Properties

Label 29.2.b.a
Level $29$
Weight $2$
Character orbit 29.b
Analytic conductor $0.232$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [29,2,Mod(28,29)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("29.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(29, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 29.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.231566165862\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - \beta q^{3} - 3 q^{4} - 3 q^{5} + 5 q^{6} + 2 q^{7} - \beta q^{8} - 2 q^{9} - 3 \beta q^{10} + \beta q^{11} + 3 \beta q^{12} - q^{13} + 2 \beta q^{14} + 3 \beta q^{15} - q^{16} - 2 \beta q^{17} + \cdots - 2 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{4} - 6 q^{5} + 10 q^{6} + 4 q^{7} - 4 q^{9} - 2 q^{13} - 2 q^{16} + 18 q^{20} - 10 q^{22} + 12 q^{23} - 10 q^{24} + 8 q^{25} - 12 q^{28} - 6 q^{29} - 30 q^{30} + 10 q^{33} + 20 q^{34} - 12 q^{35}+ \cdots - 30 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
28.1
2.23607i
2.23607i
2.23607i 2.23607i −3.00000 −3.00000 5.00000 2.00000 2.23607i −2.00000 6.70820i
28.2 2.23607i 2.23607i −3.00000 −3.00000 5.00000 2.00000 2.23607i −2.00000 6.70820i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 29.2.b.a 2
3.b odd 2 1 261.2.c.a 2
4.b odd 2 1 464.2.e.a 2
5.b even 2 1 725.2.c.c 2
5.c odd 4 2 725.2.d.a 4
7.b odd 2 1 1421.2.b.b 2
8.b even 2 1 1856.2.e.g 2
8.d odd 2 1 1856.2.e.f 2
12.b even 2 1 4176.2.o.k 2
29.b even 2 1 inner 29.2.b.a 2
29.c odd 4 2 841.2.a.b 2
29.d even 7 6 841.2.e.g 12
29.e even 14 6 841.2.e.g 12
29.f odd 28 12 841.2.d.h 12
87.d odd 2 1 261.2.c.a 2
87.f even 4 2 7569.2.a.i 2
116.d odd 2 1 464.2.e.a 2
145.d even 2 1 725.2.c.c 2
145.h odd 4 2 725.2.d.a 4
203.c odd 2 1 1421.2.b.b 2
232.b odd 2 1 1856.2.e.f 2
232.g even 2 1 1856.2.e.g 2
348.b even 2 1 4176.2.o.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
29.2.b.a 2 1.a even 1 1 trivial
29.2.b.a 2 29.b even 2 1 inner
261.2.c.a 2 3.b odd 2 1
261.2.c.a 2 87.d odd 2 1
464.2.e.a 2 4.b odd 2 1
464.2.e.a 2 116.d odd 2 1
725.2.c.c 2 5.b even 2 1
725.2.c.c 2 145.d even 2 1
725.2.d.a 4 5.c odd 4 2
725.2.d.a 4 145.h odd 4 2
841.2.a.b 2 29.c odd 4 2
841.2.d.h 12 29.f odd 28 12
841.2.e.g 12 29.d even 7 6
841.2.e.g 12 29.e even 14 6
1421.2.b.b 2 7.b odd 2 1
1421.2.b.b 2 203.c odd 2 1
1856.2.e.f 2 8.d odd 2 1
1856.2.e.f 2 232.b odd 2 1
1856.2.e.g 2 8.b even 2 1
1856.2.e.g 2 232.g even 2 1
4176.2.o.k 2 12.b even 2 1
4176.2.o.k 2 348.b even 2 1
7569.2.a.i 2 87.f even 4 2

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(29, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 5 \) Copy content Toggle raw display
$3$ \( T^{2} + 5 \) Copy content Toggle raw display
$5$ \( (T + 3)^{2} \) Copy content Toggle raw display
$7$ \( (T - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 5 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 20 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 6T + 29 \) Copy content Toggle raw display
$31$ \( T^{2} + 45 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 20 \) Copy content Toggle raw display
$43$ \( T^{2} + 45 \) Copy content Toggle raw display
$47$ \( T^{2} + 5 \) Copy content Toggle raw display
$53$ \( (T + 9)^{2} \) Copy content Toggle raw display
$59$ \( (T - 6)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 180 \) Copy content Toggle raw display
$67$ \( (T - 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 45 \) Copy content Toggle raw display
$83$ \( (T + 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 20 \) Copy content Toggle raw display
$97$ \( T^{2} + 180 \) Copy content Toggle raw display
show more
show less