Properties

Label 2898.2.a
Level $2898$
Weight $2$
Character orbit 2898.a
Rep. character $\chi_{2898}(1,\cdot)$
Character field $\Q$
Dimension $56$
Newform subspaces $35$
Sturm bound $1152$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2898 = 2 \cdot 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2898.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 35 \)
Sturm bound: \(1152\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2898))\).

Total New Old
Modular forms 592 56 536
Cusp forms 561 56 505
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(32\)\(3\)\(29\)\(31\)\(3\)\(28\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(38\)\(3\)\(35\)\(36\)\(3\)\(33\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(42\)\(5\)\(37\)\(40\)\(5\)\(35\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(36\)\(1\)\(35\)\(34\)\(1\)\(33\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(39\)\(3\)\(36\)\(37\)\(3\)\(34\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(37\)\(5\)\(32\)\(35\)\(5\)\(30\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(35\)\(4\)\(31\)\(33\)\(4\)\(29\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(37\)\(4\)\(33\)\(35\)\(4\)\(31\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(36\)\(3\)\(33\)\(34\)\(3\)\(31\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(38\)\(3\)\(35\)\(36\)\(3\)\(33\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(38\)\(1\)\(37\)\(36\)\(1\)\(35\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(36\)\(5\)\(31\)\(34\)\(5\)\(29\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(37\)\(3\)\(34\)\(35\)\(3\)\(32\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(39\)\(5\)\(34\)\(37\)\(5\)\(32\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(37\)\(6\)\(31\)\(35\)\(6\)\(29\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(35\)\(2\)\(33\)\(33\)\(2\)\(31\)\(2\)\(0\)\(2\)
Plus space\(+\)\(288\)\(22\)\(266\)\(273\)\(22\)\(251\)\(15\)\(0\)\(15\)
Minus space\(-\)\(304\)\(34\)\(270\)\(288\)\(34\)\(254\)\(16\)\(0\)\(16\)

Trace form

\( 56 q + 56 q^{4} + 4 q^{5} + 4 q^{10} - 12 q^{11} + 4 q^{13} + 56 q^{16} + 12 q^{19} + 4 q^{20} + 12 q^{22} + 64 q^{25} + 12 q^{26} - 8 q^{29} - 16 q^{31} + 24 q^{34} - 4 q^{35} - 12 q^{37} - 28 q^{38} + 4 q^{40}+ \cdots + 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2898))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 23
2898.2.a.a 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.k \(-1\) \(0\) \(-3\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-3q^{5}-q^{7}-q^{8}+3q^{10}+\cdots\)
2898.2.a.b 2898.a 1.a $1$ $23.141$ \(\Q\) None 2898.2.a.b \(-1\) \(0\) \(-3\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-3q^{5}+q^{7}-q^{8}+3q^{10}+\cdots\)
2898.2.a.c 2898.a 1.a $1$ $23.141$ \(\Q\) None 2898.2.a.c \(-1\) \(0\) \(-1\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{7}-q^{8}+q^{10}+\cdots\)
2898.2.a.d 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.h \(-1\) \(0\) \(-1\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\)
2898.2.a.e 2898.a 1.a $1$ $23.141$ \(\Q\) None 2898.2.a.e \(-1\) \(0\) \(1\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+q^{7}-q^{8}-q^{10}+\cdots\)
2898.2.a.f 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.j \(-1\) \(0\) \(2\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}-q^{7}-q^{8}-2q^{10}+\cdots\)
2898.2.a.g 2898.a 1.a $1$ $23.141$ \(\Q\) None 322.2.a.c \(-1\) \(0\) \(2\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}-q^{7}-q^{8}-2q^{10}+\cdots\)
2898.2.a.h 2898.a 1.a $1$ $23.141$ \(\Q\) None 322.2.a.d \(-1\) \(0\) \(2\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}+q^{7}-q^{8}-2q^{10}+\cdots\)
2898.2.a.i 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.g \(-1\) \(0\) \(2\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}+q^{7}-q^{8}-2q^{10}+\cdots\)
2898.2.a.j 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.i \(-1\) \(0\) \(3\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+3q^{5}+q^{7}-q^{8}-3q^{10}+\cdots\)
2898.2.a.k 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.d \(1\) \(0\) \(-3\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{5}+q^{7}+q^{8}-3q^{10}+\cdots\)
2898.2.a.l 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.c \(1\) \(0\) \(-2\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}+q^{7}+q^{8}-2q^{10}+\cdots\)
2898.2.a.m 2898.a 1.a $1$ $23.141$ \(\Q\) None 2898.2.a.e \(1\) \(0\) \(-1\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}+q^{7}+q^{8}-q^{10}+\cdots\)
2898.2.a.n 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.e \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+2q^{11}-6q^{13}+\cdots\)
2898.2.a.o 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.f \(1\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-6q^{11}+2q^{13}+\cdots\)
2898.2.a.p 2898.a 1.a $1$ $23.141$ \(\Q\) None 322.2.a.b \(1\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-4q^{11}+q^{14}+\cdots\)
2898.2.a.q 2898.a 1.a $1$ $23.141$ \(\Q\) None 2898.2.a.c \(1\) \(0\) \(1\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\)
2898.2.a.r 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.b \(1\) \(0\) \(2\) \(-1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}-q^{7}+q^{8}+2q^{10}+\cdots\)
2898.2.a.s 2898.a 1.a $1$ $23.141$ \(\Q\) None 322.2.a.a \(1\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}+q^{7}+q^{8}+2q^{10}+\cdots\)
2898.2.a.t 2898.a 1.a $1$ $23.141$ \(\Q\) None 2898.2.a.b \(1\) \(0\) \(3\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}+q^{7}+q^{8}+3q^{10}+\cdots\)
2898.2.a.u 2898.a 1.a $1$ $23.141$ \(\Q\) None 966.2.a.a \(1\) \(0\) \(4\) \(1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+4q^{5}+q^{7}+q^{8}+4q^{10}+\cdots\)
2898.2.a.v 2898.a 1.a $2$ $23.141$ \(\Q(\sqrt{5}) \) None 966.2.a.p \(-2\) \(0\) \(-4\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}+q^{7}-q^{8}+2q^{10}+\cdots\)
2898.2.a.w 2898.a 1.a $2$ $23.141$ \(\Q(\sqrt{3}) \) None 322.2.a.f \(-2\) \(0\) \(-2\) \(2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1+\beta )q^{5}+q^{7}-q^{8}+\cdots\)
2898.2.a.x 2898.a 1.a $2$ $23.141$ \(\Q(\sqrt{33}) \) None 966.2.a.o \(-2\) \(0\) \(3\) \(-2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1+\beta )q^{5}-q^{7}-q^{8}+\cdots\)
2898.2.a.y 2898.a 1.a $2$ $23.141$ \(\Q(\sqrt{2}) \) None 2898.2.a.y \(-2\) \(0\) \(4\) \(-2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(2+\beta )q^{5}-q^{7}-q^{8}+\cdots\)
2898.2.a.z 2898.a 1.a $2$ $23.141$ \(\Q(\sqrt{2}) \) None 2898.2.a.y \(2\) \(0\) \(-4\) \(-2\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-2+\beta )q^{5}-q^{7}+q^{8}+\cdots\)
2898.2.a.ba 2898.a 1.a $2$ $23.141$ \(\Q(\sqrt{17}) \) None 966.2.a.l \(2\) \(0\) \(-1\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-\beta q^{5}-q^{7}+q^{8}-\beta q^{10}+\cdots\)
2898.2.a.bb 2898.a 1.a $2$ $23.141$ \(\Q(\sqrt{41}) \) None 966.2.a.n \(2\) \(0\) \(-1\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-\beta q^{5}+q^{7}+q^{8}-\beta q^{10}+\cdots\)
2898.2.a.bc 2898.a 1.a $2$ $23.141$ \(\Q(\sqrt{41}) \) None 966.2.a.m \(2\) \(0\) \(1\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta q^{5}-q^{7}+q^{8}+\beta q^{10}+\cdots\)
2898.2.a.bd 2898.a 1.a $2$ $23.141$ \(\Q(\sqrt{5}) \) None 322.2.a.e \(2\) \(0\) \(2\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1+\beta )q^{5}-q^{7}+q^{8}+\cdots\)
2898.2.a.be 2898.a 1.a $3$ $23.141$ 3.3.316.1 None 322.2.a.g \(-3\) \(0\) \(-4\) \(-3\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1+\beta _{2})q^{5}-q^{7}-q^{8}+\cdots\)
2898.2.a.bf 2898.a 1.a $3$ $23.141$ 3.3.568.1 None 2898.2.a.bf \(-3\) \(0\) \(-1\) \(-3\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta _{2}q^{5}-q^{7}-q^{8}-\beta _{2}q^{10}+\cdots\)
2898.2.a.bg 2898.a 1.a $3$ $23.141$ 3.3.568.1 None 2898.2.a.bf \(3\) \(0\) \(1\) \(-3\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-\beta _{2}q^{5}-q^{7}+q^{8}-\beta _{2}q^{10}+\cdots\)
2898.2.a.bh 2898.a 1.a $4$ $23.141$ 4.4.271296.1 None 2898.2.a.bh \(-4\) \(0\) \(0\) \(4\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta _{1}q^{5}+q^{7}-q^{8}-\beta _{1}q^{10}+\cdots\)
2898.2.a.bi 2898.a 1.a $4$ $23.141$ 4.4.271296.1 None 2898.2.a.bh \(4\) \(0\) \(0\) \(4\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-\beta _{1}q^{5}+q^{7}+q^{8}-\beta _{1}q^{10}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2898))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2898)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(138))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(207))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(322))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(414))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(483))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(966))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1449))\)\(^{\oplus 2}\)