Properties

Label 29.3.f.a.18.3
Level $29$
Weight $3$
Character 29.18
Analytic conductor $0.790$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 29.f (of order \(28\), degree \(12\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 18.3
Character \(\chi\) \(=\) 29.18
Dual form 29.3.f.a.21.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.144456 - 0.412831i) q^{2} +(0.570967 - 0.0643326i) q^{3} +(2.97776 - 2.37469i) q^{4} +(-1.02777 + 2.13419i) q^{5} +(-0.109038 - 0.226420i) q^{6} +(-1.74606 + 2.18949i) q^{7} +(-2.89184 - 1.81707i) q^{8} +(-8.45249 + 1.92922i) q^{9} +O(q^{10})\) \(q+(-0.144456 - 0.412831i) q^{2} +(0.570967 - 0.0643326i) q^{3} +(2.97776 - 2.37469i) q^{4} +(-1.02777 + 2.13419i) q^{5} +(-0.109038 - 0.226420i) q^{6} +(-1.74606 + 2.18949i) q^{7} +(-2.89184 - 1.81707i) q^{8} +(-8.45249 + 1.92922i) q^{9} +(1.02953 + 0.116000i) q^{10} +(-7.71599 + 4.84828i) q^{11} +(1.54744 - 1.54744i) q^{12} +(8.82927 + 2.01522i) q^{13} +(1.15612 + 0.404544i) q^{14} +(-0.449525 + 1.28467i) q^{15} +(3.05767 - 13.3965i) q^{16} +(5.09882 + 5.09882i) q^{17} +(2.01746 + 3.21076i) q^{18} +(2.57525 - 22.8560i) q^{19} +(2.00757 + 8.79574i) q^{20} +(-0.856089 + 1.36246i) q^{21} +(3.11614 + 2.48504i) q^{22} +(17.8554 - 8.59869i) q^{23} +(-1.76805 - 0.851446i) q^{24} +(12.0888 + 15.1589i) q^{25} +(-0.443493 - 3.93611i) q^{26} +(-9.58301 + 3.35324i) q^{27} +10.6662i q^{28} +(-26.8516 + 10.9540i) q^{29} +0.595288 q^{30} +(-10.2548 - 29.3065i) q^{31} +(-19.5476 + 2.20249i) q^{32} +(-4.09368 + 3.26460i) q^{33} +(1.36840 - 2.84151i) q^{34} +(-2.87824 - 5.97672i) q^{35} +(-20.5882 + 25.8168i) q^{36} +(5.78232 + 3.63327i) q^{37} +(-9.80767 + 2.23854i) q^{38} +(5.17087 + 0.582617i) q^{39} +(6.85011 - 4.30421i) q^{40} +(9.53079 - 9.53079i) q^{41} +(0.686132 + 0.156605i) q^{42} +(47.8950 + 16.7592i) q^{43} +(-11.4633 + 32.7601i) q^{44} +(4.56989 - 20.0220i) q^{45} +(-6.12912 - 6.12912i) q^{46} +(-44.9627 - 71.5578i) q^{47} +(0.883996 - 7.84568i) q^{48} +(9.15838 + 40.1255i) q^{49} +(4.51176 - 7.18042i) q^{50} +(3.23928 + 2.58324i) q^{51} +(31.0770 - 14.9659i) q^{52} +(76.8011 + 36.9854i) q^{53} +(2.76864 + 3.47177i) q^{54} +(-2.41687 - 21.4503i) q^{55} +(9.02780 - 3.15896i) q^{56} -13.2157i q^{57} +(8.40103 + 9.50282i) q^{58} +54.7819 q^{59} +(1.71211 + 4.89293i) q^{60} +(-85.8310 + 9.67083i) q^{61} +(-10.6173 + 8.46700i) q^{62} +(10.5346 - 21.8752i) q^{63} +(-20.1150 - 41.7693i) q^{64} +(-13.3753 + 16.7721i) q^{65} +(1.93908 + 1.21841i) q^{66} +(-70.4365 + 16.0767i) q^{67} +(27.2912 + 3.07498i) q^{68} +(9.64165 - 6.05825i) q^{69} +(-2.05160 + 2.05160i) q^{70} +(-85.2177 - 19.4504i) q^{71} +(27.9488 + 9.77971i) q^{72} +(-41.8509 + 119.603i) q^{73} +(0.664638 - 2.91197i) q^{74} +(7.87752 + 7.87752i) q^{75} +(-46.6073 - 74.1752i) q^{76} +(2.85733 - 25.3595i) q^{77} +(-0.506440 - 2.21886i) q^{78} +(-29.8246 + 47.4656i) q^{79} +(25.4481 + 20.2942i) q^{80} +(65.0456 - 31.3243i) q^{81} +(-5.31139 - 2.55783i) q^{82} +(57.5797 + 72.2026i) q^{83} +(0.686181 + 6.09003i) q^{84} +(-16.1222 + 5.64142i) q^{85} -22.1935i q^{86} +(-14.6267 + 7.98181i) q^{87} +31.1231 q^{88} +(-31.8736 - 91.0895i) q^{89} +(-8.92584 + 1.00570i) q^{90} +(-19.8288 + 15.8129i) q^{91} +(32.7498 - 68.0057i) q^{92} +(-7.74052 - 16.0733i) q^{93} +(-23.0462 + 28.8990i) q^{94} +(46.1322 + 28.9868i) q^{95} +(-11.0194 + 2.51510i) q^{96} +(17.8156 + 2.00733i) q^{97} +(15.2421 - 9.57722i) q^{98} +(55.8659 - 55.8659i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q - 16q^{2} - 12q^{3} - 14q^{4} - 14q^{5} - 14q^{6} - 10q^{7} + 28q^{8} - 14q^{9} + O(q^{10}) \) \( 48q - 16q^{2} - 12q^{3} - 14q^{4} - 14q^{5} - 14q^{6} - 10q^{7} + 28q^{8} - 14q^{9} - 20q^{10} - 8q^{11} - 68q^{12} - 14q^{13} + 26q^{14} - 4q^{15} + 18q^{16} - 26q^{17} - 34q^{18} + 2q^{19} + 46q^{20} + 218q^{21} + 154q^{22} + 56q^{23} + 154q^{24} - 34q^{25} + 110q^{26} + 126q^{27} - 170q^{29} + 24q^{30} - 88q^{31} - 132q^{32} - 224q^{33} - 224q^{34} - 210q^{35} - 434q^{36} - 56q^{37} - 294q^{38} - 232q^{39} - 492q^{40} - 34q^{41} - 14q^{42} + 176q^{43} + 126q^{44} + 114q^{45} + 744q^{46} + 208q^{47} + 640q^{48} + 506q^{49} + 732q^{50} + 322q^{51} + 690q^{52} - 14q^{53} - 36q^{54} + 284q^{55} + 332q^{56} - 508q^{58} - 44q^{59} - 316q^{60} - 30q^{61} - 504q^{62} - 686q^{63} - 896q^{64} - 554q^{65} - 608q^{66} - 574q^{67} - 796q^{68} - 806q^{69} - 1066q^{70} + 224q^{71} + 748q^{72} - 22q^{73} + 820q^{74} + 768q^{75} + 514q^{76} + 436q^{77} + 282q^{78} + 564q^{79} + 1162q^{80} + 670q^{81} - 18q^{82} - 126q^{83} + 572q^{84} + 38q^{85} - 118q^{87} - 384q^{88} - 160q^{89} - 828q^{90} - 434q^{91} - 1022q^{92} - 406q^{93} - 2q^{94} - 642q^{95} - 1176q^{96} + 604q^{97} - 102q^{98} + 316q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{11}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.144456 0.412831i −0.0722279 0.206416i 0.902110 0.431506i \(-0.142018\pi\)
−0.974338 + 0.225091i \(0.927732\pi\)
\(3\) 0.570967 0.0643326i 0.190322 0.0214442i −0.0162887 0.999867i \(-0.505185\pi\)
0.206611 + 0.978423i \(0.433757\pi\)
\(4\) 2.97776 2.37469i 0.744441 0.593672i
\(5\) −1.02777 + 2.13419i −0.205554 + 0.426837i −0.978104 0.208117i \(-0.933267\pi\)
0.772550 + 0.634954i \(0.218981\pi\)
\(6\) −0.109038 0.226420i −0.0181730 0.0377366i
\(7\) −1.74606 + 2.18949i −0.249438 + 0.312785i −0.890749 0.454496i \(-0.849819\pi\)
0.641311 + 0.767281i \(0.278391\pi\)
\(8\) −2.89184 1.81707i −0.361481 0.227133i
\(9\) −8.45249 + 1.92922i −0.939165 + 0.214358i
\(10\) 1.02953 + 0.116000i 0.102953 + 0.0116000i
\(11\) −7.71599 + 4.84828i −0.701454 + 0.440753i −0.834971 0.550294i \(-0.814516\pi\)
0.133517 + 0.991047i \(0.457373\pi\)
\(12\) 1.54744 1.54744i 0.128953 0.128953i
\(13\) 8.82927 + 2.01522i 0.679175 + 0.155017i 0.548173 0.836365i \(-0.315324\pi\)
0.131002 + 0.991382i \(0.458181\pi\)
\(14\) 1.15612 + 0.404544i 0.0825800 + 0.0288960i
\(15\) −0.449525 + 1.28467i −0.0299684 + 0.0856447i
\(16\) 3.05767 13.3965i 0.191104 0.837282i
\(17\) 5.09882 + 5.09882i 0.299931 + 0.299931i 0.840987 0.541056i \(-0.181975\pi\)
−0.541056 + 0.840987i \(0.681975\pi\)
\(18\) 2.01746 + 3.21076i 0.112081 + 0.178376i
\(19\) 2.57525 22.8560i 0.135540 1.20295i −0.723238 0.690599i \(-0.757347\pi\)
0.858778 0.512348i \(-0.171224\pi\)
\(20\) 2.00757 + 8.79574i 0.100378 + 0.439787i
\(21\) −0.856089 + 1.36246i −0.0407662 + 0.0648790i
\(22\) 3.11614 + 2.48504i 0.141643 + 0.112956i
\(23\) 17.8554 8.59869i 0.776320 0.373856i −0.00339216 0.999994i \(-0.501080\pi\)
0.779712 + 0.626138i \(0.215365\pi\)
\(24\) −1.76805 0.851446i −0.0736686 0.0354769i
\(25\) 12.0888 + 15.1589i 0.483552 + 0.606355i
\(26\) −0.443493 3.93611i −0.0170574 0.151389i
\(27\) −9.58301 + 3.35324i −0.354926 + 0.124194i
\(28\) 10.6662i 0.380934i
\(29\) −26.8516 + 10.9540i −0.925918 + 0.377724i
\(30\) 0.595288 0.0198429
\(31\) −10.2548 29.3065i −0.330800 0.945371i −0.982397 0.186806i \(-0.940186\pi\)
0.651597 0.758565i \(-0.274099\pi\)
\(32\) −19.5476 + 2.20249i −0.610863 + 0.0688278i
\(33\) −4.09368 + 3.26460i −0.124051 + 0.0989272i
\(34\) 1.36840 2.84151i 0.0402470 0.0835737i
\(35\) −2.87824 5.97672i −0.0822354 0.170763i
\(36\) −20.5882 + 25.8168i −0.571895 + 0.717133i
\(37\) 5.78232 + 3.63327i 0.156279 + 0.0981966i 0.607901 0.794013i \(-0.292012\pi\)
−0.451622 + 0.892209i \(0.649155\pi\)
\(38\) −9.80767 + 2.23854i −0.258097 + 0.0589089i
\(39\) 5.17087 + 0.582617i 0.132586 + 0.0149389i
\(40\) 6.85011 4.30421i 0.171253 0.107605i
\(41\) 9.53079 9.53079i 0.232458 0.232458i −0.581260 0.813718i \(-0.697440\pi\)
0.813718 + 0.581260i \(0.197440\pi\)
\(42\) 0.686132 + 0.156605i 0.0163365 + 0.00372870i
\(43\) 47.8950 + 16.7592i 1.11384 + 0.389748i 0.823580 0.567200i \(-0.191973\pi\)
0.290257 + 0.956949i \(0.406259\pi\)
\(44\) −11.4633 + 32.7601i −0.260529 + 0.744548i
\(45\) 4.56989 20.0220i 0.101553 0.444933i
\(46\) −6.12912 6.12912i −0.133242 0.133242i
\(47\) −44.9627 71.5578i −0.956654 1.52251i −0.849050 0.528312i \(-0.822825\pi\)
−0.107604 0.994194i \(-0.534318\pi\)
\(48\) 0.883996 7.84568i 0.0184166 0.163452i
\(49\) 9.15838 + 40.1255i 0.186906 + 0.818887i
\(50\) 4.51176 7.18042i 0.0902352 0.143608i
\(51\) 3.23928 + 2.58324i 0.0635153 + 0.0506517i
\(52\) 31.0770 14.9659i 0.597635 0.287806i
\(53\) 76.8011 + 36.9854i 1.44908 + 0.697839i 0.982435 0.186608i \(-0.0597493\pi\)
0.466642 + 0.884446i \(0.345464\pi\)
\(54\) 2.76864 + 3.47177i 0.0512712 + 0.0642920i
\(55\) −2.41687 21.4503i −0.0439430 0.390005i
\(56\) 9.02780 3.15896i 0.161211 0.0564101i
\(57\) 13.2157i 0.231854i
\(58\) 8.40103 + 9.50282i 0.144845 + 0.163842i
\(59\) 54.7819 0.928507 0.464253 0.885702i \(-0.346323\pi\)
0.464253 + 0.885702i \(0.346323\pi\)
\(60\) 1.71211 + 4.89293i 0.0285351 + 0.0815488i
\(61\) −85.8310 + 9.67083i −1.40707 + 0.158538i −0.782605 0.622518i \(-0.786110\pi\)
−0.624460 + 0.781057i \(0.714681\pi\)
\(62\) −10.6173 + 8.46700i −0.171246 + 0.136564i
\(63\) 10.5346 21.8752i 0.167215 0.347226i
\(64\) −20.1150 41.7693i −0.314297 0.652645i
\(65\) −13.3753 + 16.7721i −0.205774 + 0.258033i
\(66\) 1.93908 + 1.21841i 0.0293801 + 0.0184607i
\(67\) −70.4365 + 16.0767i −1.05129 + 0.239950i −0.713053 0.701111i \(-0.752688\pi\)
−0.338238 + 0.941061i \(0.609831\pi\)
\(68\) 27.2912 + 3.07498i 0.401341 + 0.0452203i
\(69\) 9.64165 6.05825i 0.139734 0.0878007i
\(70\) −2.05160 + 2.05160i −0.0293086 + 0.0293086i
\(71\) −85.2177 19.4504i −1.20025 0.273949i −0.424758 0.905307i \(-0.639641\pi\)
−0.775492 + 0.631358i \(0.782498\pi\)
\(72\) 27.9488 + 9.77971i 0.388178 + 0.135829i
\(73\) −41.8509 + 119.603i −0.573299 + 1.63840i 0.182212 + 0.983259i \(0.441674\pi\)
−0.755511 + 0.655136i \(0.772611\pi\)
\(74\) 0.664638 2.91197i 0.00898159 0.0393509i
\(75\) 7.87752 + 7.87752i 0.105034 + 0.105034i
\(76\) −46.6073 74.1752i −0.613255 0.975989i
\(77\) 2.85733 25.3595i 0.0371082 0.329345i
\(78\) −0.506440 2.21886i −0.00649282 0.0284469i
\(79\) −29.8246 + 47.4656i −0.377527 + 0.600831i −0.980403 0.197005i \(-0.936879\pi\)
0.602876 + 0.797835i \(0.294021\pi\)
\(80\) 25.4481 + 20.2942i 0.318101 + 0.253677i
\(81\) 65.0456 31.3243i 0.803032 0.386720i
\(82\) −5.31139 2.55783i −0.0647730 0.0311930i
\(83\) 57.5797 + 72.2026i 0.693731 + 0.869911i 0.996538 0.0831410i \(-0.0264952\pi\)
−0.302807 + 0.953052i \(0.597924\pi\)
\(84\) 0.686181 + 6.09003i 0.00816882 + 0.0725003i
\(85\) −16.1222 + 5.64142i −0.189673 + 0.0663696i
\(86\) 22.1935i 0.258064i
\(87\) −14.6267 + 7.98181i −0.168123 + 0.0917450i
\(88\) 31.1231 0.353672
\(89\) −31.8736 91.0895i −0.358130 1.02348i −0.972185 0.234214i \(-0.924748\pi\)
0.614055 0.789264i \(-0.289537\pi\)
\(90\) −8.92584 + 1.00570i −0.0991760 + 0.0111745i
\(91\) −19.8288 + 15.8129i −0.217899 + 0.173768i
\(92\) 32.7498 68.0057i 0.355977 0.739193i
\(93\) −7.74052 16.0733i −0.0832313 0.172832i
\(94\) −23.0462 + 28.8990i −0.245172 + 0.307436i
\(95\) 46.1322 + 28.9868i 0.485602 + 0.305124i
\(96\) −11.0194 + 2.51510i −0.114785 + 0.0261989i
\(97\) 17.8156 + 2.00733i 0.183666 + 0.0206942i 0.203318 0.979113i \(-0.434827\pi\)
−0.0196524 + 0.999807i \(0.506256\pi\)
\(98\) 15.2421 9.57722i 0.155531 0.0977268i
\(99\) 55.8659 55.8659i 0.564302 0.564302i
\(100\) 71.9952 + 16.4324i 0.719952 + 0.164324i
\(101\) 56.2980 + 19.6995i 0.557406 + 0.195045i 0.594256 0.804276i \(-0.297447\pi\)
−0.0368497 + 0.999321i \(0.511732\pi\)
\(102\) 0.598509 1.71044i 0.00586773 0.0167690i
\(103\) 15.4396 67.6452i 0.149899 0.656750i −0.843013 0.537894i \(-0.819220\pi\)
0.992912 0.118856i \(-0.0379227\pi\)
\(104\) −21.8711 21.8711i −0.210299 0.210299i
\(105\) −2.02788 3.22735i −0.0193131 0.0307367i
\(106\) 4.17438 37.0486i 0.0393809 0.349515i
\(107\) 25.8436 + 113.228i 0.241529 + 1.05821i 0.939626 + 0.342204i \(0.111173\pi\)
−0.698097 + 0.716003i \(0.745970\pi\)
\(108\) −20.5730 + 32.7418i −0.190491 + 0.303165i
\(109\) 20.6806 + 16.4922i 0.189730 + 0.151305i 0.713748 0.700402i \(-0.246996\pi\)
−0.524018 + 0.851707i \(0.675568\pi\)
\(110\) −8.50622 + 4.09638i −0.0773292 + 0.0372398i
\(111\) 3.53525 + 1.70249i 0.0318491 + 0.0153377i
\(112\) 23.9927 + 30.0859i 0.214221 + 0.268624i
\(113\) −19.3999 172.179i −0.171681 1.52371i −0.723838 0.689970i \(-0.757624\pi\)
0.552157 0.833740i \(-0.313805\pi\)
\(114\) −5.45585 + 1.90908i −0.0478583 + 0.0167464i
\(115\) 46.9441i 0.408210i
\(116\) −53.9455 + 96.3827i −0.465047 + 0.830885i
\(117\) −78.5171 −0.671086
\(118\) −7.91357 22.6157i −0.0670641 0.191658i
\(119\) −20.0667 + 2.26097i −0.168628 + 0.0189998i
\(120\) 3.63429 2.89825i 0.0302857 0.0241521i
\(121\) −16.4692 + 34.1986i −0.136109 + 0.282633i
\(122\) 16.3912 + 34.0367i 0.134354 + 0.278989i
\(123\) 4.82863 6.05491i 0.0392572 0.0492269i
\(124\) −100.130 62.9160i −0.807501 0.507387i
\(125\) −102.511 + 23.3974i −0.820087 + 0.187179i
\(126\) −10.5526 1.18899i −0.0837504 0.00943640i
\(127\) −78.5879 + 49.3801i −0.618803 + 0.388819i −0.804642 0.593761i \(-0.797643\pi\)
0.185839 + 0.982580i \(0.440500\pi\)
\(128\) −69.9768 + 69.9768i −0.546694 + 0.546694i
\(129\) 28.4246 + 6.48774i 0.220346 + 0.0502925i
\(130\) 8.85620 + 3.09892i 0.0681246 + 0.0238378i
\(131\) 22.2619 63.6208i 0.169938 0.485655i −0.827144 0.561990i \(-0.810036\pi\)
0.997082 + 0.0763345i \(0.0243217\pi\)
\(132\) −4.43760 + 19.4424i −0.0336182 + 0.147291i
\(133\) 45.5465 + 45.5465i 0.342455 + 0.342455i
\(134\) 16.8119 + 26.7560i 0.125462 + 0.199672i
\(135\) 2.69269 23.8983i 0.0199459 0.177024i
\(136\) −5.48010 24.0099i −0.0402949 0.176543i
\(137\) 47.2941 75.2682i 0.345213 0.549403i −0.628319 0.777956i \(-0.716257\pi\)
0.973531 + 0.228553i \(0.0733995\pi\)
\(138\) −3.89383 3.10522i −0.0282161 0.0225016i
\(139\) 100.465 48.3816i 0.722773 0.348069i −0.0360644 0.999349i \(-0.511482\pi\)
0.758837 + 0.651280i \(0.225768\pi\)
\(140\) −22.7636 10.9624i −0.162597 0.0783025i
\(141\) −30.2757 37.9646i −0.214722 0.269252i
\(142\) 4.28047 + 37.9902i 0.0301442 + 0.267537i
\(143\) −77.8970 + 27.2573i −0.544734 + 0.190611i
\(144\) 119.133i 0.827311i
\(145\) 4.21940 68.5646i 0.0290993 0.472859i
\(146\) 55.4214 0.379599
\(147\) 7.81051 + 22.3212i 0.0531327 + 0.151845i
\(148\) 25.8463 2.91218i 0.174637 0.0196769i
\(149\) 101.656 81.0682i 0.682257 0.544082i −0.219883 0.975526i \(-0.570567\pi\)
0.902139 + 0.431445i \(0.141996\pi\)
\(150\) 2.11413 4.39004i 0.0140942 0.0292669i
\(151\) −5.27420 10.9520i −0.0349284 0.0725297i 0.882775 0.469797i \(-0.155673\pi\)
−0.917703 + 0.397267i \(0.869959\pi\)
\(152\) −48.9781 + 61.4166i −0.322224 + 0.404056i
\(153\) −52.9345 33.2609i −0.345977 0.217392i
\(154\) −10.8820 + 2.48374i −0.0706621 + 0.0161282i
\(155\) 73.0851 + 8.23472i 0.471517 + 0.0531272i
\(156\) 16.7812 10.5443i 0.107572 0.0675917i
\(157\) 121.723 121.723i 0.775307 0.775307i −0.203722 0.979029i \(-0.565304\pi\)
0.979029 + 0.203722i \(0.0653039\pi\)
\(158\) 23.9036 + 5.45585i 0.151289 + 0.0345307i
\(159\) 46.2303 + 16.1767i 0.290756 + 0.101740i
\(160\) 15.3899 43.9819i 0.0961872 0.274887i
\(161\) −12.3498 + 54.1081i −0.0767069 + 0.336075i
\(162\) −22.3279 22.3279i −0.137826 0.137826i
\(163\) 80.4969 + 128.110i 0.493846 + 0.785951i 0.996931 0.0782856i \(-0.0249446\pi\)
−0.503085 + 0.864237i \(0.667802\pi\)
\(164\) 5.74780 51.0131i 0.0350475 0.311056i
\(165\) −2.75990 12.0919i −0.0167267 0.0732844i
\(166\) 21.4898 34.2008i 0.129456 0.206029i
\(167\) −33.8968 27.0318i −0.202975 0.161867i 0.516727 0.856150i \(-0.327150\pi\)
−0.719702 + 0.694283i \(0.755722\pi\)
\(168\) 4.95136 2.38445i 0.0294724 0.0141931i
\(169\) −78.3688 37.7404i −0.463721 0.223316i
\(170\) 4.65790 + 5.84083i 0.0273994 + 0.0343578i
\(171\) 22.3271 + 198.158i 0.130568 + 1.15882i
\(172\) 182.418 63.8307i 1.06057 0.371109i
\(173\) 144.282i 0.834001i −0.908906 0.417001i \(-0.863081\pi\)
0.908906 0.417001i \(-0.136919\pi\)
\(174\) 5.40805 + 4.88534i 0.0310808 + 0.0280767i
\(175\) −54.2981 −0.310275
\(176\) 41.3571 + 118.192i 0.234984 + 0.671545i
\(177\) 31.2787 3.52426i 0.176716 0.0199111i
\(178\) −33.0003 + 26.3168i −0.185395 + 0.147847i
\(179\) −85.8695 + 178.310i −0.479718 + 0.996144i 0.510920 + 0.859628i \(0.329305\pi\)
−0.990638 + 0.136516i \(0.956410\pi\)
\(180\) −33.9379 70.4728i −0.188544 0.391515i
\(181\) 104.881 131.517i 0.579455 0.726614i −0.402564 0.915392i \(-0.631881\pi\)
0.982020 + 0.188778i \(0.0604525\pi\)
\(182\) 9.39246 + 5.90167i 0.0516069 + 0.0324268i
\(183\) −48.3845 + 11.0435i −0.264396 + 0.0603468i
\(184\) −67.2593 7.57830i −0.365540 0.0411864i
\(185\) −13.6970 + 8.60638i −0.0740377 + 0.0465210i
\(186\) −5.51741 + 5.51741i −0.0296635 + 0.0296635i
\(187\) −64.0630 14.6220i −0.342583 0.0781923i
\(188\) −303.816 106.310i −1.61604 0.565477i
\(189\) 9.39065 26.8369i 0.0496860 0.141994i
\(190\) 5.30258 23.2321i 0.0279083 0.122274i
\(191\) 10.5650 + 10.5650i 0.0553139 + 0.0553139i 0.734223 0.678909i \(-0.237547\pi\)
−0.678909 + 0.734223i \(0.737547\pi\)
\(192\) −14.1721 22.5548i −0.0738132 0.117473i
\(193\) −19.0816 + 169.354i −0.0988684 + 0.877481i 0.842177 + 0.539201i \(0.181274\pi\)
−0.941046 + 0.338280i \(0.890155\pi\)
\(194\) −1.74488 7.64480i −0.00899420 0.0394062i
\(195\) −6.55788 + 10.4368i −0.0336301 + 0.0535221i
\(196\) 122.557 + 97.7359i 0.625291 + 0.498653i
\(197\) −295.470 + 142.291i −1.49985 + 0.722290i −0.990403 0.138212i \(-0.955864\pi\)
−0.509447 + 0.860502i \(0.670150\pi\)
\(198\) −31.1333 14.9930i −0.157239 0.0757224i
\(199\) −81.5974 102.320i −0.410037 0.514170i 0.533336 0.845903i \(-0.320938\pi\)
−0.943373 + 0.331733i \(0.892367\pi\)
\(200\) −7.41425 65.8033i −0.0370713 0.329016i
\(201\) −39.1827 + 13.7106i −0.194939 + 0.0682120i
\(202\) 26.0873i 0.129145i
\(203\) 22.9009 77.9179i 0.112812 0.383832i
\(204\) 15.7802 0.0773539
\(205\) 10.5450 + 30.1360i 0.0514392 + 0.147005i
\(206\) −30.1564 + 3.39781i −0.146390 + 0.0164942i
\(207\) −134.333 + 107.127i −0.648953 + 0.517523i
\(208\) 53.9939 112.120i 0.259586 0.539036i
\(209\) 90.9416 + 188.842i 0.435127 + 0.903551i
\(210\) −1.03941 + 1.30338i −0.00494958 + 0.00620657i
\(211\) 156.990 + 98.6433i 0.744028 + 0.467504i 0.849945 0.526871i \(-0.176635\pi\)
−0.105917 + 0.994375i \(0.533778\pi\)
\(212\) 316.524 72.2446i 1.49304 0.340776i
\(213\) −49.9078 5.62326i −0.234309 0.0264003i
\(214\) 43.0108 27.0255i 0.200985 0.126287i
\(215\) −84.9922 + 84.9922i −0.395313 + 0.395313i
\(216\) 33.8056 + 7.71592i 0.156508 + 0.0357218i
\(217\) 82.0720 + 28.7182i 0.378212 + 0.132342i
\(218\) 3.82107 10.9200i 0.0175278 0.0500917i
\(219\) −16.2011 + 70.9817i −0.0739777 + 0.324117i
\(220\) −58.1346 58.1346i −0.264248 0.264248i
\(221\) 34.7436 + 55.2941i 0.157211 + 0.250200i
\(222\) 0.192152 1.70540i 0.000865550 0.00768197i
\(223\) −79.9211 350.157i −0.358390 1.57021i −0.757204 0.653179i \(-0.773435\pi\)
0.398813 0.917032i \(-0.369422\pi\)
\(224\) 29.3091 46.6451i 0.130844 0.208237i
\(225\) −131.425 104.808i −0.584113 0.465814i
\(226\) −68.2785 + 32.8812i −0.302117 + 0.145492i
\(227\) 110.881 + 53.3974i 0.488462 + 0.235231i 0.661869 0.749619i \(-0.269763\pi\)
−0.173407 + 0.984850i \(0.555478\pi\)
\(228\) −31.3831 39.3532i −0.137645 0.172602i
\(229\) 15.5674 + 138.164i 0.0679798 + 0.603338i 0.980806 + 0.194988i \(0.0624669\pi\)
−0.912826 + 0.408349i \(0.866104\pi\)
\(230\) 19.3800 6.78136i 0.0842609 0.0294842i
\(231\) 14.6633i 0.0634774i
\(232\) 97.5549 + 17.1139i 0.420495 + 0.0737668i
\(233\) −156.772 −0.672842 −0.336421 0.941712i \(-0.609217\pi\)
−0.336421 + 0.941712i \(0.609217\pi\)
\(234\) 11.3423 + 32.4143i 0.0484712 + 0.138523i
\(235\) 198.929 22.4139i 0.846506 0.0953784i
\(236\) 163.128 130.090i 0.691219 0.551228i
\(237\) −13.9753 + 29.0200i −0.0589675 + 0.122447i
\(238\) 3.83215 + 7.95755i 0.0161015 + 0.0334351i
\(239\) 221.013 277.141i 0.924740 1.15959i −0.0621295 0.998068i \(-0.519789\pi\)
0.986870 0.161519i \(-0.0516394\pi\)
\(240\) 15.8356 + 9.95017i 0.0659817 + 0.0414590i
\(241\) 352.633 80.4862i 1.46321 0.333968i 0.584526 0.811375i \(-0.301280\pi\)
0.878682 + 0.477407i \(0.158423\pi\)
\(242\) 16.4973 + 1.85880i 0.0681708 + 0.00768100i
\(243\) 112.493 70.6840i 0.462934 0.290881i
\(244\) −232.619 + 232.619i −0.953357 + 0.953357i
\(245\) −95.0479 21.6941i −0.387951 0.0885472i
\(246\) −3.19718 1.11874i −0.0129967 0.00454773i
\(247\) 68.7975 196.612i 0.278532 0.796000i
\(248\) −23.5966 + 103.384i −0.0951477 + 0.416869i
\(249\) 37.5211 + 37.5211i 0.150687 + 0.150687i
\(250\) 24.4675 + 38.9398i 0.0978699 + 0.155759i
\(251\) −40.5879 + 360.228i −0.161705 + 1.43517i 0.606560 + 0.795038i \(0.292549\pi\)
−0.768265 + 0.640132i \(0.778880\pi\)
\(252\) −20.5774 90.1555i −0.0816564 0.357760i
\(253\) −96.0830 + 152.915i −0.379775 + 0.604408i
\(254\) 31.7381 + 25.3103i 0.124953 + 0.0996469i
\(255\) −8.84235 + 4.25825i −0.0346759 + 0.0166990i
\(256\) −128.080 61.6800i −0.500312 0.240938i
\(257\) −162.607 203.903i −0.632713 0.793397i 0.357358 0.933968i \(-0.383678\pi\)
−0.990071 + 0.140571i \(0.955106\pi\)
\(258\) −1.42777 12.6718i −0.00553397 0.0491154i
\(259\) −18.0513 + 6.31643i −0.0696963 + 0.0243878i
\(260\) 81.7056i 0.314252i
\(261\) 205.830 144.391i 0.788622 0.553224i
\(262\) −29.4805 −0.112521
\(263\) −31.2460 89.2960i −0.118806 0.339529i 0.869088 0.494657i \(-0.164706\pi\)
−0.987894 + 0.155129i \(0.950421\pi\)
\(264\) 17.7703 2.00223i 0.0673117 0.00758420i
\(265\) −157.868 + 125.895i −0.595727 + 0.475077i
\(266\) 12.2236 25.3825i 0.0459532 0.0954229i
\(267\) −24.0588 49.9586i −0.0901079 0.187111i
\(268\) −171.566 + 215.137i −0.640172 + 0.802750i
\(269\) 77.3328 + 48.5914i 0.287483 + 0.180637i 0.668051 0.744115i \(-0.267129\pi\)
−0.380568 + 0.924753i \(0.624272\pi\)
\(270\) −10.2549 + 2.34062i −0.0379812 + 0.00866897i
\(271\) −329.458 37.1210i −1.21571 0.136978i −0.519282 0.854603i \(-0.673801\pi\)
−0.696430 + 0.717625i \(0.745229\pi\)
\(272\) 83.8969 52.7159i 0.308444 0.193808i
\(273\) −10.3043 + 10.3043i −0.0377447 + 0.0377447i
\(274\) −37.9050 8.65156i −0.138339 0.0315750i
\(275\) −166.772 58.3559i −0.606442 0.212203i
\(276\) 14.3241 40.9359i 0.0518989 0.148319i
\(277\) −40.2441 + 176.321i −0.145285 + 0.636537i 0.848872 + 0.528598i \(0.177282\pi\)
−0.994158 + 0.107939i \(0.965575\pi\)
\(278\) −34.4862 34.4862i −0.124051 0.124051i
\(279\) 143.217 + 227.929i 0.513324 + 0.816950i
\(280\) −2.53669 + 22.5137i −0.00905959 + 0.0804061i
\(281\) 20.6977 + 90.6827i 0.0736574 + 0.322714i 0.998311 0.0580950i \(-0.0185026\pi\)
−0.924654 + 0.380809i \(0.875645\pi\)
\(282\) −11.2995 + 17.9830i −0.0400690 + 0.0637694i
\(283\) −416.818 332.401i −1.47286 1.17456i −0.945807 0.324728i \(-0.894727\pi\)
−0.527048 0.849835i \(-0.676701\pi\)
\(284\) −299.947 + 144.447i −1.05615 + 0.508615i
\(285\) 28.2048 + 13.5827i 0.0989641 + 0.0476586i
\(286\) 22.5053 + 28.2208i 0.0786900 + 0.0986742i
\(287\) 4.22625 + 37.5090i 0.0147256 + 0.130693i
\(288\) 160.977 56.3283i 0.558948 0.195584i
\(289\) 237.004i 0.820083i
\(290\) −28.9151 + 8.16266i −0.0997073 + 0.0281471i
\(291\) 10.3013 0.0353995
\(292\) 159.397 + 455.532i 0.545882 + 1.56004i
\(293\) 491.604 55.3905i 1.67783 0.189046i 0.778903 0.627144i \(-0.215776\pi\)
0.898927 + 0.438098i \(0.144348\pi\)
\(294\) 8.08659 6.44884i 0.0275054 0.0219348i
\(295\) −56.3032 + 116.915i −0.190858 + 0.396321i
\(296\) −10.1197 21.0137i −0.0341881 0.0709923i
\(297\) 57.6850 72.3347i 0.194226 0.243551i
\(298\) −48.1523 30.2561i −0.161585 0.101531i
\(299\) 174.978 39.9376i 0.585211 0.133571i
\(300\) 42.1641 + 4.75075i 0.140547 + 0.0158358i
\(301\) −120.322 + 75.6032i −0.399740 + 0.251173i
\(302\) −3.75943 + 3.75943i −0.0124484 + 0.0124484i
\(303\) 33.4117 + 7.62599i 0.110270 + 0.0251683i
\(304\) −298.316 104.385i −0.981304 0.343373i
\(305\) 67.5752 193.119i 0.221558 0.633176i
\(306\) −6.08445 + 26.6577i −0.0198838 + 0.0871168i
\(307\) 36.0084 + 36.0084i 0.117291 + 0.117291i 0.763316 0.646025i \(-0.223570\pi\)
−0.646025 + 0.763316i \(0.723570\pi\)
\(308\) −51.7125 82.3000i −0.167898 0.267208i
\(309\) 4.46370 39.6165i 0.0144456 0.128209i
\(310\) −7.15803 31.3614i −0.0230904 0.101166i
\(311\) 190.293 302.850i 0.611876 0.973795i −0.386790 0.922168i \(-0.626416\pi\)
0.998666 0.0516276i \(-0.0164409\pi\)
\(312\) −13.8947 11.0807i −0.0445343 0.0355149i
\(313\) −20.4314 + 9.83925i −0.0652761 + 0.0314353i −0.466237 0.884660i \(-0.654391\pi\)
0.400961 + 0.916095i \(0.368676\pi\)
\(314\) −67.8347 32.6675i −0.216034 0.104037i
\(315\) 35.8587 + 44.9654i 0.113837 + 0.142747i
\(316\) 23.9053 + 212.166i 0.0756497 + 0.671410i
\(317\) −334.683 + 117.111i −1.05578 + 0.369434i −0.801686 0.597745i \(-0.796064\pi\)
−0.254096 + 0.967179i \(0.581778\pi\)
\(318\) 21.4221i 0.0673651i
\(319\) 154.079 214.705i 0.483006 0.673057i
\(320\) 109.817 0.343178
\(321\) 22.0401 + 62.9870i 0.0686607 + 0.196221i
\(322\) 24.1215 2.71784i 0.0749115 0.00844050i
\(323\) 129.669 103.408i 0.401453 0.320148i
\(324\) 119.305 247.739i 0.368225 0.764627i
\(325\) 76.1868 + 158.204i 0.234421 + 0.486780i
\(326\) 41.2596 51.7379i 0.126563 0.158705i
\(327\) 12.8689 + 8.08608i 0.0393545 + 0.0247281i
\(328\) −44.8797 + 10.2435i −0.136828 + 0.0312302i
\(329\) 235.183 + 26.4988i 0.714843 + 0.0805434i
\(330\) −4.59324 + 2.88612i −0.0139189 + 0.00874583i
\(331\) 104.909 104.909i 0.316945 0.316945i −0.530648 0.847592i \(-0.678051\pi\)
0.847592 + 0.530648i \(0.178051\pi\)
\(332\) 342.917 + 78.2686i 1.03288 + 0.235749i
\(333\) −55.8844 19.5548i −0.167821 0.0587231i
\(334\) −6.26297 + 17.8985i −0.0187514 + 0.0535884i
\(335\) 38.0819 166.848i 0.113677 0.498053i
\(336\) 15.6346 + 15.6346i 0.0465314 + 0.0465314i
\(337\) 272.078 + 433.010i 0.807354 + 1.28490i 0.955222 + 0.295889i \(0.0956160\pi\)
−0.147868 + 0.989007i \(0.547241\pi\)
\(338\) −4.25959 + 37.8049i −0.0126023 + 0.111849i
\(339\) −22.1535 97.0607i −0.0653495 0.286315i
\(340\) −34.6116 + 55.0841i −0.101799 + 0.162012i
\(341\) 221.212 + 176.411i 0.648716 + 0.517334i
\(342\) 78.5806 37.8424i 0.229768 0.110650i
\(343\) −227.479 109.548i −0.663205 0.319383i
\(344\) −108.052 135.493i −0.314106 0.393876i
\(345\) 3.02004 + 26.8036i 0.00875373 + 0.0776915i
\(346\) −59.5642 + 20.8424i −0.172151 + 0.0602382i
\(347\) 0.628357i 0.00181083i −1.00000 0.000905413i \(-0.999712\pi\)
1.00000 0.000905413i \(-0.000288202\pi\)
\(348\) −24.6005 + 58.5018i −0.0706912 + 0.168109i
\(349\) −128.175 −0.367263 −0.183632 0.982995i \(-0.558785\pi\)
−0.183632 + 0.982995i \(0.558785\pi\)
\(350\) 7.84368 + 22.4160i 0.0224105 + 0.0640456i
\(351\) −91.3685 + 10.2948i −0.260309 + 0.0293298i
\(352\) 140.151 111.767i 0.398157 0.317519i
\(353\) −203.979 + 423.568i −0.577845 + 1.19991i 0.383238 + 0.923650i \(0.374809\pi\)
−0.961083 + 0.276259i \(0.910905\pi\)
\(354\) −5.97331 12.4037i −0.0168738 0.0350387i
\(355\) 129.095 161.880i 0.363648 0.456000i
\(356\) −311.221 195.553i −0.874217 0.549307i
\(357\) −11.3120 + 2.58188i −0.0316862 + 0.00723217i
\(358\) 86.0162 + 9.69170i 0.240269 + 0.0270718i
\(359\) −252.579 + 158.706i −0.703563 + 0.442078i −0.835723 0.549151i \(-0.814951\pi\)
0.132161 + 0.991228i \(0.457808\pi\)
\(360\) −49.5967 + 49.5967i −0.137769 + 0.137769i
\(361\) −163.815 37.3898i −0.453782 0.103573i
\(362\) −69.4451 24.2999i −0.191837 0.0671268i
\(363\) −7.20329 + 20.5858i −0.0198438 + 0.0567102i
\(364\) −21.4947 + 94.1744i −0.0590513 + 0.258721i
\(365\) −212.242 212.242i −0.581484 0.581484i
\(366\) 11.5485 + 18.3794i 0.0315533 + 0.0502168i
\(367\) 17.6081 156.277i 0.0479786 0.425822i −0.946646 0.322275i \(-0.895552\pi\)
0.994625 0.103546i \(-0.0330191\pi\)
\(368\) −60.5967 265.491i −0.164665 0.721444i
\(369\) −62.1719 + 98.9459i −0.168487 + 0.268146i
\(370\) 5.53159 + 4.41130i 0.0149502 + 0.0119224i
\(371\) −215.079 + 103.577i −0.579728 + 0.279182i
\(372\) −61.2186 29.4813i −0.164566 0.0792509i
\(373\) −49.1110 61.5833i −0.131665 0.165103i 0.711629 0.702556i \(-0.247958\pi\)
−0.843294 + 0.537453i \(0.819386\pi\)
\(374\) 3.21787 + 28.5594i 0.00860394 + 0.0763621i
\(375\) −57.0251 + 19.9540i −0.152067 + 0.0532105i
\(376\) 288.634i 0.767644i
\(377\) −259.155 + 42.6039i −0.687414 + 0.113008i
\(378\) −12.4357 −0.0328985
\(379\) −42.3230 120.952i −0.111670 0.319135i 0.874463 0.485093i \(-0.161214\pi\)
−0.986133 + 0.165958i \(0.946928\pi\)
\(380\) 206.205 23.2338i 0.542645 0.0611415i
\(381\) −41.6944 + 33.2502i −0.109434 + 0.0872708i
\(382\) 2.83537 5.88771i 0.00742244 0.0154129i
\(383\) 278.017 + 577.309i 0.725894 + 1.50733i 0.856638 + 0.515917i \(0.172549\pi\)
−0.130745 + 0.991416i \(0.541737\pi\)
\(384\) −35.4527 + 44.4563i −0.0923247 + 0.115771i
\(385\) 51.1853 + 32.1618i 0.132949 + 0.0835373i
\(386\) 72.6710 16.5867i 0.188267 0.0429707i
\(387\) −437.164 49.2565i −1.12962 0.127278i
\(388\) 57.8174 36.3291i 0.149014 0.0936317i
\(389\) 108.171 108.171i 0.278076 0.278076i −0.554265 0.832340i \(-0.687000\pi\)
0.832340 + 0.554265i \(0.187000\pi\)
\(390\) 5.25596 + 1.19964i 0.0134768 + 0.00307600i
\(391\) 134.884 + 47.1981i 0.344973 + 0.120711i
\(392\) 46.4261 132.678i 0.118434 0.338464i
\(393\) 8.61792 37.7576i 0.0219286 0.0960753i
\(394\) 101.425 + 101.425i 0.257423 + 0.257423i
\(395\) −70.6476 112.435i −0.178855 0.284646i
\(396\) 33.6914 299.020i 0.0850793 0.755100i
\(397\) 91.8822 + 402.562i 0.231441 + 1.01401i 0.948445 + 0.316942i \(0.102656\pi\)
−0.717004 + 0.697069i \(0.754487\pi\)
\(398\) −30.4536 + 48.4667i −0.0765166 + 0.121776i
\(399\) 28.9357 + 23.0754i 0.0725205 + 0.0578332i
\(400\) 240.040 115.597i 0.600099 0.288993i
\(401\) −63.8457 30.7465i −0.159216 0.0766745i 0.352579 0.935782i \(-0.385305\pi\)
−0.511795 + 0.859108i \(0.671019\pi\)
\(402\) 11.3203 + 14.1952i 0.0281600 + 0.0353116i
\(403\) −31.4832 279.421i −0.0781220 0.693352i
\(404\) 214.422 75.0297i 0.530749 0.185717i
\(405\) 171.014i 0.422256i
\(406\) −35.4751 + 1.80149i −0.0873771 + 0.00443716i
\(407\) −62.2315 −0.152903
\(408\) −4.67358 13.3563i −0.0114548 0.0327361i
\(409\) −207.189 + 23.3446i −0.506576 + 0.0570774i −0.361554 0.932351i \(-0.617754\pi\)
−0.145022 + 0.989428i \(0.546325\pi\)
\(410\) 10.9178 8.70663i 0.0266287 0.0212357i
\(411\) 22.1612 46.0182i 0.0539202 0.111966i
\(412\) −114.661 238.096i −0.278303 0.577902i
\(413\) −95.6527 + 119.945i −0.231605 + 0.290423i
\(414\) 63.6307 + 39.9818i 0.153697 + 0.0965745i
\(415\) −213.272 + 48.6781i −0.513910 + 0.117297i
\(416\) −177.030 19.9465i −0.425552 0.0479482i
\(417\) 54.2500 34.0875i 0.130096 0.0817446i
\(418\) 64.8229 64.8229i 0.155079 0.155079i
\(419\) 238.392 + 54.4114i 0.568955 + 0.129860i 0.497314 0.867570i \(-0.334320\pi\)
0.0716402 + 0.997431i \(0.477177\pi\)
\(420\) −13.7025 4.79471i −0.0326250 0.0114160i
\(421\) 92.8412 265.325i 0.220525 0.630226i −0.779467 0.626443i \(-0.784510\pi\)
0.999993 0.00378275i \(-0.00120409\pi\)
\(422\) 18.0449 79.0599i 0.0427605 0.187346i
\(423\) 518.098 + 518.098i 1.22482 + 1.22482i
\(424\) −154.892 246.509i −0.365311 0.581389i
\(425\) −15.6538 + 138.931i −0.0368324 + 0.326896i
\(426\) 4.88802 + 21.4158i 0.0114742 + 0.0502719i
\(427\) 128.692 204.812i 0.301387 0.479654i
\(428\) 345.838 + 275.796i 0.808032 + 0.644384i
\(429\) −42.7231 + 20.5744i −0.0995876 + 0.0479589i
\(430\) 47.3651 + 22.8098i 0.110151 + 0.0530461i
\(431\) 23.2025 + 29.0951i 0.0538342 + 0.0675060i 0.808020 0.589156i \(-0.200539\pi\)
−0.754185 + 0.656661i \(0.771968\pi\)
\(432\) 15.6201 + 138.632i 0.0361576 + 0.320907i
\(433\) 530.470 185.619i 1.22510 0.428682i 0.361270 0.932461i \(-0.382343\pi\)
0.863833 + 0.503779i \(0.168057\pi\)
\(434\) 38.0304i 0.0876276i
\(435\) −2.00180 39.4196i −0.00460183 0.0906197i
\(436\) 100.746 0.231068
\(437\) −150.549 430.246i −0.344507 0.984544i
\(438\) 31.6438 3.56540i 0.0722461 0.00814018i
\(439\) −152.107 + 121.302i −0.346486 + 0.276313i −0.781233 0.624239i \(-0.785409\pi\)
0.434747 + 0.900552i \(0.356838\pi\)
\(440\) −31.9874 + 66.4225i −0.0726986 + 0.150960i
\(441\) −154.822 321.491i −0.351071 0.729006i
\(442\) 17.8082 22.3308i 0.0402901 0.0505222i
\(443\) 115.858 + 72.7986i 0.261531 + 0.164331i 0.656415 0.754400i \(-0.272072\pi\)
−0.394883 + 0.918731i \(0.629215\pi\)
\(444\) 14.5700 3.32551i 0.0328154 0.00748990i
\(445\) 227.161 + 25.5949i 0.510474 + 0.0575166i
\(446\) −133.011 + 83.5762i −0.298230 + 0.187390i
\(447\) 52.8271 52.8271i 0.118181 0.118181i
\(448\) 126.576 + 28.8901i 0.282535 + 0.0644868i
\(449\) 652.820 + 228.432i 1.45394 + 0.508756i 0.937627 0.347642i \(-0.113018\pi\)
0.516315 + 0.856399i \(0.327303\pi\)
\(450\) −24.2829 + 69.3966i −0.0539621 + 0.154215i
\(451\) −27.3316 + 119.747i −0.0606022 + 0.265516i
\(452\) −466.640 466.640i −1.03239 1.03239i
\(453\) −3.71596 5.91392i −0.00820301 0.0130550i
\(454\) 6.02672 53.4886i 0.0132747 0.117816i
\(455\) −13.3683 58.5704i −0.0293809 0.128726i
\(456\) −24.0138 + 38.2177i −0.0526618 + 0.0838108i
\(457\) −160.062 127.645i −0.350245 0.279311i 0.432525 0.901622i \(-0.357623\pi\)
−0.782770 + 0.622311i \(0.786194\pi\)
\(458\) 54.7898 26.3854i 0.119628 0.0576099i
\(459\) −65.9596 31.7645i −0.143703 0.0692036i
\(460\) 111.478 + 139.789i 0.242343 + 0.303888i
\(461\) −23.2302 206.174i −0.0503909 0.447232i −0.993421 0.114523i \(-0.963466\pi\)
0.943030 0.332709i \(-0.107963\pi\)
\(462\) −6.05346 + 2.11820i −0.0131027 + 0.00458484i
\(463\) 151.205i 0.326576i 0.986578 + 0.163288i \(0.0522099\pi\)
−0.986578 + 0.163288i \(0.947790\pi\)
\(464\) 64.6422 + 393.212i 0.139315 + 0.847439i
\(465\) 42.2590 0.0908795
\(466\) 22.6467 + 64.7205i 0.0485980 + 0.138885i
\(467\) −514.620 + 57.9838i −1.10197 + 0.124162i −0.644162 0.764889i \(-0.722794\pi\)
−0.457808 + 0.889051i \(0.651365\pi\)
\(468\) −233.805 + 186.454i −0.499584 + 0.398405i
\(469\) 87.7868 182.291i 0.187179 0.388680i
\(470\) −37.9896 78.8863i −0.0808290 0.167843i
\(471\) 61.6692 77.3307i 0.130932 0.164184i
\(472\) −158.421 99.5424i −0.335637 0.210895i
\(473\) −450.811 + 102.895i −0.953088 + 0.217536i
\(474\) 13.9992 + 1.57733i 0.0295341 + 0.00332770i
\(475\) 377.603 237.264i 0.794954 0.499502i
\(476\) −54.3848 + 54.3848i −0.114254 + 0.114254i
\(477\) −720.513 164.452i −1.51051 0.344764i
\(478\) −146.339 51.2063i −0.306149 0.107126i
\(479\) −271.109 + 774.785i −0.565990 + 1.61751i 0.203662 + 0.979041i \(0.434716\pi\)
−0.769652 + 0.638464i \(0.779570\pi\)
\(480\) 5.95768 26.1023i 0.0124118 0.0543798i
\(481\) 43.7318 + 43.7318i 0.0909185 + 0.0909185i
\(482\) −84.1672 133.951i −0.174621 0.277907i
\(483\) −3.57043 + 31.6884i −0.00739219 + 0.0656075i
\(484\) 32.1697 + 140.945i 0.0664663 + 0.291208i
\(485\) −22.5944 + 35.9587i −0.0465863 + 0.0741417i
\(486\) −45.4308 36.2299i −0.0934791 0.0745471i
\(487\) 569.988 274.492i 1.17041 0.563639i 0.255305 0.966860i \(-0.417824\pi\)
0.915102 + 0.403222i \(0.132110\pi\)
\(488\) 265.782 + 127.994i 0.544636 + 0.262283i
\(489\) 54.2027 + 67.9681i 0.110844 + 0.138994i
\(490\) 4.77424 + 42.3726i 0.00974336 + 0.0864747i
\(491\) −877.921 + 307.198i −1.78803 + 0.625657i −0.788077 + 0.615577i \(0.788923\pi\)
−0.999949 + 0.0100808i \(0.996791\pi\)
\(492\) 29.4966i 0.0599524i
\(493\) −192.764 81.0591i −0.391002 0.164420i
\(494\) −91.1058 −0.184425
\(495\) 61.8110 + 176.646i 0.124871 + 0.356860i
\(496\) −423.961 + 47.7689i −0.854760 + 0.0963083i
\(497\) 191.382 152.622i 0.385075 0.307087i
\(498\) 10.0697 20.9100i 0.0202203 0.0419880i
\(499\) −207.237 430.332i −0.415304 0.862389i −0.998738 0.0502276i \(-0.984005\pi\)
0.583433 0.812161i \(-0.301709\pi\)
\(500\) −249.692 + 313.103i −0.499383 + 0.626206i
\(501\) −21.0930 13.2536i −0.0421017 0.0264543i
\(502\) 154.576 35.2810i 0.307921 0.0702810i
\(503\) 823.526 + 92.7891i 1.63723 + 0.184471i 0.882086 0.471089i \(-0.156139\pi\)
0.755143 + 0.655560i \(0.227567\pi\)
\(504\) −70.2130 + 44.1178i −0.139312 + 0.0875353i
\(505\) −99.9039 + 99.9039i −0.197830 + 0.197830i
\(506\) 77.0079 + 17.5765i 0.152190 + 0.0347363i
\(507\) −47.1740 16.5069i −0.0930453 0.0325580i
\(508\) −116.754 + 333.664i −0.229831 + 0.656819i
\(509\) 88.5731 388.064i 0.174014 0.762405i −0.810305 0.586008i \(-0.800699\pi\)
0.984319 0.176397i \(-0.0564441\pi\)
\(510\) 3.03527 + 3.03527i 0.00595150 + 0.00595150i
\(511\) −188.796 300.466i −0.369463 0.587997i
\(512\) −51.2825 + 455.145i −0.100161 + 0.888955i
\(513\) 51.9630 + 227.665i 0.101292 + 0.443791i
\(514\) −60.6879 + 96.5843i −0.118070 + 0.187907i
\(515\) 128.499 + 102.475i 0.249513 + 0.198980i
\(516\) 100.048 48.1807i 0.193892 0.0933734i
\(517\) 693.864 + 334.147i 1.34210 + 0.646320i
\(518\) 5.21524 + 6.53971i 0.0100680 + 0.0126249i
\(519\) −9.28205 82.3804i −0.0178845 0.158729i
\(520\) 69.1554 24.1985i 0.132991 0.0465356i
\(521\) 956.433i 1.83576i −0.396854 0.917882i \(-0.629898\pi\)
0.396854 0.917882i \(-0.370102\pi\)
\(522\) −89.3427 64.1149i −0.171155 0.122826i
\(523\) 447.294 0.855247 0.427624 0.903957i \(-0.359351\pi\)
0.427624 + 0.903957i \(0.359351\pi\)
\(524\) −84.7890 242.313i −0.161811 0.462429i
\(525\) −31.0024 + 3.49314i −0.0590523 + 0.00665359i
\(526\) −32.3505 + 25.7987i −0.0615029 + 0.0490469i
\(527\) 97.1413 201.716i 0.184329 0.382763i
\(528\) 31.2171 + 64.8231i 0.0591234 + 0.122771i
\(529\) −84.9498 + 106.524i −0.160586 + 0.201368i
\(530\) 74.7784 + 46.9864i 0.141091 + 0.0886536i
\(531\) −463.043 + 105.687i −0.872021 + 0.199033i
\(532\) 243.786 + 27.4680i 0.458243 + 0.0516316i
\(533\) 103.357 64.9433i 0.193915 0.121845i
\(534\) −17.1490 + 17.1490i −0.0321143 + 0.0321143i
\(535\) −268.211 61.2175i −0.501329 0.114425i
\(536\) 232.904 + 81.4965i 0.434522 + 0.152046i
\(537\) −37.5575 + 107.333i −0.0699395 + 0.199876i
\(538\) 8.88888 38.9447i 0.0165221 0.0723880i
\(539\) −265.206 265.206i −0.492033 0.492033i
\(540\) −48.7328 77.5578i −0.0902459 0.143626i
\(541\) 66.1017 586.668i 0.122184 1.08441i −0.771659 0.636036i \(-0.780573\pi\)
0.893844 0.448379i \(-0.147998\pi\)
\(542\) 32.2674 + 141.373i 0.0595340 + 0.260835i
\(543\) 51.4230 81.8393i 0.0947017 0.150717i
\(544\) −110.900 88.4397i −0.203860 0.162573i
\(545\) −56.4523 + 27.1860i −0.103582 + 0.0498826i
\(546\) 5.74245 + 2.76542i 0.0105173 + 0.00506487i
\(547\) 498.842 + 625.528i 0.911959 + 1.14356i 0.989203 + 0.146548i \(0.0468164\pi\)
−0.0772443 + 0.997012i \(0.524612\pi\)
\(548\) −37.9076 336.440i −0.0691745 0.613941i
\(549\) 706.828 247.330i 1.28748 0.450510i
\(550\) 77.2784i 0.140506i
\(551\) 181.215 + 641.930i 0.328884 + 1.16503i
\(552\) −38.8904 −0.0704536
\(553\) −51.8500 148.179i −0.0937613 0.267955i
\(554\) 78.6042 8.85657i 0.141885 0.0159866i
\(555\) −7.26686 + 5.79512i −0.0130934 + 0.0104417i
\(556\) 184.271 382.643i 0.331423 0.688207i
\(557\) −125.495 260.594i −0.225306 0.467852i 0.757418 0.652930i \(-0.226460\pi\)
−0.982724 + 0.185078i \(0.940746\pi\)
\(558\) 73.4077 92.0503i 0.131555 0.164965i
\(559\) 389.104 + 244.490i 0.696072 + 0.437371i
\(560\) −88.8679 + 20.2835i −0.158693 + 0.0362206i
\(561\) −37.5185 4.22732i −0.0668779 0.00753533i
\(562\) 34.4467 21.6443i 0.0612931 0.0385130i
\(563\) 319.931 319.931i 0.568261 0.568261i −0.363380 0.931641i \(-0.618377\pi\)
0.931641 + 0.363380i \(0.118377\pi\)
\(564\) −180.308 41.1541i −0.319695 0.0729683i
\(565\) 387.401 + 135.558i 0.685666 + 0.239925i
\(566\) −77.0138 + 220.093i −0.136067 + 0.388857i
\(567\) −44.9893 + 197.111i −0.0793463 + 0.347639i
\(568\) 211.094 + 211.094i 0.371644 + 0.371644i
\(569\) −458.323 729.417i −0.805489 1.28193i −0.956014 0.293322i \(-0.905239\pi\)
0.150525 0.988606i \(-0.451904\pi\)
\(570\) 1.53302 13.6059i 0.00268950 0.0238700i
\(571\) 84.1527 + 368.697i 0.147378 + 0.645704i 0.993608 + 0.112887i \(0.0360097\pi\)
−0.846230 + 0.532818i \(0.821133\pi\)
\(572\) −167.231 + 266.147i −0.292362 + 0.465292i
\(573\) 6.71192 + 5.35257i 0.0117136 + 0.00934132i
\(574\) 14.8744 7.16312i 0.0259135 0.0124793i
\(575\) 346.196 + 166.719i 0.602081 + 0.289947i
\(576\) 250.604 + 314.248i 0.435077 + 0.545569i
\(577\) −30.4134 269.927i −0.0527096 0.467811i −0.992146 0.125087i \(-0.960079\pi\)
0.939436 0.342724i \(-0.111350\pi\)
\(578\) −97.8427 + 34.2366i −0.169278 + 0.0592329i
\(579\) 97.9231i 0.169124i
\(580\) −150.255 214.189i −0.259060 0.369291i
\(581\) −258.625 −0.445138
\(582\) −1.48808 4.25268i −0.00255683 0.00730701i
\(583\) −771.912 + 86.9736i −1.32403 + 0.149183i
\(584\) 338.353 269.827i 0.579371 0.462033i
\(585\) 80.6975 167.570i 0.137944 0.286445i
\(586\) −93.8820 194.948i −0.160208 0.332676i
\(587\) −426.830 + 535.228i −0.727138 + 0.911802i −0.998718 0.0506138i \(-0.983882\pi\)
0.271581 + 0.962416i \(0.412454\pi\)
\(588\) 76.2636 + 47.9196i 0.129700 + 0.0814959i
\(589\) −696.238 + 158.912i −1.18207 + 0.269799i
\(590\) 56.3994 + 6.35469i 0.0955922 + 0.0107707i
\(591\) −159.550 + 100.252i −0.269966 + 0.169631i
\(592\) 66.3536 66.3536i 0.112084 0.112084i
\(593\) 595.317 + 135.877i 1.00391 + 0.229135i 0.692714 0.721212i \(-0.256415\pi\)
0.311192 + 0.950347i \(0.399272\pi\)
\(594\) −38.1950 13.3650i −0.0643013 0.0225000i
\(595\) 15.7986 45.1498i 0.0265523 0.0758821i
\(596\) 110.197 482.804i 0.184894 0.810073i
\(597\) −53.1720 53.1720i −0.0890653 0.0890653i
\(598\) −41.7641 66.4672i −0.0698396 0.111149i
\(599\) −55.4898 + 492.486i −0.0926374 + 0.822180i 0.858374 + 0.513024i \(0.171475\pi\)
−0.951012 + 0.309155i \(0.899954\pi\)
\(600\) −8.46659 37.0946i −0.0141110 0.0618243i
\(601\) −356.713 + 567.705i −0.593532 + 0.944600i 0.405996 + 0.913875i \(0.366925\pi\)
−0.999528 + 0.0307255i \(0.990218\pi\)
\(602\) 48.5926 + 38.7513i 0.0807185 + 0.0643709i
\(603\) 564.348 271.775i 0.935900 0.450706i
\(604\) −41.7128 20.0878i −0.0690610 0.0332580i
\(605\) −56.0597 70.2967i −0.0926607 0.116193i
\(606\) −1.67826 14.8950i −0.00276941 0.0245792i
\(607\) −470.855 + 164.759i −0.775709 + 0.271432i −0.688961 0.724798i \(-0.741933\pi\)
−0.0867476 + 0.996230i \(0.527647\pi\)
\(608\) 452.452i 0.744165i
\(609\) 8.06301 45.9618i 0.0132398 0.0754710i
\(610\) −89.4870 −0.146700
\(611\) −252.783 722.413i −0.413721 1.18235i
\(612\) −236.611 + 26.6596i −0.386619 + 0.0435615i
\(613\) −611.006 + 487.261i −0.996746 + 0.794879i −0.978770 0.204960i \(-0.934294\pi\)
−0.0179760 + 0.999838i \(0.505722\pi\)
\(614\) 9.66376 20.0670i 0.0157390 0.0326824i
\(615\) 7.95959 + 16.5283i 0.0129424 + 0.0268752i
\(616\) −54.3429 + 68.1439i −0.0882190 + 0.110623i
\(617\) −297.376 186.853i −0.481970 0.302842i 0.269044 0.963128i \(-0.413292\pi\)
−0.751014 + 0.660286i \(0.770435\pi\)
\(618\) −16.9997 + 3.88008i −0.0275076 + 0.00627844i
\(619\) −993.041 111.889i −1.60427 0.180757i −0.736044 0.676933i \(-0.763309\pi\)
−0.868222 + 0.496176i \(0.834737\pi\)
\(620\) 237.185 149.033i 0.382557 0.240376i
\(621\) −142.275 + 142.275i −0.229106 + 0.229106i
\(622\) −152.515 34.8106i −0.245201 0.0559655i
\(623\) 255.093 + 89.2611i 0.409460 + 0.143276i
\(624\) 23.6158 67.4902i 0.0378459 0.108157i
\(625\) −52.4380 + 229.746i −0.0839008 + 0.367594i
\(626\) 7.01339 + 7.01339i 0.0112035 + 0.0112035i
\(627\) 64.0734 + 101.972i 0.102190 + 0.162635i
\(628\) 73.4083 651.517i 0.116892 1.03745i
\(629\) 10.9576 + 48.0084i 0.0174207 + 0.0763250i
\(630\) 13.3831 21.2991i 0.0212430 0.0338081i
\(631\) 167.421 + 133.514i 0.265327 + 0.211591i 0.747112 0.664698i \(-0.231440\pi\)
−0.481785 + 0.876290i \(0.660011\pi\)
\(632\) 172.496 83.0699i 0.272937 0.131440i
\(633\) 95.9821 + 46.2225i 0.151630 + 0.0730214i
\(634\) 96.6939 + 121.250i 0.152514 + 0.191246i
\(635\) −24.6160 218.473i −0.0387653 0.344051i
\(636\) 176.077 61.6121i 0.276851 0.0968744i
\(637\) 372.735i 0.585141i
\(638\) −110.895 32.5931i −0.173816 0.0510864i
\(639\) 757.826 1.18596
\(640\) −77.4235 221.264i −0.120974 0.345724i
\(641\) 331.461 37.3467i 0.517100 0.0582632i 0.150442 0.988619i \(-0.451930\pi\)
0.366658 + 0.930356i \(0.380502\pi\)
\(642\) 22.8192 18.1977i 0.0355439 0.0283453i
\(643\) −84.9239 + 176.346i −0.132075 + 0.274256i −0.956510 0.291701i \(-0.905779\pi\)
0.824435 + 0.565957i \(0.191493\pi\)
\(644\) 91.7149 + 190.448i 0.142414 + 0.295727i
\(645\) −43.0600 + 53.9956i −0.0667597 + 0.0837141i
\(646\) −61.4215 38.5937i −0.0950797 0.0597425i
\(647\) 193.106 44.0752i 0.298464 0.0681224i −0.0706667 0.997500i \(-0.522513\pi\)
0.369131 + 0.929378i \(0.379656\pi\)
\(648\) −245.020 27.6071i −0.378117 0.0426036i
\(649\) −422.697 + 265.598i −0.651305 + 0.409242i
\(650\) 54.3057 54.3057i 0.0835472 0.0835472i
\(651\) 48.7079 + 11.1173i 0.0748202 + 0.0170772i
\(652\) 543.922 + 190.327i 0.834236 + 0.291912i
\(653\) −286.599 + 819.053i −0.438896 + 1.25429i 0.485962 + 0.873980i \(0.338469\pi\)
−0.924858 + 0.380312i \(0.875817\pi\)
\(654\) 1.47919 6.48077i 0.00226176 0.00990944i
\(655\) 112.899 + 112.899i 0.172364 + 0.172364i
\(656\) −98.5374 156.821i −0.150209 0.239057i
\(657\) 123.003 1091.68i 0.187219 1.66162i
\(658\) −23.0341 100.919i −0.0350062 0.153372i
\(659\) 16.3281 25.9861i 0.0247771 0.0394326i −0.834106 0.551604i \(-0.814016\pi\)
0.858883 + 0.512172i \(0.171159\pi\)
\(660\) −36.9329 29.4530i −0.0559589 0.0446258i
\(661\) 385.398 185.598i 0.583053 0.280783i −0.119016 0.992892i \(-0.537974\pi\)
0.702069 + 0.712109i \(0.252260\pi\)
\(662\) −58.4642 28.1549i −0.0883145 0.0425300i
\(663\) 23.3947 + 29.3360i 0.0352861 + 0.0442473i
\(664\) −35.3145 313.425i −0.0531845 0.472025i
\(665\) −144.016 + 50.3934i −0.216566 + 0.0757796i
\(666\) 25.8956i 0.0388823i
\(667\) −385.255 + 426.476i −0.577594 + 0.639395i
\(668\) −165.129 −0.247198
\(669\) −68.1588 194.787i −0.101882 0.291161i
\(670\) −74.3810 + 8.38073i −0.111016 + 0.0125086i
\(671\) 615.384 490.753i 0.917115 0.731375i
\(672\) 13.7337 28.5184i 0.0204371 0.0424380i
\(673\) 92.9362 + 192.984i 0.138092 + 0.286752i 0.958534 0.284979i \(-0.0919866\pi\)
−0.820441 + 0.571731i \(0.806272\pi\)
\(674\) 139.457 174.873i 0.206909 0.259456i
\(675\) −166.679 104.731i −0.246931 0.155157i
\(676\) −322.986 + 73.7194i −0.477789 + 0.109052i
\(677\) 1019.59 + 114.881i 1.50605 + 0.169691i 0.826080 0.563553i \(-0.190566\pi\)
0.679966 + 0.733243i \(0.261994\pi\)
\(678\) −36.8695 + 23.1666i −0.0543798 + 0.0341691i
\(679\) −35.5022 + 35.5022i −0.0522860 + 0.0522860i
\(680\) 56.8739 + 12.9811i 0.0836380 + 0.0190898i
\(681\) 66.7445 + 23.3549i 0.0980096 + 0.0342950i
\(682\) 40.8725 116.807i 0.0599303 0.171271i
\(683\) 198.867 871.294i 0.291167 1.27569i −0.591736 0.806132i \(-0.701557\pi\)
0.882903 0.469555i \(-0.155586\pi\)
\(684\) 537.048 + 537.048i 0.785159 + 0.785159i
\(685\) 112.029 + 178.293i 0.163546 + 0.260282i
\(686\) −12.3642 + 109.735i −0.0180236 + 0.159964i
\(687\) 17.7769 + 77.8858i 0.0258762 + 0.113371i
\(688\) 370.962 590.382i 0.539188 0.858113i
\(689\) 603.564 + 481.326i 0.875999 + 0.698586i
\(690\) 10.6291 5.11870i 0.0154045 0.00741840i
\(691\) −404.223 194.664i −0.584983 0.281713i 0.117892 0.993026i \(-0.462386\pi\)
−0.702875 + 0.711313i \(0.748101\pi\)
\(692\) −342.625 429.638i −0.495123 0.620865i
\(693\) 24.7727 + 219.864i 0.0357470 + 0.317263i
\(694\) −0.259405 + 0.0907698i −0.000373783 + 0.000130792i
\(695\) 264.137i 0.380053i
\(696\) 56.8016 + 3.49552i 0.0816115 + 0.00502230i
\(697\) 97.1916 0.139443
\(698\) 18.5156 + 52.9146i 0.0265267 + 0.0758088i
\(699\) −89.5118 + 10.0856i −0.128057 + 0.0144286i
\(700\) −161.687 + 128.941i −0.230981 + 0.184201i
\(701\) −112.581 + 233.776i −0.160600 + 0.333490i −0.965705 0.259644i \(-0.916395\pi\)
0.805104 + 0.593133i \(0.202109\pi\)
\(702\) 17.4487 + 36.2326i 0.0248557 + 0.0516134i
\(703\) 97.9330 122.804i 0.139307 0.174686i
\(704\) 357.716 + 224.768i 0.508120 + 0.319273i
\(705\) 112.140 25.5952i 0.159064 0.0363053i
\(706\) 204.328 + 23.0222i 0.289416 + 0.0326094i
\(707\) −141.432 + 88.8676i −0.200045 + 0.125697i
\(708\) 84.7715 84.7715i 0.119734 0.119734i
\(709\) 197.905 + 45.1706i 0.279133 + 0.0637103i 0.359796 0.933031i \(-0.382846\pi\)
−0.0806624 + 0.996741i \(0.525704\pi\)
\(710\) −85.4776 29.9099i −0.120391 0.0421266i
\(711\) 160.520 458.741i 0.225767 0.645205i
\(712\) −73.3422 + 321.333i −0.103009 + 0.451311i
\(713\) −435.101 435.101i −0.610239 0.610239i
\(714\) 2.69996 + 4.29697i 0.00378146 + 0.00601816i
\(715\) 21.8879 194.261i 0.0306125 0.271694i
\(716\) 167.731 + 734.878i 0.234261 + 1.02637i
\(717\) 108.362 172.457i 0.151132 0.240526i
\(718\) 102.005 + 81.3465i 0.142069 + 0.113296i
\(719\) −202.010 + 97.2830i −0.280960 + 0.135303i −0.569057 0.822298i \(-0.692692\pi\)
0.288097 + 0.957601i \(0.406977\pi\)
\(720\) −254.252 122.441i −0.353127 0.170057i
\(721\) 121.150 + 151.918i 0.168031 + 0.210704i
\(722\) 8.22842 + 73.0293i 0.0113967 + 0.101149i
\(723\) 196.164 68.6408i 0.271320 0.0949389i
\(724\) 640.688i 0.884928i
\(725\) −490.655 274.620i −0.676765 0.378786i
\(726\) 9.53902 0.0131391
\(727\) 246.577 + 704.676i 0.339170 + 0.969293i 0.979544 + 0.201229i \(0.0644937\pi\)
−0.640374 + 0.768063i \(0.721221\pi\)
\(728\) 86.0749 9.69832i 0.118235 0.0133219i
\(729\) −448.317 + 357.521i −0.614976 + 0.490427i
\(730\) −56.9604 + 118.280i −0.0780280 + 0.162027i
\(731\) 158.756 + 329.660i 0.217176 + 0.450971i
\(732\) −117.853 + 147.783i −0.161001 + 0.201889i
\(733\) −963.974 605.705i −1.31511 0.826337i −0.322367 0.946615i \(-0.604478\pi\)
−0.992740 + 0.120278i \(0.961621\pi\)
\(734\) −67.0594 + 15.3059i −0.0913616 + 0.0208527i
\(735\) −55.6649 6.27193i −0.0757346 0.00853324i
\(736\) −330.091 + 207.410i −0.448494 + 0.281807i
\(737\) 465.543 465.543i 0.631673 0.631673i
\(738\) 49.8291 + 11.3732i 0.0675190 + 0.0154108i
\(739\) −584.336 204.468i −0.790712 0.276682i −0.0954458 0.995435i \(-0.530428\pi\)
−0.695266 + 0.718753i \(0.744713\pi\)
\(740\) −20.3489 + 58.1538i −0.0274985 + 0.0785862i
\(741\) 26.6326 116.685i 0.0359414 0.157470i
\(742\) 73.8291 + 73.8291i 0.0995001 + 0.0995001i
\(743\) −590.411 939.634i −0.794631 1.26465i −0.960439 0.278490i \(-0.910166\pi\)
0.165808 0.986158i \(-0.446977\pi\)
\(744\) −6.82197 + 60.5467i −0.00916931 + 0.0813799i
\(745\) 68.5353 + 300.273i 0.0919937 + 0.403051i
\(746\) −18.3291 + 29.1706i −0.0245699 + 0.0391027i
\(747\) −625.986 499.207i −0.838000 0.668283i
\(748\) −225.487 + 108.589i −0.301453 + 0.145172i
\(749\) −293.037 141.119i −0.391238 0.188410i
\(750\) 16.4752 + 20.6593i 0.0219670 + 0.0275457i
\(751\) 94.5639 + 839.278i 0.125917 + 1.11755i 0.884686 + 0.466187i \(0.154373\pi\)
−0.758769 + 0.651360i \(0.774199\pi\)
\(752\) −1096.11 + 383.544i −1.45759 + 0.510032i
\(753\) 208.289i 0.276613i
\(754\) 55.0247 + 100.833i 0.0729770 + 0.133731i
\(755\) 28.7942 0.0381380
\(756\) −35.7662 102.214i −0.0473098 0.135204i
\(757\) 548.637 61.8166i 0.724752 0.0816600i 0.258122 0.966112i \(-0.416896\pi\)
0.466630 + 0.884452i \(0.345468\pi\)
\(758\) −43.8190 + 34.9445i −0.0578087 + 0.0461009i
\(759\) −45.0228 + 93.4908i −0.0593186 + 0.123176i
\(760\) −80.7362 167.650i −0.106232 0.220593i
\(761\) −299.966 + 376.145i −0.394173 + 0.494278i −0.938830 0.344382i \(-0.888089\pi\)
0.544657 + 0.838659i \(0.316660\pi\)
\(762\) 19.7497 + 12.4096i 0.0259182 + 0.0162855i
\(763\) −72.2192 + 16.4836i −0.0946517 + 0.0216036i
\(764\) 56.5484 + 6.37148i 0.0740163 + 0.00833963i
\(765\) 125.389 78.7874i 0.163908 0.102990i
\(766\) 198.170 198.170i 0.258707 0.258707i
\(767\) 483.684 + 110.398i 0.630618 + 0.143935i
\(768\) −77.0974 26.9776i −0.100387 0.0351270i
\(769\) −138.493 + 395.791i −0.180095 + 0.514683i −0.998173 0.0604252i \(-0.980754\pi\)
0.818077 + 0.575108i \(0.195040\pi\)
\(770\) 5.88340 25.7768i 0.00764078 0.0334764i
\(771\) −105.961 105.961i −0.137433 0.137433i