Properties

Label 29.2.a
Level $29$
Weight $2$
Character orbit 29.a
Rep. character $\chi_{29}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $5$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 29.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(29))\).

Total New Old
Modular forms 3 3 0
Cusp forms 2 2 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(29\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(-\)\(3\)\(3\)\(0\)\(2\)\(2\)\(0\)\(1\)\(1\)\(0\)

Trace form

\( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{5} - 6 q^{6} - 6 q^{8} + 2 q^{10} + 2 q^{11} + 10 q^{12} - 2 q^{13} + 8 q^{14} - 2 q^{15} + 6 q^{16} - 4 q^{17} - 8 q^{18} + 12 q^{19} - 2 q^{20} - 8 q^{21} + 2 q^{22}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 29
29.2.a.a 29.a 1.a $2$ $0.232$ \(\Q(\sqrt{2}) \) None 29.2.a.a \(-2\) \(2\) \(-2\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+(1-\beta )q^{3}+(1-2\beta )q^{4}+\cdots\)