Properties

 Label 2898.2.a.bb Level $2898$ Weight $2$ Character orbit 2898.a Self dual yes Analytic conductor $23.141$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2898 = 2 \cdot 3^{2} \cdot 7 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2898.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$23.1406465058$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{41})$$ Defining polynomial: $$x^{2} - x - 10$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 966) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{41})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} -\beta q^{5} + q^{7} + q^{8} +O(q^{10})$$ $$q + q^{2} + q^{4} -\beta q^{5} + q^{7} + q^{8} -\beta q^{10} + 4 q^{11} + ( 2 + \beta ) q^{13} + q^{14} + q^{16} -4 q^{17} + ( 2 - 2 \beta ) q^{19} -\beta q^{20} + 4 q^{22} - q^{23} + ( 5 + \beta ) q^{25} + ( 2 + \beta ) q^{26} + q^{28} + ( -4 + \beta ) q^{29} -2 q^{31} + q^{32} -4 q^{34} -\beta q^{35} + ( 8 - \beta ) q^{37} + ( 2 - 2 \beta ) q^{38} -\beta q^{40} + ( 4 - \beta ) q^{41} + ( 2 - \beta ) q^{43} + 4 q^{44} - q^{46} + 3 \beta q^{47} + q^{49} + ( 5 + \beta ) q^{50} + ( 2 + \beta ) q^{52} + ( 2 + 2 \beta ) q^{53} -4 \beta q^{55} + q^{56} + ( -4 + \beta ) q^{58} + 2 \beta q^{59} -2 q^{61} -2 q^{62} + q^{64} + ( -10 - 3 \beta ) q^{65} + 4 \beta q^{67} -4 q^{68} -\beta q^{70} + 2 \beta q^{71} + ( -6 + 2 \beta ) q^{73} + ( 8 - \beta ) q^{74} + ( 2 - 2 \beta ) q^{76} + 4 q^{77} + 8 q^{79} -\beta q^{80} + ( 4 - \beta ) q^{82} + ( -6 - 2 \beta ) q^{83} + 4 \beta q^{85} + ( 2 - \beta ) q^{86} + 4 q^{88} + ( 4 + 2 \beta ) q^{89} + ( 2 + \beta ) q^{91} - q^{92} + 3 \beta q^{94} + 20 q^{95} + ( 10 - \beta ) q^{97} + q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 2q^{2} + 2q^{4} - q^{5} + 2q^{7} + 2q^{8} + O(q^{10})$$ $$2q + 2q^{2} + 2q^{4} - q^{5} + 2q^{7} + 2q^{8} - q^{10} + 8q^{11} + 5q^{13} + 2q^{14} + 2q^{16} - 8q^{17} + 2q^{19} - q^{20} + 8q^{22} - 2q^{23} + 11q^{25} + 5q^{26} + 2q^{28} - 7q^{29} - 4q^{31} + 2q^{32} - 8q^{34} - q^{35} + 15q^{37} + 2q^{38} - q^{40} + 7q^{41} + 3q^{43} + 8q^{44} - 2q^{46} + 3q^{47} + 2q^{49} + 11q^{50} + 5q^{52} + 6q^{53} - 4q^{55} + 2q^{56} - 7q^{58} + 2q^{59} - 4q^{61} - 4q^{62} + 2q^{64} - 23q^{65} + 4q^{67} - 8q^{68} - q^{70} + 2q^{71} - 10q^{73} + 15q^{74} + 2q^{76} + 8q^{77} + 16q^{79} - q^{80} + 7q^{82} - 14q^{83} + 4q^{85} + 3q^{86} + 8q^{88} + 10q^{89} + 5q^{91} - 2q^{92} + 3q^{94} + 40q^{95} + 19q^{97} + 2q^{98} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 3.70156 −2.70156
1.00000 0 1.00000 −3.70156 0 1.00000 1.00000 0 −3.70156
1.2 1.00000 0 1.00000 2.70156 0 1.00000 1.00000 0 2.70156
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$7$$ $$-1$$
$$23$$ $$1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2898.2.a.bb 2
3.b odd 2 1 966.2.a.n 2
12.b even 2 1 7728.2.a.bc 2
21.c even 2 1 6762.2.a.bo 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.a.n 2 3.b odd 2 1
2898.2.a.bb 2 1.a even 1 1 trivial
6762.2.a.bo 2 21.c even 2 1
7728.2.a.bc 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2898))$$:

 $$T_{5}^{2} + T_{5} - 10$$ $$T_{11} - 4$$ $$T_{13}^{2} - 5 T_{13} - 4$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( -1 + T )^{2}$$
$3$ $$T^{2}$$
$5$ $$-10 + T + T^{2}$$
$7$ $$( -1 + T )^{2}$$
$11$ $$( -4 + T )^{2}$$
$13$ $$-4 - 5 T + T^{2}$$
$17$ $$( 4 + T )^{2}$$
$19$ $$-40 - 2 T + T^{2}$$
$23$ $$( 1 + T )^{2}$$
$29$ $$2 + 7 T + T^{2}$$
$31$ $$( 2 + T )^{2}$$
$37$ $$46 - 15 T + T^{2}$$
$41$ $$2 - 7 T + T^{2}$$
$43$ $$-8 - 3 T + T^{2}$$
$47$ $$-90 - 3 T + T^{2}$$
$53$ $$-32 - 6 T + T^{2}$$
$59$ $$-40 - 2 T + T^{2}$$
$61$ $$( 2 + T )^{2}$$
$67$ $$-160 - 4 T + T^{2}$$
$71$ $$-40 - 2 T + T^{2}$$
$73$ $$-16 + 10 T + T^{2}$$
$79$ $$( -8 + T )^{2}$$
$83$ $$8 + 14 T + T^{2}$$
$89$ $$-16 - 10 T + T^{2}$$
$97$ $$80 - 19 T + T^{2}$$