\pi\)
−0.999401 + 0.0345932i \(0.988986\pi\)
\(74\) −13.9081 17.4402i −0.187947 0.235678i
\(75\) −2.51337 + 2.51337i −0.0335116 + 0.0335116i
\(76\) 0.175107 1.55412i 0.00230405 0.0204490i
\(77\) −16.4897 + 5.77000i −0.214152 + 0.0749351i
\(78\) 4.31177 5.40678i 0.0552790 0.0693177i
\(79\) 12.9255 + 114.717i 0.163613 + 1.45211i 0.760267 + 0.649611i \(0.225068\pi\)
−0.596653 + 0.802499i \(0.703503\pi\)
\(80\) −14.9759 31.0978i −0.187199 0.388723i
\(81\) 16.1189 + 70.6216i 0.198999 + 0.871872i
\(82\) 12.2364 53.6111i 0.149224 0.653794i
\(83\) −1.11626 0.537563i −0.0134489 0.00647666i 0.427147 0.904182i \(-0.359519\pi\)
−0.440596 + 0.897705i \(0.645233\pi\)
\(84\) 19.8005 + 6.92851i 0.235721 + 0.0824823i
\(85\) 87.2856 54.8452i 1.02689 0.645237i
\(86\) 53.4995i 0.622087i
\(87\) −14.8802 + 6.96303i −0.171037 + 0.0800349i
\(88\) −9.53632 −0.108367
\(89\) −35.1684 55.9701i −0.395150 0.628878i 0.588599 0.808425i \(-0.299680\pi\)
−0.983749 + 0.179547i \(0.942537\pi\)
\(90\) 10.4575 29.8858i 0.116195 0.332065i
\(91\) 70.7277 146.868i 0.777227 1.61393i
\(92\) 22.3657 + 5.10483i 0.243106 + 0.0554873i
\(93\) −8.18725 + 1.86869i −0.0880349 + 0.0200934i
\(94\) −38.8237 + 18.6965i −0.413018 + 0.198899i
\(95\) 2.04459 0.230370i 0.0215220 0.00242495i
\(96\) 13.8656 + 11.0575i 0.144434 + 0.115182i
\(97\) −26.0062 74.3215i −0.268105 0.766201i −0.996694 0.0812495i \(-0.974109\pi\)
0.728588 0.684952i \(-0.240177\pi\)
\(98\) −65.1248 7.33780i −0.664539 0.0748755i
\(99\) 9.52358 + 9.52358i 0.0961978 + 0.0961978i
\(100\) −16.1352 + 12.8674i −0.161352 + 0.128674i
\(101\) 71.2798 + 44.7881i 0.705741 + 0.443446i 0.836499 0.547968i \(-0.184598\pi\)
−0.130759 + 0.991414i \(0.541741\pi\)
\(102\) −6.05315 + 9.63353i −0.0593446 + 0.0944464i
\(103\) 30.3804 + 38.0958i 0.294955 + 0.369862i 0.907123 0.420866i \(-0.138274\pi\)
−0.612168 + 0.790728i \(0.709702\pi\)
\(104\) 62.9197 62.9197i 0.604997 0.604997i
\(105\) −3.09001 + 27.4246i −0.0294287 + 0.261187i
\(106\) 32.5405 11.3864i 0.306986 0.107419i
\(107\) 83.6309 104.870i 0.781597 0.980092i −0.218394 0.975861i \(-0.570082\pi\)
0.999991 0.00423133i \(-0.00134688\pi\)
\(108\) −3.68846 32.7360i −0.0341525 0.303111i
\(109\) 8.81881 + 18.3125i 0.0809066 + 0.168004i 0.937498 0.347992i \(-0.113136\pi\)
−0.856591 + 0.515996i \(0.827422\pi\)
\(110\) −1.25976 5.51936i −0.0114524 0.0501760i
\(111\) 3.33550 14.6138i 0.0300496 0.131656i
\(112\) 80.9028 + 38.9607i 0.722347 + 0.347864i
\(113\) 22.6341 + 7.92002i 0.200302 + 0.0700886i 0.428566 0.903511i \(-0.359019\pi\)
−0.228264 + 0.973599i \(0.573305\pi\)
\(114\) −0.192278 + 0.120816i −0.00168665 + 0.00105979i
\(115\) 30.1808i 0.262442i
\(116\) −90.3807 + 30.5010i −0.779144 + 0.262940i
\(117\) −125.671 −1.07411
\(118\) −10.7060 17.0385i −0.0907287 0.144394i
\(119\) −88.5758 + 253.135i −0.744334 + 2.12719i
\(120\) −6.53640 + 13.5730i −0.0544700 + 0.113108i
\(121\) −115.618 26.3892i −0.955525 0.218092i
\(122\) −59.4392 + 13.5666i −0.487206 + 0.111202i
\(123\) 33.2924 16.0328i 0.270670 0.130348i
\(124\) −48.4526 + 5.45930i −0.390747 + 0.0440266i
\(125\) −105.808 84.3793i −0.846466 0.675034i
\(126\) 27.2058 + 77.7497i 0.215919 + 0.617061i
\(127\) −8.21611 0.925733i −0.0646938 0.00728924i 0.0795583 0.996830i \(-0.474649\pi\)
−0.144252 + 0.989541i \(0.546078\pi\)
\(128\) 91.8315 + 91.8315i 0.717433 + 0.717433i
\(129\) −28.1071 + 22.4146i −0.217884 + 0.173757i
\(130\) 44.7280 + 28.1045i 0.344062 + 0.216188i
\(131\) 127.911 203.569i 0.976419 1.55396i 0.151694 0.988428i \(-0.451527\pi\)
0.824725 0.565534i \(-0.191330\pi\)
\(132\) −1.80293 2.26080i −0.0136585 0.0171273i
\(133\) −3.78498 + 3.78498i −0.0284585 + 0.0284585i
\(134\) 10.8476 96.2755i 0.0809526 0.718474i
\(135\) 40.9077 14.3142i 0.303020 0.106031i
\(136\) −91.2744 + 114.454i −0.671135 + 0.841577i
\(137\) 4.55051 + 40.3869i 0.0332154 + 0.294795i 0.999327 + 0.0366716i \(0.0116756\pi\)
−0.966112 + 0.258123i \(0.916896\pi\)
\(138\) −1.44527 3.00113i −0.0104729 0.0217473i
\(139\) −12.4270 54.4464i −0.0894032 0.391701i 0.910352 0.413835i \(-0.135811\pi\)
−0.999755 + 0.0221342i \(0.992954\pi\)
\(140\) −35.6567 + 156.222i −0.254691 + 1.11587i
\(141\) −26.0885 12.5636i −0.185025 0.0891033i
\(142\) 55.6805 + 19.4834i 0.392116 + 0.137207i
\(143\) −19.0260 + 11.9548i −0.133049 + 0.0836003i
\(144\) 69.2268i 0.480742i
\(145\) −65.5794 106.994i −0.452272 0.737888i
\(146\) 69.0516 0.472956
\(147\) −23.4302 37.2890i −0.159389 0.253667i
\(148\) 28.7450 82.1485i 0.194223 0.555058i
\(149\) −45.3207 + 94.1095i −0.304166 + 0.631607i −0.995892 0.0905531i \(-0.971137\pi\)
0.691726 + 0.722161i \(0.256851\pi\)
\(150\) 2.92145 + 0.666802i 0.0194763 + 0.00444534i
\(151\) 40.2640 9.18999i 0.266649 0.0608609i −0.0871059 0.996199i \(-0.527762\pi\)
0.353755 + 0.935338i \(0.384905\pi\)
\(152\) −2.63253 + 1.26776i −0.0173193 + 0.00834054i
\(153\) 205.454 23.1491i 1.34284 0.151301i
\(154\) 11.5150 + 9.18289i 0.0747726 + 0.0596291i
\(155\) −21.1865 60.5474i −0.136687 0.390628i
\(156\) 26.8121 + 3.02099i 0.171872 + 0.0193653i
\(157\) −57.9484 57.9484i −0.369098 0.369098i 0.498050 0.867148i \(-0.334050\pi\)
−0.867148 + 0.498050i \(0.834050\pi\)
\(158\) 76.0911 60.6806i 0.481589 0.384055i
\(159\) 19.6156 + 12.3253i 0.123368 + 0.0775175i
\(160\) −72.0736 + 114.704i −0.450460 + 0.716903i
\(161\) −48.9547 61.3872i −0.304066 0.381287i
\(162\) 43.1822 43.1822i 0.266557 0.266557i
\(163\) 0.128402 1.13960i 0.000787743 0.00699141i −0.993312 0.115459i \(-0.963166\pi\)
0.994100 + 0.108468i \(0.0345945\pi\)
\(164\) 202.509 70.8610i 1.23481 0.432079i
\(165\) 2.37191 2.97428i 0.0143752 0.0180260i
\(166\) 0.116947 + 1.03794i 0.000704503 + 0.00625264i
\(167\) 84.8706 + 176.236i 0.508207 + 1.05530i 0.984397 + 0.175960i \(0.0563031\pi\)
−0.476190 + 0.879342i \(0.657983\pi\)
\(168\) −8.72106 38.2095i −0.0519111 0.227437i
\(169\) 9.04891 39.6459i 0.0535439 0.234591i
\(170\) −78.3006 37.7076i −0.460592 0.221809i
\(171\) 3.89509 + 1.36295i 0.0227783 + 0.00797047i
\(172\) −176.740 + 111.053i −1.02756 + 0.645658i
\(173\) 93.9168i 0.542872i −0.962457 0.271436i \(-0.912502\pi\)
0.962457 0.271436i \(-0.0874985\pi\)
\(174\) 11.6447 + 7.49887i 0.0669235 + 0.0430969i
\(175\) 70.6344 0.403625
\(176\) −6.58539 10.4806i −0.0374170 0.0595488i
\(177\) 4.46604 12.7632i 0.0252319 0.0721086i
\(178\) −24.1792 + 50.2087i −0.135838 + 0.282071i
\(179\) 168.864 + 38.5422i 0.943376 + 0.215319i 0.666431 0.745566i \(-0.267821\pi\)
0.276945 + 0.960886i \(0.410678\pi\)
\(180\) 120.438 27.4892i 0.669100 0.152718i
\(181\) −87.2784 + 42.0311i −0.482201 + 0.232216i −0.659160 0.752002i \(-0.729088\pi\)
0.176959 + 0.984218i \(0.443374\pi\)
\(182\) −136.563 + 15.3869i −0.750344 + 0.0845434i
\(183\) −32.0307 25.5436i −0.175031 0.139583i
\(184\) −14.1557 40.4547i −0.0769332 0.219862i
\(185\) 113.779 + 12.8198i 0.615023 + 0.0692964i
\(186\) 5.00617 + 5.00617i 0.0269149 + 0.0269149i
\(187\) 28.9026 23.0490i 0.154559 0.123257i
\(188\) −142.355 89.4475i −0.757207 0.475785i
\(189\) −59.9870 + 95.4688i −0.317392 + 0.505126i
\(190\) −1.08151 1.35617i −0.00569214 0.00713772i
\(191\) −253.146 + 253.146i −1.32537 + 1.32537i −0.416013 + 0.909359i \(0.636573\pi\)
−0.909359 + 0.416013i \(0.863427\pi\)
\(192\) −0.349690 + 3.10359i −0.00182130 + 0.0161645i
\(193\) −281.027 + 98.3354i −1.45610 + 0.509510i −0.938248 0.345963i \(-0.887552\pi\)
−0.517848 + 0.855473i \(0.673267\pi\)
\(194\) −41.3886 + 51.8996i −0.213343 + 0.267524i
\(195\) 3.97439 + 35.2737i 0.0203815 + 0.180891i
\(196\) −110.944 230.377i −0.566040 1.17539i
\(197\) −30.9336 135.529i −0.157024 0.687965i −0.990740 0.135773i \(-0.956648\pi\)
0.833716 0.552193i \(-0.186209\pi\)
\(198\) 2.52663 11.0699i 0.0127607 0.0559084i
\(199\) 10.4281 + 5.02191i 0.0524025 + 0.0252357i 0.459901 0.887970i \(-0.347885\pi\)
−0.407499 + 0.913206i \(0.633599\pi\)
\(200\) 36.3932 + 12.7345i 0.181966 + 0.0636726i
\(201\) 55.1252 34.6374i 0.274255 0.172326i
\(202\) 70.9707i 0.351340i
\(203\) 306.936 + 111.250i 1.51200 + 0.548032i
\(204\) −44.3902 −0.217599
\(205\) 150.171 + 238.995i 0.732539 + 1.16583i
\(206\) 13.5675 38.7736i 0.0658616 0.188222i
\(207\) −26.2639 + 54.5375i −0.126879 + 0.263466i
\(208\) 112.600 + 25.7001i 0.541344 + 0.123558i
\(209\) 0.719351 0.164187i 0.00344187 0.000785585i
\(210\) 20.9626 10.0950i 0.0998217 0.0480716i
\(211\) −138.139 + 15.5646i −0.654688 + 0.0737657i −0.433059 0.901365i \(-0.642566\pi\)
−0.221629 + 0.975131i \(0.571137\pi\)
\(212\) 105.163 + 83.8647i 0.496052 + 0.395588i
\(213\) 13.0924 + 37.4158i 0.0614665 + 0.175661i
\(214\) −112.371 12.6611i −0.525096 0.0591642i
\(215\) −194.178 194.178i −0.903151 0.903151i
\(216\) −48.1192 + 38.3738i −0.222774 + 0.177656i
\(217\) 141.303 + 88.7868i 0.651168 + 0.409156i
\(218\) 9.11653 14.5089i 0.0418189 0.0665544i
\(219\) 28.9305 + 36.2777i 0.132103 + 0.165652i
\(220\) 15.6187 15.6187i 0.0709941 0.0709941i
\(221\) −38.6211 + 342.772i −0.174756 + 1.55100i
\(222\) −11.9279 + 4.17375i −0.0537292 + 0.0188007i
\(223\) 71.7315 89.9485i 0.321666 0.403356i −0.594539 0.804067i \(-0.702665\pi\)
0.916205 + 0.400711i \(0.131237\pi\)
\(224\) −39.4595 350.213i −0.176159 1.56345i
\(225\) −23.6271 49.0621i −0.105009 0.218054i
\(226\) −4.49853 19.7094i −0.0199050 0.0872095i
\(227\) 50.8656 222.857i 0.224077 0.981747i −0.730296 0.683131i \(-0.760618\pi\)
0.954373 0.298616i \(-0.0965251\pi\)
\(228\) −0.798255 0.384420i −0.00350112 0.00168605i
\(229\) −195.058 68.2538i −0.851782 0.298051i −0.131144 0.991363i \(-0.541865\pi\)
−0.720638 + 0.693312i \(0.756151\pi\)
\(230\) 21.5441 13.5370i 0.0936700 0.0588567i
\(231\) 9.89698i 0.0428441i
\(232\) 138.086 + 112.657i 0.595200 + 0.485589i
\(233\) 186.225 0.799248 0.399624 0.916679i \(-0.369141\pi\)
0.399624 + 0.916679i \(0.369141\pi\)
\(234\) 56.3675 + 89.7084i 0.240887 + 0.383369i
\(235\) 73.0520 208.771i 0.310860 0.888386i
\(236\) 34.0648 70.7363i 0.144342 0.299730i
\(237\) 63.7597 + 14.5527i 0.269028 + 0.0614039i
\(238\) 220.425 50.3106i 0.926156 0.211389i
\(239\) 144.790 69.7270i 0.605814 0.291745i −0.105720 0.994396i \(-0.533715\pi\)
0.711534 + 0.702651i \(0.248001\pi\)
\(240\) −19.4307 + 2.18932i −0.0809613 + 0.00912215i
\(241\) −152.244 121.410i −0.631717 0.503777i 0.254485 0.967077i \(-0.418094\pi\)
−0.886202 + 0.463300i \(0.846665\pi\)
\(242\) 33.0210 + 94.3687i 0.136451 + 0.389953i
\(243\) 130.350 + 14.6869i 0.536421 + 0.0604401i
\(244\) −168.201 168.201i −0.689349 0.689349i
\(245\) 263.005 209.739i 1.07349 0.856079i
\(246\) −26.3774 16.5740i −0.107225 0.0673740i
\(247\) −3.66292 + 5.82950i −0.0148296 + 0.0236012i
\(248\) 56.7970 + 71.2212i 0.229020 + 0.287182i
\(249\) −0.496305 + 0.496305i −0.00199319 + 0.00199319i
\(250\) −12.7744 + 113.376i −0.0510977 + 0.453505i
\(251\) −312.227 + 109.253i −1.24393 + 0.435270i −0.870399 0.492347i \(-0.836139\pi\)
−0.373532 + 0.927617i \(0.621853\pi\)
\(252\) −200.380 + 251.268i −0.795157 + 0.997096i
\(253\) 1.21181 + 10.7551i 0.00478976 + 0.0425103i
\(254\) 3.02436 + 6.28015i 0.0119069 + 0.0247250i
\(255\) −12.9951 56.9352i −0.0509611 0.223275i
\(256\) 19.4560 85.2421i 0.0759998 0.332977i
\(257\) 156.282 + 75.2612i 0.608099 + 0.292845i 0.712480 0.701692i \(-0.247572\pi\)
−0.104381 + 0.994537i \(0.533286\pi\)
\(258\) 28.6072 + 10.0101i 0.110881 + 0.0387988i
\(259\) −252.219 + 158.480i −0.973818 + 0.611891i
\(260\) 206.102i 0.792698i
\(261\) −25.3958 250.408i −0.0973019 0.959419i
\(262\) −202.686 −0.773612
\(263\) −86.5688 137.774i −0.329159 0.523854i 0.640614 0.767863i \(-0.278680\pi\)
−0.969773 + 0.244010i \(0.921537\pi\)
\(264\) −1.78431 + 5.09925i −0.00675873 + 0.0193154i
\(265\) −76.7793 + 159.434i −0.289733 + 0.601637i
\(266\) 4.39953 + 1.00416i 0.0165396 + 0.00377505i
\(267\) −36.5085 + 8.33284i −0.136736 + 0.0312091i
\(268\) 340.572 164.011i 1.27079 0.611980i
\(269\) 29.2546 3.29620i 0.108753 0.0122535i −0.0574202 0.998350i \(-0.518287\pi\)
0.166173 + 0.986097i \(0.446859\pi\)
\(270\) −28.5663 22.7809i −0.105801 0.0843736i
\(271\) 168.083 + 480.355i 0.620234 + 1.77253i 0.634852 + 0.772634i \(0.281061\pi\)
−0.0146174 + 0.999893i \(0.504653\pi\)
\(272\) −188.818 21.2747i −0.694183 0.0782157i
\(273\) −65.2993 65.2993i −0.239192 0.239192i
\(274\) 26.7885 21.3631i 0.0977682 0.0779675i
\(275\) −8.24418 5.18016i −0.0299789 0.0188370i
\(276\) 6.91442 11.0042i 0.0250523 0.0398704i
\(277\) −130.918 164.166i −0.472629 0.592657i 0.487184 0.873299i \(-0.338024\pi\)
−0.959813 + 0.280642i \(0.909453\pi\)
\(278\) −33.2918 + 33.2918i −0.119755 + 0.119755i
\(279\) 14.4049 127.847i 0.0516306 0.458234i
\(280\) 282.572 98.8761i 1.00918 0.353129i
\(281\) −287.055 + 359.956i −1.02155 + 1.28098i −0.0624084 + 0.998051i \(0.519878\pi\)
−0.959140 + 0.282931i \(0.908693\pi\)
\(282\) 2.73322 + 24.2580i 0.00969227 + 0.0860213i
\(283\) 194.833 + 404.574i 0.688455 + 1.42959i 0.892691 + 0.450669i \(0.148815\pi\)
−0.204237 + 0.978922i \(0.565471\pi\)
\(284\) 51.2152 + 224.389i 0.180335 + 0.790101i
\(285\) 0.259372 1.13638i 0.000910079 0.00398732i
\(286\) 17.0675 + 8.21928i 0.0596766 + 0.0287388i
\(287\) −693.104 242.528i −2.41500 0.845044i
\(288\) −230.056 + 144.554i −0.798806 + 0.501923i
\(289\) 278.496i 0.963653i
\(290\) −46.9613 + 94.8028i −0.161936 + 0.326906i
\(291\) −44.6071 −0.153289
\(292\) 143.336 + 228.118i 0.490877 + 0.781226i
\(293\) 37.1090 106.051i 0.126652 0.361950i −0.863045 0.505126i \(-0.831446\pi\)
0.989697 + 0.143176i \(0.0457316\pi\)
\(294\) −16.1089 + 33.4505i −0.0547923 + 0.113777i
\(295\) 100.699 + 22.9839i 0.341353 + 0.0779117i
\(296\) −158.524 + 36.1820i −0.535553 + 0.122236i
\(297\) 14.0029 6.74346i 0.0471479 0.0227052i
\(298\) 87.5063 9.85959i 0.293645 0.0330859i
\(299\) −78.9566 62.9658i −0.264069 0.210588i
\(300\) 3.86145 + 11.0354i 0.0128715 + 0.0367846i
\(301\) 709.918 + 79.9885i 2.35853 + 0.265743i
\(302\) −24.6198 24.6198i −0.0815224 0.0815224i
\(303\) 37.2860 29.7346i 0.123056 0.0981339i
\(304\) −3.21121 2.01774i −0.0105632 0.00663730i
\(305\) 166.496 264.976i 0.545887 0.868774i
\(306\) −108.677 136.277i −0.355154 0.445349i
\(307\) 131.221 131.221i 0.427429 0.427429i −0.460323 0.887752i \(-0.652266\pi\)
0.887752 + 0.460323i \(0.152266\pi\)
\(308\) −6.43389 + 57.1024i −0.0208893 + 0.185397i
\(309\) 26.0549 9.11700i 0.0843201 0.0295049i
\(310\) −33.7180 + 42.2810i −0.108768 + 0.136390i
\(311\) −56.3391 500.023i −0.181155 1.60779i −0.674714 0.738079i \(-0.735733\pi\)
0.493560 0.869712i \(-0.335695\pi\)
\(312\) −21.8717 45.4171i −0.0701016 0.145568i
\(313\) −36.9386 161.838i −0.118015 0.517056i −0.999033 0.0439731i \(-0.985998\pi\)
0.881018 0.473082i \(-0.156859\pi\)
\(314\) −15.3738 + 67.3572i −0.0489613 + 0.214513i
\(315\) −380.938 183.450i −1.20933 0.582382i
\(316\) 358.412 + 125.414i 1.13422 + 0.396879i
\(317\) 16.0893 10.1096i 0.0507550 0.0318915i −0.506416 0.862290i \(-0.669030\pi\)
0.557171 + 0.830398i \(0.311887\pi\)
\(318\) 19.5305i 0.0614167i
\(319\) −27.6656 35.4947i −0.0867260 0.111269i
\(320\) −23.8570 −0.0745530
\(321\) −40.4281 64.3409i −0.125944 0.200439i
\(322\) −21.8625 + 62.4795i −0.0678961 + 0.194036i
\(323\) 4.91451 10.2051i 0.0152152 0.0315947i
\(324\) 232.293 + 53.0194i 0.716954 + 0.163640i
\(325\) 88.5726 20.2161i 0.272531 0.0622034i
\(326\) −0.871077 + 0.419489i −0.00267202 + 0.00128677i
\(327\) 11.4421 1.28921i 0.0349911 0.00394255i
\(328\) −313.386 249.917i −0.955444 0.761941i
\(329\) 190.049 + 543.129i 0.577657 + 1.65085i
\(330\) −3.18702 0.359091i −0.00965763 0.00108815i
\(331\) −34.0680 34.0680i −0.102924 0.102924i 0.653769 0.756694i \(-0.273187\pi\)
−0.756694 + 0.653769i \(0.773187\pi\)
\(332\) −3.18616 + 2.54088i −0.00959686 + 0.00765324i
\(333\) 194.446 + 122.178i 0.583921 + 0.366902i
\(334\) 87.7357 139.631i 0.262682 0.418056i
\(335\) 310.062 + 388.806i 0.925560 + 1.16062i
\(336\) 35.9705 35.9705i 0.107055 0.107055i
\(337\) 24.9408 221.356i 0.0740083 0.656841i −0.900868 0.434093i \(-0.857069\pi\)
0.974876 0.222748i \(-0.0715027\pi\)
\(338\) −32.3593 + 11.3230i −0.0957375 + 0.0335000i
\(339\) 8.46997 10.6210i 0.0249852 0.0313304i
\(340\) −37.9646 336.946i −0.111661 0.991016i
\(341\) −9.98099 20.7257i −0.0292698 0.0607793i
\(342\) −0.774149 3.39177i −0.00226359 0.00991745i
\(343\) −71.9903 + 315.410i −0.209884 + 0.919563i
\(344\) 351.352 + 169.202i 1.02137 + 0.491867i
\(345\) 16.1383 + 5.64703i 0.0467776 + 0.0163682i
\(346\) −67.0409 + 42.1246i −0.193760 + 0.121747i
\(347\) 400.531i 1.15427i −0.816649 0.577134i \(-0.804171\pi\)
0.816649 0.577134i \(-0.195829\pi\)
\(348\) −0.601320 + 54.0353i −0.00172793 + 0.155274i
\(349\) 191.095 0.547550 0.273775 0.961794i \(-0.411728\pi\)
0.273775 + 0.961794i \(0.411728\pi\)
\(350\) −31.6817 50.4212i −0.0905192 0.144060i
\(351\) −47.8973 + 136.883i −0.136460 + 0.389979i
\(352\) −21.0782 + 43.7694i −0.0598814 + 0.124345i
\(353\) 170.891 + 39.0048i 0.484111 + 0.110495i 0.457609 0.889154i \(-0.348706\pi\)
0.0265018 + 0.999649i \(0.491563\pi\)
\(354\) −11.1140 + 2.53669i −0.0313954 + 0.00716579i
\(355\) −272.809 + 131.378i −0.768476 + 0.370079i
\(356\) −216.060 + 24.3441i −0.606909 + 0.0683822i
\(357\) 118.783 + 94.7264i 0.332726 + 0.265340i
\(358\) −48.2282 137.828i −0.134716 0.384995i
\(359\) −302.179 34.0473i −0.841723 0.0948394i −0.319435 0.947608i \(-0.603493\pi\)
−0.522288 + 0.852769i \(0.674922\pi\)
\(360\) −163.198 163.198i −0.453329 0.453329i
\(361\) −282.064 + 224.939i −0.781342 + 0.623099i
\(362\) 69.1502 + 43.4500i 0.191023 + 0.120028i
\(363\) −35.7438 + 56.8859i −0.0984677 + 0.156710i
\(364\) −334.306 419.206i −0.918423 1.15167i
\(365\) −250.625 + 250.625i −0.686643 + 0.686643i
\(366\) −3.86712 + 34.3217i −0.0105659 + 0.0937751i
\(367\) 102.535 35.8787i 0.279388 0.0977622i −0.186948 0.982370i \(-0.559860\pi\)
0.466336 + 0.884608i \(0.345574\pi\)
\(368\) 34.6851 43.4937i 0.0942529 0.118189i
\(369\) 63.3842 + 562.550i 0.171773 + 1.52453i
\(370\) −41.8823 86.9695i −0.113195 0.235053i
\(371\) −102.441 448.825i −0.276122 1.20977i
\(372\) −6.14660 + 26.9300i −0.0165231 + 0.0723925i
\(373\) −391.003 188.297i −1.04826 0.504818i −0.171223 0.985232i \(-0.554772\pi\)
−0.877042 + 0.480414i \(0.840486\pi\)
\(374\) −29.4169 10.2934i −0.0786548 0.0275225i
\(375\) −64.9167 + 40.7898i −0.173111 + 0.108773i
\(376\) 314.102i 0.835377i
\(377\) 416.726 + 51.6559i 1.10537 + 0.137018i
\(378\) 95.0549 0.251468
\(379\) 146.333 + 232.888i 0.386104 + 0.614481i 0.982067 0.188530i \(-0.0603724\pi\)
−0.595963 + 0.803012i \(0.703230\pi\)
\(380\) 2.23524 6.38796i 0.00588222 0.0168104i
\(381\) −2.03229 + 4.22010i −0.00533410 + 0.0110764i
\(382\) 294.248 + 67.1601i 0.770282 + 0.175812i
\(383\) −213.072 + 48.6323i −0.556323 + 0.126977i −0.491433 0.870915i \(-0.663527\pi\)
−0.0648901 + 0.997892i \(0.520670\pi\)
\(384\) 66.2863 31.9218i 0.172621 0.0831297i
\(385\) −75.1234 + 8.46437i −0.195126 + 0.0219854i
\(386\) 196.244 + 156.500i 0.508405 + 0.405439i
\(387\) −181.907 519.859i −0.470043 1.34331i
\(388\) −257.368 28.9985i −0.663321 0.0747383i
\(389\) 25.9695 + 25.9695i 0.0667597 + 0.0667597i 0.739698 0.672939i \(-0.234968\pi\)
−0.672939 + 0.739698i \(0.734968\pi\)
\(390\) 23.3969 18.6584i 0.0599920 0.0478421i
\(391\) 140.681 + 88.3957i 0.359798 + 0.226076i
\(392\) −254.160 + 404.493i −0.648367 + 1.03187i
\(393\) −84.9193 106.485i −0.216080 0.270955i
\(394\) −82.8705 + 82.8705i −0.210331 + 0.210331i
\(395\) −55.9327 + 496.416i −0.141602 + 1.25675i
\(396\) 41.8150 14.6317i 0.105593 0.0369487i
\(397\) 83.6502 104.894i 0.210706 0.264217i −0.665236 0.746633i \(-0.731669\pi\)
0.875942 + 0.482416i \(0.160241\pi\)
\(398\) −1.09252 9.69641i −0.00274503 0.0243628i
\(399\) 1.31571 + 2.73210i 0.00329751 + 0.00684736i
\(400\) 11.1362 + 48.7907i 0.0278404 + 0.121977i
\(401\) 105.732 463.241i 0.263670 1.15521i −0.653566 0.756870i \(-0.726728\pi\)
0.917236 0.398345i \(-0.130415\pi\)
\(402\) −49.4507 23.8142i −0.123012 0.0592393i
\(403\) 202.600 + 70.8928i 0.502730 + 0.175913i
\(404\) 234.458 147.320i 0.580342 0.364653i
\(405\) 313.462i 0.773980i
\(406\) −58.2561 269.000i −0.143488 0.662562i
\(407\) 41.0606 0.100886
\(408\) 44.1230 + 70.2213i 0.108145 + 0.172111i
\(409\) 9.65215 27.5843i 0.0235994 0.0674432i −0.931481 0.363790i \(-0.881483\pi\)
0.955080 + 0.296347i \(0.0957684\pi\)
\(410\) 103.246 214.393i 0.251821 0.522911i
\(411\) 22.4471 + 5.12340i 0.0546158 + 0.0124657i
\(412\) 156.255 35.6642i 0.379260 0.0865637i
\(413\) −242.101 + 116.590i −0.586201 + 0.282300i
\(414\) 50.7108 5.71374i 0.122490 0.0138013i
\(415\) −4.19168 3.34275i −0.0101004 0.00805483i
\(416\) −149.714 427.859i −0.359890 1.02851i
\(417\) −31.4387 3.54230i −0.0753927 0.00849471i
\(418\) −0.439854 0.439854i −0.00105228 0.00105228i
\(419\) 173.110 138.050i 0.413149 0.329476i −0.394758 0.918785i \(-0.629172\pi\)
0.807907 + 0.589309i \(0.200600\pi\)
\(420\) 76.8635 + 48.2965i 0.183008 + 0.114992i
\(421\) 65.2084 103.779i 0.154889 0.246505i −0.760261 0.649618i \(-0.774929\pi\)
0.915150 + 0.403113i \(0.132072\pi\)
\(422\) 73.0702 + 91.6272i 0.173152 + 0.217126i
\(423\) 313.682 313.682i 0.741566 0.741566i
\(424\) 28.1365 249.718i 0.0663597 0.588958i
\(425\) −141.079 + 49.3657i −0.331951 + 0.116155i
\(426\) 20.8363 26.1279i 0.0489116 0.0613332i
\(427\) 91.1546 + 809.019i 0.213477 + 1.89466i
\(428\) −191.430 397.508i −0.447266 0.928757i
\(429\) 2.83259 + 12.4104i 0.00660278 + 0.0289287i
\(430\) −51.5157 + 225.705i −0.119804 + 0.524895i
\(431\) 178.177 + 85.8056i 0.413404 + 0.199085i 0.629013 0.777395i \(-0.283459\pi\)
−0.215609 + 0.976480i \(0.569174\pi\)
\(432\) −75.4026 26.3845i −0.174543 0.0610753i
\(433\) −148.885 + 93.5509i −0.343846 + 0.216053i −0.692873 0.721060i \(-0.743655\pi\)
0.349026 + 0.937113i \(0.386512\pi\)
\(434\) 140.691i 0.324172i
\(435\) −69.4820 + 15.0474i −0.159729 + 0.0345917i
\(436\) 66.8552 0.153338
\(437\) 1.76431 + 2.80789i 0.00403733 + 0.00642538i
\(438\) 12.9200 36.9232i 0.0294977 0.0842996i
\(439\) −97.1608 + 201.756i −0.221323 + 0.459582i −0.981834 0.189743i \(-0.939234\pi\)
0.760511 + 0.649325i \(0.224949\pi\)
\(440\) −40.2321 9.18271i −0.0914366 0.0208698i
\(441\) 657.774 150.133i 1.49155 0.340437i
\(442\) 262.005 126.175i 0.592771 0.285463i
\(443\) 172.978 19.4899i 0.390470 0.0439954i 0.0854526 0.996342i \(-0.472766\pi\)
0.305017 + 0.952347i \(0.401338\pi\)
\(444\) −38.5480 30.7410i −0.0868199 0.0692366i
\(445\) −94.4746 269.993i −0.212302 0.606725i
\(446\) −96.3820 10.8596i −0.216103 0.0243490i
\(447\) 41.8424 + 41.8424i 0.0936071 + 0.0936071i
\(448\) 48.5246 38.6970i 0.108314 0.0863773i
\(449\) −378.601 237.891i −0.843209 0.529823i 0.0397845 0.999208i \(-0.487333\pi\)
−0.882994 + 0.469385i \(0.844476\pi\)
\(450\) −24.4247 + 38.8717i −0.0542771 + 0.0863815i
\(451\) 63.1102 + 79.1376i 0.139934 + 0.175471i
\(452\) 55.7736 55.7736i 0.123393 0.123393i
\(453\) 2.61958 23.2494i 0.00578274 0.0513233i
\(454\) −181.897 + 63.6486i −0.400655 + 0.140195i
\(455\) 439.810 551.504i 0.966615 1.21210i
\(456\) 0.185333 + 1.64487i 0.000406431 + 0.00360718i
\(457\) 21.1875 + 43.9964i 0.0463622 + 0.0962722i 0.922863 0.385128i \(-0.125843\pi\)
−0.876501 + 0.481400i \(0.840128\pi\)
\(458\) 38.7678 + 169.853i 0.0846459 + 0.370858i
\(459\) 53.0908 232.606i 0.115666 0.506767i
\(460\) 89.4416 + 43.0728i 0.194438 + 0.0936366i
\(461\) 536.238 + 187.638i 1.16321 + 0.407023i 0.841732 0.539895i \(-0.181536\pi\)
0.321474 + 0.946918i \(0.395822\pi\)
\(462\) 7.06479 4.43910i 0.0152918 0.00960845i
\(463\) 50.1618i 0.108341i −0.998532 0.0541704i \(-0.982749\pi\)
0.998532 0.0541704i \(-0.0172514\pi\)
\(464\) −28.4549 + 229.556i −0.0613253 + 0.494732i
\(465\) −36.3400 −0.0781505
\(466\) −83.5276 132.933i −0.179244 0.285265i
\(467\) −61.9948 + 177.171i −0.132751 + 0.379381i −0.991002 0.133850i \(-0.957266\pi\)
0.858250 + 0.513231i \(0.171552\pi\)
\(468\) −179.353 + 372.430i −0.383233 + 0.795791i
\(469\) −1261.32 287.888i −2.68938 0.613834i
\(470\) −181.794 + 41.4932i −0.386795 + 0.0882834i
\(471\) −41.8287 + 20.1436i −0.0888082 + 0.0427678i
\(472\) −145.758 + 16.4230i −0.308810 + 0.0347945i
\(473\) −76.9928 61.3997i −0.162775 0.129809i
\(474\) −18.2100 52.0411i −0.0384177 0.109791i
\(475\) −2.96449 0.334018i −0.00624103 0.000703195i
\(476\) 623.760 + 623.760i 1.31042 + 1.31042i
\(477\) −277.484 + 221.286i −0.581727 + 0.463912i
\(478\) −114.716 72.0809i −0.239992 0.150797i
\(479\) 15.6633 24.9280i 0.0327000 0.0520418i −0.829974 0.557802i \(-0.811645\pi\)
0.862674 + 0.505760i \(0.168788\pi\)
\(480\) 47.8492 + 60.0011i 0.0996859 + 0.125002i
\(481\) −270.914 + 270.914i −0.563231 + 0.563231i
\(482\) −18.3807 + 163.133i −0.0381342 + 0.338450i
\(483\) −41.9847 + 14.6911i −0.0869248 + 0.0304163i
\(484\) −243.211 + 304.977i −0.502501 + 0.630117i
\(485\) −38.1501 338.592i −0.0786600 0.698127i
\(486\) −47.9821 99.6359i −0.0987286 0.205012i
\(487\) 39.7649 + 174.221i 0.0816527 + 0.357744i 0.999205 0.0398716i \(-0.0126949\pi\)
−0.917552 + 0.397616i \(0.869838\pi\)
\(488\) −98.8905 + 433.268i −0.202645 + 0.887844i
\(489\) −0.585342 0.281886i −0.00119702 0.000576453i
\(490\) −267.685 93.6669i −0.546295 0.191157i
\(491\) 319.674 200.864i 0.651066 0.409092i −0.165607 0.986192i \(-0.552958\pi\)
0.816674 + 0.577100i \(0.195816\pi\)
\(492\) 121.544i 0.247041i
\(493\) −690.800 7.68743i −1.40122 0.0155932i
\(494\) 5.80422 0.0117494
\(495\) 31.0079 + 49.3488i 0.0626423 + 0.0996946i
\(496\) −39.0517 + 111.603i −0.0787333 + 0.225007i
\(497\) 341.787 709.728i 0.687701 1.42803i
\(498\) 0.576887 + 0.131671i 0.00115841 + 0.000264399i
\(499\) −575.053 + 131.252i −1.15241 + 0.263030i −0.755703 0.654915i \(-0.772704\pi\)
−0.396707 + 0.917945i \(0.629847\pi\)
\(500\) −401.065 + 193.143i −0.802130 + 0.386286i
\(501\) 110.116 12.4071i 0.219793 0.0247647i
\(502\) 218.032 + 173.875i 0.434326 + 0.346364i
\(503\) 122.173 + 349.151i 0.242889 + 0.694137i 0.999203 + 0.0399278i \(0.0127128\pi\)
−0.756313 + 0.654209i \(0.773001\pi\)
\(504\) 596.657 + 67.2271i 1.18384 + 0.133387i
\(505\) 257.590 + 257.590i 0.510079 + 0.510079i
\(506\) 7.13382 5.68903i 0.0140985 0.0112432i
\(507\) −19.5063 12.2566i −0.0384740 0.0241748i
\(508\) −14.4691 + 23.0275i −0.0284825 + 0.0453296i
\(509\) 595.965 + 747.316i 1.17085 + 1.46820i 0.854414 + 0.519592i \(0.173916\pi\)
0.316440 + 0.948613i \(0.397513\pi\)
\(510\) −34.8135 + 34.8135i −0.0682618 + 0.0682618i
\(511\) 103.241 916.289i 0.202037 1.79313i
\(512\) 420.751 147.227i 0.821779 0.287553i
\(513\) 2.96908 3.72311i 0.00578769 0.00725753i
\(514\) −16.3732 145.316i −0.0318544 0.282716i
\(515\) 91.4863 + 189.973i 0.177643 + 0.368880i
\(516\) 26.3131 + 115.285i 0.0509943 + 0.223421i
\(517\) 17.6500 77.3298i 0.0341393 0.149574i
\(518\) 226.256 + 108.959i 0.436788 + 0.210346i
\(519\) −50.2191 17.5724i −0.0967613 0.0338583i
\(520\) 326.034 204.861i 0.626989 0.393963i
\(521\) 165.340i 0.317352i 0.987331 + 0.158676i \(0.0507225\pi\)
−0.987331 + 0.158676i \(0.949278\pi\)
\(522\) −167.359 + 130.444i −0.320611 + 0.249893i
\(523\) −680.975 −1.30205 −0.651027 0.759054i \(-0.725662\pi\)
−0.651027 + 0.759054i \(0.725662\pi\)
\(524\) −420.732 669.592i −0.802924 1.27785i
\(525\) 13.2161 37.7696i 0.0251736 0.0719420i
\(526\) −59.5185 + 123.591i −0.113153 + 0.234965i
\(527\) −344.280 78.5796i −0.653283 0.149107i
\(528\) −6.83634 + 1.56035i −0.0129476 + 0.00295521i
\(529\) 432.786 208.419i 0.818122 0.393987i
\(530\) 148.247 16.7034i 0.279712 0.0315159i
\(531\) 161.965 + 129.163i 0.305018 + 0.243244i
\(532\) 5.81511 + 16.6186i 0.0109307 + 0.0312380i
\(533\) −938.537 105.748i −1.76086 0.198401i
\(534\) 22.3235 + 22.3235i 0.0418043 + 0.0418043i
\(535\) 453.806 361.898i 0.848235 0.676445i
\(536\) −597.972 375.731i −1.11562 0.700990i
\(537\) 52.2048 83.0835i 0.0972157 0.154718i
\(538\) −15.4745 19.4044i −0.0287630 0.0360677i
\(539\) 85.3018 85.3018i 0.158259 0.158259i
\(540\) 15.9612 141.659i 0.0295577 0.262332i
\(541\) 259.030 90.6386i 0.478799 0.167539i −0.0800798 0.996788i \(-0.525518\pi\)
0.558879 + 0.829250i \(0.311232\pi\)
\(542\) 267.503 335.438i 0.493547 0.618889i
\(543\) 6.14447 + 54.5337i 0.0113158 + 0.100430i
\(544\) 323.574 + 671.908i 0.594805 + 1.23513i
\(545\) 19.5716 + 85.7489i 0.0359113 + 0.157337i
\(546\) −17.3240 + 75.9016i −0.0317290 + 0.139014i
\(547\) 506.415 + 243.877i 0.925805 + 0.445844i 0.835140 0.550037i \(-0.185387\pi\)
0.0906647 + 0.995881i \(0.471101\pi\)
\(548\) 126.182 + 44.1529i 0.230259 + 0.0805711i
\(549\) 531.448 333.931i 0.968028 0.608253i
\(550\) 8.20844i 0.0149244i
\(551\) −12.3559 6.12057i −0.0224244 0.0111081i
\(552\) −24.2805 −0.0439865
\(553\) −691.443 1100.43i −1.25035 1.98992i
\(554\) −58.4664 + 167.087i −0.105535 + 0.301602i
\(555\) 28.1438 58.4413i 0.0507096 0.105300i
\(556\) −179.089 40.8758i −0.322102 0.0735176i
\(557\) −328.386 + 74.9521i −0.589563 + 0.134564i −0.506887 0.862013i \(-0.669204\pi\)
−0.0826759 + 0.996576i \(0.526347\pi\)
\(558\) −97.7227 + 47.0608i −0.175130 + 0.0843383i
\(559\) 913.101 102.882i 1.63345 0.184046i
\(560\) 303.799 + 242.272i 0.542498 + 0.432628i
\(561\) −6.91691 19.7674i −0.0123296 0.0352360i
\(562\) 385.702 + 43.4581i 0.686302 + 0.0773276i
\(563\) 156.332 + 156.332i 0.277677 + 0.277677i 0.832181 0.554504i \(-0.187092\pi\)
−0.554504 + 0.832181i \(0.687092\pi\)
\(564\) −74.4648 + 59.3837i −0.132030 + 0.105290i
\(565\) 87.8631 + 55.2080i 0.155510 + 0.0977133i
\(566\) 201.410 320.542i 0.355848 0.566329i
\(567\) −508.449 637.575i −0.896735 1.12447i
\(568\) 304.056 304.056i 0.535309 0.535309i
\(569\) −36.9493 + 327.934i −0.0649373 + 0.576334i 0.918543 + 0.395321i \(0.129366\pi\)
−0.983481 + 0.181014i \(0.942062\pi\)
\(570\) −0.927526 + 0.324555i −0.00162724 + 0.000569395i
\(571\) 126.849 159.064i 0.222153 0.278570i −0.658248 0.752801i \(-0.728702\pi\)
0.880401 + 0.474231i \(0.157274\pi\)
\(572\) 8.27532 + 73.4455i 0.0144673 + 0.128401i
\(573\) 87.9968 + 182.727i 0.153572 + 0.318896i
\(574\) 137.755 + 603.542i 0.239990 + 1.05147i
\(575\) 9.73747 42.6627i 0.0169347 0.0741959i
\(576\) −43.1101 20.7607i −0.0748438 0.0360429i
\(577\) 612.104 + 214.185i 1.06084 + 0.371204i 0.803616 0.595148i \(-0.202907\pi\)
0.257223 + 0.966352i \(0.417192\pi\)
\(578\) −198.799 + 124.914i −0.343944 + 0.216114i
\(579\) 168.670i 0.291312i
\(580\) −410.671 + 41.6492i −0.708053 + 0.0718090i
\(581\) 13.9479 0.0240067
\(582\) 20.0077 + 31.8420i 0.0343774 + 0.0547114i
\(583\) −20.9592 + 59.8980i −0.0359506 + 0.102741i
\(584\) 218.389 453.490i 0.373954 0.776523i
\(585\) −530.186 121.012i −0.906301 0.206857i
\(586\) −92.3475 + 21.0777i −0.157590 + 0.0359688i
\(587\) −702.630 + 338.369i −1.19698 + 0.576437i −0.922815 0.385244i \(-0.874117\pi\)
−0.274170 + 0.961681i \(0.588403\pi\)
\(588\) −143.945 + 16.2187i −0.244805 + 0.0275829i
\(589\) −5.51058 4.39454i −0.00935582 0.00746101i
\(590\) −28.7600 82.1915i −0.0487458 0.139308i
\(591\) −78.2580 8.81755i −0.132416 0.0149197i
\(592\) −149.234 149.234i −0.252085 0.252085i
\(593\) −694.472 + 553.823i −1.17112 + 0.933934i −0.998694 0.0510897i \(-0.983731\pi\)
−0.172422 + 0.985023i \(0.555159\pi\)
\(594\) −11.0945 6.97111i −0.0186775 0.0117359i
\(595\) −617.435 + 982.642i −1.03771 + 1.65150i
\(596\) 214.216 + 268.618i 0.359423 + 0.450702i
\(597\) 4.63648 4.63648i 0.00776629 0.00776629i
\(598\) −9.53258 + 84.6040i −0.0159408 + 0.141478i
\(599\) 153.834 53.8288i 0.256818 0.0898645i −0.198799 0.980040i \(-0.563704\pi\)
0.455617 + 0.890176i \(0.349419\pi\)
\(600\) 13.6188 17.0774i 0.0226980 0.0284624i
\(601\) 56.1166 + 498.048i 0.0933720 + 0.828699i 0.949890 + 0.312583i \(0.101194\pi\)
−0.856518 + 0.516116i \(0.827377\pi\)
\(602\) −261.322 542.640i −0.434089 0.901395i
\(603\) 221.944 + 972.402i 0.368067 + 1.61261i
\(604\) 30.2283 132.439i 0.0500468 0.219270i
\(605\) −462.364 222.663i −0.764238 0.368038i
\(606\) −37.9494 13.2791i −0.0626228 0.0219127i
\(607\) 791.990 497.641i 1.30476 0.819836i 0.313227 0.949678i \(-0.398590\pi\)
0.991535 + 0.129842i \(0.0414471\pi\)
\(608\) 14.8849i 0.0244817i
\(609\) 116.917 143.309i 0.191983 0.235318i
\(610\) −263.827 −0.432504
\(611\) 393.761 + 626.668i 0.644454 + 1.02564i
\(612\) 224.612 641.906i 0.367014 1.04887i
\(613\) 152.936 317.575i 0.249488 0.518067i −0.738185 0.674598i \(-0.764317\pi\)
0.987673 + 0.156531i \(0.0500312\pi\)
\(614\) −152.526 34.8131i −0.248414 0.0566989i
\(615\) 155.893 35.5816i 0.253485 0.0578562i
\(616\) 96.7260 46.5808i 0.157023 0.0756182i
\(617\) −839.013 + 94.5340i −1.35983 + 0.153216i −0.761566 0.648087i \(-0.775569\pi\)
−0.598260 + 0.801302i \(0.704141\pi\)
\(618\) −18.1944 14.5096i −0.0294409 0.0234783i
\(619\) −171.638 490.514i −0.277283 0.792430i −0.995338 0.0964436i \(-0.969253\pi\)
0.718055 0.695986i \(-0.245032\pi\)
\(620\) −209.670 23.6241i −0.338177 0.0381034i
\(621\) 49.3928 + 49.3928i 0.0795376 + 0.0795376i
\(622\) −331.663 + 264.493i −0.533221 + 0.425229i
\(623\) 630.100 + 395.918i 1.01140 + 0.635502i
\(624\) 34.8105 55.4006i 0.0557860 0.0887829i
\(625\) −267.338 335.231i −0.427741 0.536370i
\(626\) −98.9575 + 98.9575i −0.158079 + 0.158079i
\(627\) 0.0468011 0.415371i 7.46429e−5 0.000662474i
\(628\) −254.433 + 89.0300i −0.405148 + 0.141767i
\(629\) 393.001 492.808i 0.624803 0.783478i
\(630\) 39.9098 + 354.210i 0.0633490 + 0.562238i
\(631\) −226.898 471.158i −0.359584 0.746685i 0.640184 0.768222i \(-0.278858\pi\)
−0.999768 + 0.0215372i \(0.993144\pi\)
\(632\) −157.861 691.635i −0.249780 1.09436i
\(633\) −17.5241 + 76.7780i −0.0276842 + 0.121292i
\(634\) −14.4331 6.95062i −0.0227652 0.0109631i
\(635\) −33.7709 11.8170i −0.0531826 0.0186094i
\(636\) 64.5208 40.5411i 0.101448 0.0637438i
\(637\) 1125.63i 1.76708i
\(638\) −12.9284 + 35.6691i −0.0202640 + 0.0559077i
\(639\) −607.299 −0.950390
\(640\) 298.995 + 475.848i 0.467179 + 0.743512i
\(641\) −284.960 + 814.368i −0.444555 + 1.27046i 0.475860 + 0.879521i \(0.342137\pi\)
−0.920415 + 0.390944i \(0.872149\pi\)
\(642\) −27.7954 + 57.7178i −0.0432950 + 0.0899031i
\(643\) 221.189 + 50.4849i 0.343995 + 0.0785147i 0.391028 0.920379i \(-0.372119\pi\)
−0.0470331 + 0.998893i \(0.514977\pi\)
\(644\) −251.788 + 57.4691i −0.390976 + 0.0892377i
\(645\) −140.162 + 67.4986i −0.217306 + 0.104649i
\(646\) −9.48905 + 1.06916i −0.0146889 + 0.00165504i
\(647\) 639.749 + 510.183i 0.988794 + 0.788537i 0.977400 0.211398i \(-0.0678018\pi\)
0.0113937 + 0.999935i \(0.496373\pi\)
\(648\) −147.023 420.167i −0.226887 0.648406i
\(649\) 36.8076 + 4.14722i 0.0567143 + 0.00639017i
\(650\) −54.1585 54.1585i −0.0833208 0.0833208i
\(651\) 73.9148 58.9451i 0.113540 0.0905454i
\(652\) −3.19398 2.00691i −0.00489875 0.00307809i
\(653\) 430.330 684.867i 0.659005 1.04880i −0.335288 0.942116i \(-0.608834\pi\)
0.994293 0.106685i \(-0.0340236\pi\)
\(654\) −6.05241 7.58949i −0.00925445 0.0116047i
\(655\) 735.655 735.655i 1.12314 1.12314i
\(656\) 58.2517 516.998i 0.0887984 0.788107i
\(657\) −670.982 + 234.787i −1.02128 + 0.357362i
\(658\) 302.461 379.274i 0.459667 0.576404i
\(659\) −11.9427 105.994i −0.0181225 0.160841i 0.981391 0.192018i \(-0.0615032\pi\)
−0.999514 + 0.0311765i \(0.990075\pi\)
\(660\) −5.42927 11.2740i −0.00822616 0.0170818i
\(661\) 58.7442 + 257.375i 0.0888717 + 0.389372i 0.999727 0.0233529i \(-0.00743414\pi\)
−0.910856 + 0.412725i \(0.864577\pi\)
\(662\) −9.03830 + 39.5994i −0.0136530 + 0.0598178i
\(663\) 176.061 + 84.7863i 0.265551 + 0.127883i
\(664\) 7.18642 + 2.51464i 0.0108229 + 0.00378710i
\(665\) −19.6128 + 12.3236i −0.0294930 + 0.0185317i
\(666\) 193.602i 0.290694i
\(667\) 109.508 170.050i 0.164180 0.254948i
\(668\) 643.402 0.963176
\(669\) −34.6758 55.1862i −0.0518322 0.0824905i
\(670\) 138.470 395.724i 0.206672 0.590634i
\(671\) 48.6924 101.111i 0.0725669 0.150687i
\(672\) −194.649 44.4273i −0.289656 0.0661121i
\(673\) 396.421 90.4804i 0.589035 0.134443i 0.0823931 0.996600i \(-0.473744\pi\)
0.506642 + 0.862156i \(0.330887\pi\)
\(674\) −169.198 + 81.4813i −0.251035 + 0.120892i
\(675\) −62.4440 + 7.03575i −0.0925097 + 0.0104233i
\(676\) −104.577 83.3976i −0.154700 0.123369i
\(677\) −170.754 487.988i −0.252222 0.720810i −0.998478 0.0551504i \(-0.982436\pi\)
0.746256 0.665659i \(-0.231850\pi\)
\(678\) −11.3807 1.28229i −0.0167857 0.00189129i
\(679\) 626.807 + 626.807i 0.923133 + 0.923133i
\(680\) −495.282 + 394.974i −0.728355 + 0.580844i
\(681\) −109.648 68.8967i −0.161011 0.101170i
\(682\) −10.3179 + 16.4209i −0.0151289 + 0.0240776i
\(683\) 207.865 + 260.654i 0.304341 + 0.381631i 0.910359 0.413820i \(-0.135806\pi\)
−0.606018 + 0.795451i \(0.707234\pi\)
\(684\) 9.59804 9.59804i 0.0140322 0.0140322i
\(685\) −19.6915 + 174.767i −0.0287468 + 0.255135i
\(686\) 257.440 90.0822i 0.375277 0.131315i
\(687\) −72.9932 + 91.5306i −0.106249 + 0.133232i
\(688\) 56.6730 + 502.986i 0.0823735 + 0.731085i
\(689\) −256.914 533.488i −0.372880 0.774293i
\(690\) −3.20749 14.0529i −0.00464853 0.0203665i
\(691\) 35.5687 155.837i 0.0514743 0.225523i −0.942648 0.333789i \(-0.891673\pi\)
0.994122 + 0.108266i \(0.0345298\pi\)
\(692\) −278.325 134.034i −0.402203 0.193691i
\(693\) −143.115 50.0783i −0.206516 0.0722630i
\(694\) −285.912 + 179.651i −0.411978 + 0.258863i
\(695\) 241.666i 0.347722i
\(696\) 86.0766 52.7587i 0.123673 0.0758028i
\(697\) 1553.85 2.22934
\(698\) −85.7120 136.410i −0.122797 0.195430i
\(699\) 34.8438 99.5779i 0.0498481 0.142458i
\(700\) 100.806 209.327i 0.144009 0.299038i
\(701\) 1073.12 + 244.932i 1.53084 + 0.349404i 0.903240 0.429135i \(-0.141182\pi\)
0.627597 + 0.778539i \(0.284039\pi\)
\(702\) 119.195 27.2055i 0.169793 0.0387542i
\(703\) 11.3349 5.45861i 0.0161237 0.00776474i
\(704\) −8.50156 + 0.957896i −0.0120761 + 0.00136065i
\(705\) −97.9652 78.1247i −0.138958 0.110815i
\(706\) −48.8070 139.483i −0.0691318 0.197567i
\(707\) −941.755 106.110i −1.33204 0.150085i
\(708\) −31.4503 31.4503i −0.0444214 0.0444214i
\(709\) 207.591 165.548i 0.292794 0.233496i −0.466065 0.884751i \(-0.654329\pi\)
0.758859 + 0.651255i \(0.225757\pi\)
\(710\) 216.145 + 135.813i 0.304430 + 0.191286i
\(711\) −533.061 + 848.361i −0.749734 + 1.19319i
\(712\) 253.269 + 317.589i 0.355715 + 0.446052i
\(713\) 73.1063 73.1063i 0.102533 0.102533i
\(714\) 14.3409 127.279i 0.0200853 0.178262i
\(715\) −91.7790 + 32.1149i −0.128362 + 0.0449159i
\(716\) 355.217 445.428i 0.496113 0.622106i
\(717\) −10.1933 90.4681i −0.0142166 0.126176i
\(718\) 111.232 + 230.976i 0.154920 + 0.321694i
\(719\) −251.846 1103.41i −0.350273 1.53465i −0.776552 0.630054i \(-0.783033\pi\)
0.426279 0.904592i \(-0.359824\pi\)
\(720\) 66.6599 292.056i 0.0925831 0.405633i
\(721\) −494.226 238.007i −0.685474 0.330107i
\(722\) 287.083 + 100.455i 0.397623 + 0.139134i
\(723\) −93.4062 + 58.6910i −0.129193 + 0.0811770i
\(724\) 318.636i 0.440106i
\(725\) 58.1808 + 172.401i 0.0802493 + 0.237795i
\(726\) 56.6392 0.0780154
\(727\) 25.1121 + 39.9657i 0.0345421 + 0.0549734i 0.863549 0.504265i \(-0.168237\pi\)
−0.829007 + 0.559238i \(0.811094\pi\)
\(728\) −330.853 + 945.524i −0.454469 + 1.29880i
\(729\) −250.623 + 520.425i −0.343791 + 0.713889i
\(730\) 291.317 + 66.4912i 0.399064 + 0.0910838i
\(731\) −1473.83 + 336.393i −2.01619 + 0.460182i
\(732\) −121.412 + 58.4689i −0.165863 + 0.0798755i
\(733\) 117.112 13.1954i 0.159771 0.0180019i −0.0317165 0.999497i \(-0.510097\pi\)
0.191488 + 0.981495i \(0.438669\pi\)
\(734\) −71.6018 57.1005i −0.0975501 0.0777936i
\(735\) −62.9418 179.877i −0.0856351 0.244731i
\(736\) −216.966 24.4462i −0.294791 0.0332149i
\(737\) 126.104 + 126.104i 0.171104 + 0.171104i
\(738\) 373.137 297.567i 0.505606 0.403207i
\(739\) −954.623 599.830i −1.29178 0.811677i −0.301864 0.953351i \(-0.597609\pi\)
−0.989913 + 0.141674i \(0.954752\pi\)
\(740\) 200.373 318.891i 0.270774 0.430934i
\(741\) 2.43179 + 3.04937i 0.00328177 + 0.00411521i
\(742\) −274.438 + 274.438i −0.369862 + 0.369862i
\(743\) 84.0696 746.139i 0.113149 1.00422i −0.800950 0.598732i \(-0.795672\pi\)
0.914098 0.405492i \(-0.132900\pi\)
\(744\) 48.7104 17.0445i 0.0654710 0.0229093i
\(745\) −281.820 + 353.392i −0.378282 + 0.474351i
\(746\) 40.9643 + 363.568i 0.0549119 + 0.487356i
\(747\) −4.66554 9.68810i −0.00624571 0.0129693i
\(748\) −27.0578 118.548i −0.0361736 0.158487i
\(749\) −336.017 + 1472.19i −0.448621 + 1.96554i
\(750\) 58.2343 + 28.0441i 0.0776457 + 0.0373922i
\(751\) −1157.37 404.983i −1.54111 0.539258i −0.579808 0.814753i \(-0.696873\pi\)
−0.961303 + 0.275495i \(0.911158\pi\)
\(752\) −345.203 + 216.906i −0.459047 + 0.288438i
\(753\) 187.396i 0.248865i
\(754\) −150.041 320.642i −0.198993 0.425255i
\(755\) 178.716 0.236710
\(756\) 197.313 + 314.022i 0.260996 + 0.415373i
\(757\) 347.068 991.864i 0.458478 1.31026i −0.450263 0.892896i \(-0.648670\pi\)
0.908741 0.417360i \(-0.137045\pi\)
\(758\) 100.608 208.915i 0.132729 0.275614i
\(759\) 5.97771 + 1.36437i 0.00787577 + 0.00179759i
\(760\) −12.3270 + 2.81355i −0.0162197 + 0.00370204i
\(761\) 147.446 71.0065i 0.193754 0.0933068i −0.334491 0.942399i \(-0.608565\pi\)
0.528245 + 0.849092i \(0.322850\pi\)
\(762\) 3.92400 0.442128i 0.00514960 0.000580221i
\(763\) −178.897 142.665i −0.234465 0.186980i
\(764\) 388.925 + 1111.48i 0.509064 + 1.45482i
\(765\) 889.067 + 100.174i 1.16218 + 0.130946i
\(766\) 130.285 + 130.285i 0.170084 + 0.170084i
\(767\) −270.216 + 215.490i −0.352302 + 0.280952i
\(768\) −41.9403 26.3528i −0.0546097 0.0343136i
\(769\) 451.872 719.149i 0.587609 0.935175i −0.412102 0.911138i \(-0.635205\pi\)
0.999711 0.0240371i \(-0.00765197\pi\)
\(770\) 39.7373 + 49.8290i 0.0516069 + 0.0647130i
\(771\) 69.4849