Properties

Label 2898.2.a.i
Level $2898$
Weight $2$
Character orbit 2898.a
Self dual yes
Analytic conductor $23.141$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2898 = 2 \cdot 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2898.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(23.1406465058\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 966)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + 2q^{5} + q^{7} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} + 2q^{5} + q^{7} - q^{8} - 2q^{10} + 4q^{11} - 2q^{13} - q^{14} + q^{16} + 6q^{17} + 4q^{19} + 2q^{20} - 4q^{22} + q^{23} - q^{25} + 2q^{26} + q^{28} + 2q^{29} - 8q^{31} - q^{32} - 6q^{34} + 2q^{35} + 6q^{37} - 4q^{38} - 2q^{40} + 6q^{41} - 4q^{43} + 4q^{44} - q^{46} + 8q^{47} + q^{49} + q^{50} - 2q^{52} - 6q^{53} + 8q^{55} - q^{56} - 2q^{58} - 4q^{59} - 10q^{61} + 8q^{62} + q^{64} - 4q^{65} + 4q^{67} + 6q^{68} - 2q^{70} + 8q^{71} - 6q^{73} - 6q^{74} + 4q^{76} + 4q^{77} + 2q^{80} - 6q^{82} + 12q^{83} + 12q^{85} + 4q^{86} - 4q^{88} - 2q^{89} - 2q^{91} + q^{92} - 8q^{94} + 8q^{95} + 10q^{97} - q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 2.00000 0 1.00000 −1.00000 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(-1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2898.2.a.i 1
3.b odd 2 1 966.2.a.g 1
12.b even 2 1 7728.2.a.o 1
21.c even 2 1 6762.2.a.bl 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.a.g 1 3.b odd 2 1
2898.2.a.i 1 1.a even 1 1 trivial
6762.2.a.bl 1 21.c even 2 1
7728.2.a.o 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2898))\):

\( T_{5} - 2 \)
\( T_{11} - 4 \)
\( T_{13} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( T \)
$5$ \( -2 + T \)
$7$ \( -1 + T \)
$11$ \( -4 + T \)
$13$ \( 2 + T \)
$17$ \( -6 + T \)
$19$ \( -4 + T \)
$23$ \( -1 + T \)
$29$ \( -2 + T \)
$31$ \( 8 + T \)
$37$ \( -6 + T \)
$41$ \( -6 + T \)
$43$ \( 4 + T \)
$47$ \( -8 + T \)
$53$ \( 6 + T \)
$59$ \( 4 + T \)
$61$ \( 10 + T \)
$67$ \( -4 + T \)
$71$ \( -8 + T \)
$73$ \( 6 + T \)
$79$ \( T \)
$83$ \( -12 + T \)
$89$ \( 2 + T \)
$97$ \( -10 + T \)
show more
show less