Properties

Label 29.2.b
Level $29$
Weight $2$
Character orbit 29.b
Rep. character $\chi_{29}(28,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $5$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 29.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(29, [\chi])\).

Total New Old
Modular forms 4 4 0
Cusp forms 2 2 0
Eisenstein series 2 2 0

Trace form

\( 2 q - 6 q^{4} - 6 q^{5} + 10 q^{6} + 4 q^{7} - 4 q^{9} - 2 q^{13} - 2 q^{16} + 18 q^{20} - 10 q^{22} + 12 q^{23} - 10 q^{24} + 8 q^{25} - 12 q^{28} - 6 q^{29} - 30 q^{30} + 10 q^{33} + 20 q^{34} - 12 q^{35}+ \cdots - 30 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(29, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
29.2.b.a 29.b 29.b $2$ $0.232$ \(\Q(\sqrt{-5}) \) None 29.2.b.a \(0\) \(0\) \(-6\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}-\beta q^{3}-3q^{4}-3q^{5}+5q^{6}+\cdots\)