Defining parameters
| Level: | \( N \) | \(=\) | \( 2898 = 2 \cdot 3^{2} \cdot 7 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2898.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 35 \) | ||
| Sturm bound: | \(1152\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(5\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2898))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 592 | 56 | 536 |
| Cusp forms | 561 | 56 | 505 |
| Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(32\) | \(3\) | \(29\) | \(31\) | \(3\) | \(28\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(38\) | \(3\) | \(35\) | \(36\) | \(3\) | \(33\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(42\) | \(5\) | \(37\) | \(40\) | \(5\) | \(35\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(36\) | \(1\) | \(35\) | \(34\) | \(1\) | \(33\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(39\) | \(3\) | \(36\) | \(37\) | \(3\) | \(34\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(37\) | \(5\) | \(32\) | \(35\) | \(5\) | \(30\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(35\) | \(4\) | \(31\) | \(33\) | \(4\) | \(29\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(37\) | \(4\) | \(33\) | \(35\) | \(4\) | \(31\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(36\) | \(3\) | \(33\) | \(34\) | \(3\) | \(31\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(38\) | \(3\) | \(35\) | \(36\) | \(3\) | \(33\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(38\) | \(1\) | \(37\) | \(36\) | \(1\) | \(35\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(36\) | \(5\) | \(31\) | \(34\) | \(5\) | \(29\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(37\) | \(3\) | \(34\) | \(35\) | \(3\) | \(32\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(39\) | \(5\) | \(34\) | \(37\) | \(5\) | \(32\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(37\) | \(6\) | \(31\) | \(35\) | \(6\) | \(29\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(35\) | \(2\) | \(33\) | \(33\) | \(2\) | \(31\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(288\) | \(22\) | \(266\) | \(273\) | \(22\) | \(251\) | \(15\) | \(0\) | \(15\) | ||||||
| Minus space | \(-\) | \(304\) | \(34\) | \(270\) | \(288\) | \(34\) | \(254\) | \(16\) | \(0\) | \(16\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2898))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2898))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2898)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(414))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(483))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(966))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1449))\)\(^{\oplus 2}\)