Properties

Label 289.4.b.d.288.6
Level $289$
Weight $4$
Character 289.288
Analytic conductor $17.052$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,4,Mod(288,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.288"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 289.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.0515519917\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 43x^{6} + 505x^{4} + 1528x^{2} + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 288.6
Root \(-1.58184i\) of defining polynomial
Character \(\chi\) \(=\) 289.288
Dual form 289.4.b.d.288.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.58184 q^{2} +4.98387i q^{3} -5.49778 q^{4} +14.4471i q^{5} +7.88368i q^{6} +29.4104i q^{7} -21.3513 q^{8} +2.16104 q^{9} +22.8530i q^{10} -13.5324i q^{11} -27.4002i q^{12} +45.7656 q^{13} +46.5225i q^{14} -72.0024 q^{15} +10.2079 q^{16} +3.41842 q^{18} -113.386 q^{19} -79.4269i q^{20} -146.578 q^{21} -21.4060i q^{22} -144.513i q^{23} -106.412i q^{24} -83.7182 q^{25} +72.3938 q^{26} +145.335i q^{27} -161.692i q^{28} -1.26688i q^{29} -113.896 q^{30} -30.0858i q^{31} +186.958 q^{32} +67.4435 q^{33} -424.894 q^{35} -11.8809 q^{36} +398.512i q^{37} -179.358 q^{38} +228.090i q^{39} -308.464i q^{40} -184.595i q^{41} -231.862 q^{42} -135.605 q^{43} +74.3979i q^{44} +31.2207i q^{45} -228.596i q^{46} +247.542 q^{47} +50.8748i q^{48} -521.971 q^{49} -132.429 q^{50} -251.609 q^{52} +635.182 q^{53} +229.896i q^{54} +195.503 q^{55} -627.951i q^{56} -565.100i q^{57} -2.00399i q^{58} -625.420 q^{59} +395.853 q^{60} +166.873i q^{61} -47.5909i q^{62} +63.5570i q^{63} +214.074 q^{64} +661.179i q^{65} +106.685 q^{66} +159.984 q^{67} +720.232 q^{69} -672.115 q^{70} +19.4559i q^{71} -46.1411 q^{72} +336.039i q^{73} +630.382i q^{74} -417.241i q^{75} +623.370 q^{76} +397.992 q^{77} +360.801i q^{78} -1072.15i q^{79} +147.474i q^{80} -665.982 q^{81} -291.999i q^{82} -47.1944 q^{83} +805.852 q^{84} -214.506 q^{86} +6.31394 q^{87} +288.934i q^{88} -626.312 q^{89} +49.3862i q^{90} +1345.98i q^{91} +794.499i q^{92} +149.944 q^{93} +391.572 q^{94} -1638.09i q^{95} +931.774i q^{96} +692.045i q^{97} -825.674 q^{98} -29.2439i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 22 q^{4} - 120 q^{8} - 12 q^{9} - 44 q^{13} - 108 q^{15} + 126 q^{16} - 668 q^{18} - 44 q^{19} - 704 q^{21} - 756 q^{25} + 896 q^{26} + 626 q^{30} - 662 q^{32} + 188 q^{33} - 484 q^{35}+ \cdots - 3754 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.58184 0.559265 0.279632 0.960107i \(-0.409787\pi\)
0.279632 + 0.960107i \(0.409787\pi\)
\(3\) 4.98387i 0.959146i 0.877502 + 0.479573i \(0.159208\pi\)
−0.877502 + 0.479573i \(0.840792\pi\)
\(4\) −5.49778 −0.687223
\(5\) 14.4471i 1.29219i 0.763259 + 0.646093i \(0.223598\pi\)
−0.763259 + 0.646093i \(0.776402\pi\)
\(6\) 7.88368i 0.536417i
\(7\) 29.4104i 1.58801i 0.607910 + 0.794006i \(0.292008\pi\)
−0.607910 + 0.794006i \(0.707992\pi\)
\(8\) −21.3513 −0.943604
\(9\) 2.16104 0.0800385
\(10\) 22.8530i 0.722674i
\(11\) − 13.5324i − 0.370923i −0.982651 0.185462i \(-0.940622\pi\)
0.982651 0.185462i \(-0.0593781\pi\)
\(12\) − 27.4002i − 0.659147i
\(13\) 45.7656 0.976391 0.488196 0.872734i \(-0.337655\pi\)
0.488196 + 0.872734i \(0.337655\pi\)
\(14\) 46.5225i 0.888119i
\(15\) −72.0024 −1.23940
\(16\) 10.2079 0.159498
\(17\) 0 0
\(18\) 3.41842 0.0447627
\(19\) −113.386 −1.36908 −0.684539 0.728976i \(-0.739996\pi\)
−0.684539 + 0.728976i \(0.739996\pi\)
\(20\) − 79.4269i − 0.888020i
\(21\) −146.578 −1.52314
\(22\) − 21.4060i − 0.207444i
\(23\) − 144.513i − 1.31013i −0.755573 0.655065i \(-0.772641\pi\)
0.755573 0.655065i \(-0.227359\pi\)
\(24\) − 106.412i − 0.905055i
\(25\) −83.7182 −0.669745
\(26\) 72.3938 0.546061
\(27\) 145.335i 1.03591i
\(28\) − 161.692i − 1.09132i
\(29\) − 1.26688i − 0.00811217i −0.999992 0.00405608i \(-0.998709\pi\)
0.999992 0.00405608i \(-0.00129109\pi\)
\(30\) −113.896 −0.693150
\(31\) − 30.0858i − 0.174309i −0.996195 0.0871544i \(-0.972223\pi\)
0.996195 0.0871544i \(-0.0277773\pi\)
\(32\) 186.958 1.03281
\(33\) 67.4435 0.355770
\(34\) 0 0
\(35\) −424.894 −2.05201
\(36\) −11.8809 −0.0550043
\(37\) 398.512i 1.77067i 0.464950 + 0.885337i \(0.346072\pi\)
−0.464950 + 0.885337i \(0.653928\pi\)
\(38\) −179.358 −0.765677
\(39\) 228.090i 0.936502i
\(40\) − 308.464i − 1.21931i
\(41\) − 184.595i − 0.703143i −0.936161 0.351571i \(-0.885647\pi\)
0.936161 0.351571i \(-0.114353\pi\)
\(42\) −231.862 −0.851836
\(43\) −135.605 −0.480921 −0.240460 0.970659i \(-0.577298\pi\)
−0.240460 + 0.970659i \(0.577298\pi\)
\(44\) 74.3979i 0.254907i
\(45\) 31.2207i 0.103425i
\(46\) − 228.596i − 0.732709i
\(47\) 247.542 0.768249 0.384124 0.923281i \(-0.374503\pi\)
0.384124 + 0.923281i \(0.374503\pi\)
\(48\) 50.8748i 0.152982i
\(49\) −521.971 −1.52178
\(50\) −132.429 −0.374565
\(51\) 0 0
\(52\) −251.609 −0.670998
\(53\) 635.182 1.64621 0.823103 0.567892i \(-0.192241\pi\)
0.823103 + 0.567892i \(0.192241\pi\)
\(54\) 229.896i 0.579351i
\(55\) 195.503 0.479302
\(56\) − 627.951i − 1.49845i
\(57\) − 565.100i − 1.31315i
\(58\) − 2.00399i − 0.00453685i
\(59\) −625.420 −1.38005 −0.690023 0.723788i \(-0.742400\pi\)
−0.690023 + 0.723788i \(0.742400\pi\)
\(60\) 395.853 0.851741
\(61\) 166.873i 0.350261i 0.984545 + 0.175130i \(0.0560347\pi\)
−0.984545 + 0.175130i \(0.943965\pi\)
\(62\) − 47.5909i − 0.0974847i
\(63\) 63.5570i 0.127102i
\(64\) 214.074 0.418114
\(65\) 661.179i 1.26168i
\(66\) 106.685 0.198970
\(67\) 159.984 0.291719 0.145859 0.989305i \(-0.453405\pi\)
0.145859 + 0.989305i \(0.453405\pi\)
\(68\) 0 0
\(69\) 720.232 1.25661
\(70\) −672.115 −1.14762
\(71\) 19.4559i 0.0325211i 0.999868 + 0.0162605i \(0.00517611\pi\)
−0.999868 + 0.0162605i \(0.994824\pi\)
\(72\) −46.1411 −0.0755247
\(73\) 336.039i 0.538772i 0.963032 + 0.269386i \(0.0868207\pi\)
−0.963032 + 0.269386i \(0.913179\pi\)
\(74\) 630.382i 0.990276i
\(75\) − 417.241i − 0.642384i
\(76\) 623.370 0.940862
\(77\) 397.992 0.589031
\(78\) 360.801i 0.523753i
\(79\) − 1072.15i − 1.52691i −0.645859 0.763457i \(-0.723500\pi\)
0.645859 0.763457i \(-0.276500\pi\)
\(80\) 147.474i 0.206101i
\(81\) −665.982 −0.913555
\(82\) − 291.999i − 0.393243i
\(83\) −47.1944 −0.0624128 −0.0312064 0.999513i \(-0.509935\pi\)
−0.0312064 + 0.999513i \(0.509935\pi\)
\(84\) 805.852 1.04673
\(85\) 0 0
\(86\) −214.506 −0.268962
\(87\) 6.31394 0.00778075
\(88\) 288.934i 0.350005i
\(89\) −626.312 −0.745944 −0.372972 0.927843i \(-0.621661\pi\)
−0.372972 + 0.927843i \(0.621661\pi\)
\(90\) 49.3862i 0.0578418i
\(91\) 1345.98i 1.55052i
\(92\) 794.499i 0.900351i
\(93\) 149.944 0.167188
\(94\) 391.572 0.429655
\(95\) − 1638.09i − 1.76910i
\(96\) 931.774i 0.990612i
\(97\) 692.045i 0.724398i 0.932101 + 0.362199i \(0.117974\pi\)
−0.932101 + 0.362199i \(0.882026\pi\)
\(98\) −825.674 −0.851079
\(99\) − 29.2439i − 0.0296882i
\(100\) 460.264 0.460264
\(101\) −551.668 −0.543496 −0.271748 0.962369i \(-0.587602\pi\)
−0.271748 + 0.962369i \(0.587602\pi\)
\(102\) 0 0
\(103\) −175.990 −0.168358 −0.0841789 0.996451i \(-0.526827\pi\)
−0.0841789 + 0.996451i \(0.526827\pi\)
\(104\) −977.156 −0.921327
\(105\) − 2117.62i − 1.96817i
\(106\) 1004.76 0.920665
\(107\) 148.521i 0.134188i 0.997747 + 0.0670938i \(0.0213727\pi\)
−0.997747 + 0.0670938i \(0.978627\pi\)
\(108\) − 799.019i − 0.711904i
\(109\) 703.114i 0.617854i 0.951086 + 0.308927i \(0.0999699\pi\)
−0.951086 + 0.308927i \(0.900030\pi\)
\(110\) 309.254 0.268057
\(111\) −1986.13 −1.69834
\(112\) 300.218i 0.253285i
\(113\) 1987.05i 1.65421i 0.562048 + 0.827104i \(0.310014\pi\)
−0.562048 + 0.827104i \(0.689986\pi\)
\(114\) − 893.898i − 0.734396i
\(115\) 2087.79 1.69293
\(116\) 6.96500i 0.00557487i
\(117\) 98.9012 0.0781489
\(118\) −989.314 −0.771811
\(119\) 0 0
\(120\) 1537.35 1.16950
\(121\) 1147.88 0.862416
\(122\) 263.966i 0.195888i
\(123\) 919.996 0.674417
\(124\) 165.405i 0.119789i
\(125\) 596.402i 0.426750i
\(126\) 100.537i 0.0710837i
\(127\) 1561.88 1.09130 0.545649 0.838014i \(-0.316283\pi\)
0.545649 + 0.838014i \(0.316283\pi\)
\(128\) −1157.03 −0.798970
\(129\) − 675.838i − 0.461273i
\(130\) 1045.88i 0.705613i
\(131\) 1317.70i 0.878839i 0.898282 + 0.439419i \(0.144816\pi\)
−0.898282 + 0.439419i \(0.855184\pi\)
\(132\) −370.790 −0.244493
\(133\) − 3334.72i − 2.17411i
\(134\) 253.069 0.163148
\(135\) −2099.66 −1.33859
\(136\) 0 0
\(137\) 485.214 0.302588 0.151294 0.988489i \(-0.451656\pi\)
0.151294 + 0.988489i \(0.451656\pi\)
\(138\) 1139.29 0.702775
\(139\) − 1016.66i − 0.620376i −0.950675 0.310188i \(-0.899608\pi\)
0.950675 0.310188i \(-0.100392\pi\)
\(140\) 2335.98 1.41019
\(141\) 1233.72i 0.736863i
\(142\) 30.7762i 0.0181879i
\(143\) − 619.316i − 0.362166i
\(144\) 22.0596 0.0127660
\(145\) 18.3026 0.0104824
\(146\) 531.559i 0.301316i
\(147\) − 2601.44i − 1.45961i
\(148\) − 2190.93i − 1.21685i
\(149\) −1322.91 −0.727364 −0.363682 0.931523i \(-0.618481\pi\)
−0.363682 + 0.931523i \(0.618481\pi\)
\(150\) − 660.008i − 0.359263i
\(151\) 1467.32 0.790785 0.395392 0.918512i \(-0.370609\pi\)
0.395392 + 0.918512i \(0.370609\pi\)
\(152\) 2420.94 1.29187
\(153\) 0 0
\(154\) 629.559 0.329424
\(155\) 434.652 0.225239
\(156\) − 1253.99i − 0.643586i
\(157\) −3403.23 −1.72998 −0.864991 0.501788i \(-0.832676\pi\)
−0.864991 + 0.501788i \(0.832676\pi\)
\(158\) − 1695.97i − 0.853949i
\(159\) 3165.66i 1.57895i
\(160\) 2701.00i 1.33458i
\(161\) 4250.17 2.08050
\(162\) −1053.48 −0.510919
\(163\) 378.056i 0.181667i 0.995866 + 0.0908333i \(0.0289530\pi\)
−0.995866 + 0.0908333i \(0.971047\pi\)
\(164\) 1014.86i 0.483216i
\(165\) 974.362i 0.459721i
\(166\) −74.6540 −0.0349053
\(167\) 572.418i 0.265240i 0.991167 + 0.132620i \(0.0423390\pi\)
−0.991167 + 0.132620i \(0.957661\pi\)
\(168\) 3129.63 1.43724
\(169\) −102.512 −0.0466601
\(170\) 0 0
\(171\) −245.031 −0.109579
\(172\) 745.528 0.330500
\(173\) 3321.64i 1.45977i 0.683571 + 0.729884i \(0.260426\pi\)
−0.683571 + 0.729884i \(0.739574\pi\)
\(174\) 9.98764 0.00435150
\(175\) − 2462.18i − 1.06356i
\(176\) − 138.137i − 0.0591616i
\(177\) − 3117.01i − 1.32367i
\(178\) −990.726 −0.417180
\(179\) 2093.76 0.874273 0.437137 0.899395i \(-0.355993\pi\)
0.437137 + 0.899395i \(0.355993\pi\)
\(180\) − 171.645i − 0.0710758i
\(181\) 682.032i 0.280083i 0.990146 + 0.140042i \(0.0447236\pi\)
−0.990146 + 0.140042i \(0.955276\pi\)
\(182\) 2129.13i 0.867152i
\(183\) −831.673 −0.335951
\(184\) 3085.54i 1.23624i
\(185\) −5757.33 −2.28804
\(186\) 237.187 0.0935021
\(187\) 0 0
\(188\) −1360.93 −0.527958
\(189\) −4274.35 −1.64504
\(190\) − 2591.20i − 0.989398i
\(191\) 1921.15 0.727799 0.363900 0.931438i \(-0.381445\pi\)
0.363900 + 0.931438i \(0.381445\pi\)
\(192\) 1066.92i 0.401032i
\(193\) − 69.6893i − 0.0259914i −0.999916 0.0129957i \(-0.995863\pi\)
0.999916 0.0129957i \(-0.00413678\pi\)
\(194\) 1094.70i 0.405130i
\(195\) −3295.23 −1.21014
\(196\) 2869.68 1.04580
\(197\) − 3043.10i − 1.10057i −0.834977 0.550285i \(-0.814519\pi\)
0.834977 0.550285i \(-0.185481\pi\)
\(198\) − 46.2592i − 0.0166035i
\(199\) 1255.72i 0.447315i 0.974668 + 0.223657i \(0.0717997\pi\)
−0.974668 + 0.223657i \(0.928200\pi\)
\(200\) 1787.49 0.631975
\(201\) 797.340i 0.279801i
\(202\) −872.651 −0.303958
\(203\) 37.2593 0.0128822
\(204\) 0 0
\(205\) 2666.85 0.908591
\(206\) −278.389 −0.0941566
\(207\) − 312.297i − 0.104861i
\(208\) 467.170 0.155733
\(209\) 1534.38i 0.507823i
\(210\) − 3349.73i − 1.10073i
\(211\) − 1060.15i − 0.345894i −0.984931 0.172947i \(-0.944671\pi\)
0.984931 0.172947i \(-0.0553289\pi\)
\(212\) −3492.09 −1.13131
\(213\) −96.9658 −0.0311924
\(214\) 234.937i 0.0750464i
\(215\) − 1959.10i − 0.621439i
\(216\) − 3103.09i − 0.977494i
\(217\) 884.835 0.276804
\(218\) 1112.21i 0.345544i
\(219\) −1674.77 −0.516761
\(220\) −1074.83 −0.329387
\(221\) 0 0
\(222\) −3141.74 −0.949819
\(223\) 1398.85 0.420064 0.210032 0.977695i \(-0.432643\pi\)
0.210032 + 0.977695i \(0.432643\pi\)
\(224\) 5498.50i 1.64011i
\(225\) −180.918 −0.0536054
\(226\) 3143.19i 0.925141i
\(227\) − 2436.65i − 0.712451i −0.934400 0.356226i \(-0.884063\pi\)
0.934400 0.356226i \(-0.115937\pi\)
\(228\) 3106.80i 0.902424i
\(229\) −5027.28 −1.45071 −0.725354 0.688376i \(-0.758324\pi\)
−0.725354 + 0.688376i \(0.758324\pi\)
\(230\) 3302.54 0.946797
\(231\) 1983.54i 0.564967i
\(232\) 27.0495i 0.00765467i
\(233\) − 891.120i − 0.250555i −0.992122 0.125277i \(-0.960018\pi\)
0.992122 0.125277i \(-0.0399821\pi\)
\(234\) 156.446 0.0437059
\(235\) 3576.26i 0.992721i
\(236\) 3438.42 0.948399
\(237\) 5343.45 1.46453
\(238\) 0 0
\(239\) −161.975 −0.0438382 −0.0219191 0.999760i \(-0.506978\pi\)
−0.0219191 + 0.999760i \(0.506978\pi\)
\(240\) −734.992 −0.197681
\(241\) 3467.39i 0.926782i 0.886154 + 0.463391i \(0.153367\pi\)
−0.886154 + 0.463391i \(0.846633\pi\)
\(242\) 1815.75 0.482319
\(243\) 604.873i 0.159682i
\(244\) − 917.432i − 0.240707i
\(245\) − 7540.96i − 1.96642i
\(246\) 1455.29 0.377177
\(247\) −5189.17 −1.33676
\(248\) 642.372i 0.164478i
\(249\) − 235.211i − 0.0598630i
\(250\) 943.412i 0.238666i
\(251\) −4328.65 −1.08853 −0.544267 0.838912i \(-0.683192\pi\)
−0.544267 + 0.838912i \(0.683192\pi\)
\(252\) − 349.423i − 0.0873474i
\(253\) −1955.60 −0.485958
\(254\) 2470.65 0.610324
\(255\) 0 0
\(256\) −3542.83 −0.864950
\(257\) 4567.47 1.10860 0.554301 0.832316i \(-0.312986\pi\)
0.554301 + 0.832316i \(0.312986\pi\)
\(258\) − 1069.07i − 0.257974i
\(259\) −11720.4 −2.81185
\(260\) − 3635.02i − 0.867055i
\(261\) − 2.73777i 0 0.000649285i
\(262\) 2084.39i 0.491504i
\(263\) −4711.02 −1.10454 −0.552270 0.833665i \(-0.686238\pi\)
−0.552270 + 0.833665i \(0.686238\pi\)
\(264\) −1440.01 −0.335706
\(265\) 9176.52i 2.12721i
\(266\) − 5274.99i − 1.21590i
\(267\) − 3121.46i − 0.715469i
\(268\) −879.558 −0.200476
\(269\) − 3659.09i − 0.829362i −0.909967 0.414681i \(-0.863893\pi\)
0.909967 0.414681i \(-0.136107\pi\)
\(270\) −3321.33 −0.748629
\(271\) −7702.43 −1.72653 −0.863264 0.504753i \(-0.831584\pi\)
−0.863264 + 0.504753i \(0.831584\pi\)
\(272\) 0 0
\(273\) −6708.21 −1.48718
\(274\) 767.530 0.169227
\(275\) 1132.90i 0.248424i
\(276\) −3959.68 −0.863568
\(277\) − 3252.61i − 0.705526i −0.935713 0.352763i \(-0.885242\pi\)
0.935713 0.352763i \(-0.114758\pi\)
\(278\) − 1608.20i − 0.346954i
\(279\) − 65.0166i − 0.0139514i
\(280\) 9072.06 1.93628
\(281\) 6839.31 1.45195 0.725977 0.687719i \(-0.241388\pi\)
0.725977 + 0.687719i \(0.241388\pi\)
\(282\) 1951.54i 0.412101i
\(283\) − 3131.30i − 0.657726i −0.944378 0.328863i \(-0.893335\pi\)
0.944378 0.328863i \(-0.106665\pi\)
\(284\) − 106.965i − 0.0223492i
\(285\) 8164.05 1.69683
\(286\) − 979.659i − 0.202547i
\(287\) 5429.00 1.11660
\(288\) 404.023 0.0826642
\(289\) 0 0
\(290\) 28.9519 0.00586245
\(291\) −3449.06 −0.694803
\(292\) − 1847.47i − 0.370256i
\(293\) 5396.03 1.07590 0.537951 0.842976i \(-0.319198\pi\)
0.537951 + 0.842976i \(0.319198\pi\)
\(294\) − 4115.05i − 0.816309i
\(295\) − 9035.49i − 1.78328i
\(296\) − 8508.76i − 1.67082i
\(297\) 1966.72 0.384245
\(298\) −2092.64 −0.406789
\(299\) − 6613.70i − 1.27920i
\(300\) 2293.90i 0.441461i
\(301\) − 3988.20i − 0.763708i
\(302\) 2321.06 0.442258
\(303\) − 2749.44i − 0.521292i
\(304\) −1157.43 −0.218365
\(305\) −2410.83 −0.452602
\(306\) 0 0
\(307\) 2156.62 0.400927 0.200463 0.979701i \(-0.435755\pi\)
0.200463 + 0.979701i \(0.435755\pi\)
\(308\) −2188.07 −0.404795
\(309\) − 877.113i − 0.161480i
\(310\) 687.550 0.125968
\(311\) 2729.42i 0.497656i 0.968548 + 0.248828i \(0.0800454\pi\)
−0.968548 + 0.248828i \(0.919955\pi\)
\(312\) − 4870.02i − 0.883687i
\(313\) 5014.77i 0.905595i 0.891613 + 0.452798i \(0.149574\pi\)
−0.891613 + 0.452798i \(0.850426\pi\)
\(314\) −5383.36 −0.967518
\(315\) −918.213 −0.164240
\(316\) 5894.44i 1.04933i
\(317\) 1164.53i 0.206329i 0.994664 + 0.103165i \(0.0328968\pi\)
−0.994664 + 0.103165i \(0.967103\pi\)
\(318\) 5007.57i 0.883052i
\(319\) −17.1438 −0.00300899
\(320\) 3092.75i 0.540281i
\(321\) −740.210 −0.128706
\(322\) 6723.09 1.16355
\(323\) 0 0
\(324\) 3661.42 0.627816
\(325\) −3831.41 −0.653934
\(326\) 598.024i 0.101600i
\(327\) −3504.23 −0.592612
\(328\) 3941.34i 0.663488i
\(329\) 7280.30i 1.21999i
\(330\) 1541.28i 0.257106i
\(331\) −2144.03 −0.356032 −0.178016 0.984028i \(-0.556968\pi\)
−0.178016 + 0.984028i \(0.556968\pi\)
\(332\) 259.465 0.0428915
\(333\) 861.200i 0.141722i
\(334\) 905.474i 0.148339i
\(335\) 2311.30i 0.376955i
\(336\) −1496.25 −0.242937
\(337\) − 1955.09i − 0.316025i −0.987437 0.158012i \(-0.949491\pi\)
0.987437 0.158012i \(-0.0505086\pi\)
\(338\) −162.158 −0.0260954
\(339\) −9903.18 −1.58663
\(340\) 0 0
\(341\) −407.132 −0.0646552
\(342\) −387.600 −0.0612836
\(343\) − 5263.61i − 0.828595i
\(344\) 2895.35 0.453799
\(345\) 10405.3i 1.62377i
\(346\) 5254.31i 0.816397i
\(347\) 10906.7i 1.68732i 0.536875 + 0.843662i \(0.319605\pi\)
−0.536875 + 0.843662i \(0.680395\pi\)
\(348\) −34.7127 −0.00534711
\(349\) −9245.27 −1.41802 −0.709009 0.705200i \(-0.750857\pi\)
−0.709009 + 0.705200i \(0.750857\pi\)
\(350\) − 3894.78i − 0.594814i
\(351\) 6651.33i 1.01146i
\(352\) − 2529.98i − 0.383092i
\(353\) −4026.13 −0.607051 −0.303526 0.952823i \(-0.598164\pi\)
−0.303526 + 0.952823i \(0.598164\pi\)
\(354\) − 4930.61i − 0.740280i
\(355\) −281.081 −0.0420233
\(356\) 3443.33 0.512630
\(357\) 0 0
\(358\) 3311.99 0.488950
\(359\) 10382.3 1.52634 0.763171 0.646197i \(-0.223641\pi\)
0.763171 + 0.646197i \(0.223641\pi\)
\(360\) − 666.604i − 0.0975919i
\(361\) 5997.34 0.874375
\(362\) 1078.87i 0.156641i
\(363\) 5720.86i 0.827183i
\(364\) − 7399.92i − 1.06555i
\(365\) −4854.78 −0.696194
\(366\) −1315.57 −0.187886
\(367\) − 12159.2i − 1.72945i −0.502249 0.864723i \(-0.667494\pi\)
0.502249 0.864723i \(-0.332506\pi\)
\(368\) − 1475.17i − 0.208963i
\(369\) − 398.916i − 0.0562785i
\(370\) −9107.18 −1.27962
\(371\) 18680.9i 2.61419i
\(372\) −824.358 −0.114895
\(373\) 11494.5 1.59561 0.797807 0.602913i \(-0.205993\pi\)
0.797807 + 0.602913i \(0.205993\pi\)
\(374\) 0 0
\(375\) −2972.39 −0.409316
\(376\) −5285.35 −0.724923
\(377\) − 57.9793i − 0.00792065i
\(378\) −6761.34 −0.920016
\(379\) − 1085.96i − 0.147182i −0.997289 0.0735908i \(-0.976554\pi\)
0.997289 0.0735908i \(-0.0234459\pi\)
\(380\) 9005.88i 1.21577i
\(381\) 7784.23i 1.04671i
\(382\) 3038.95 0.407032
\(383\) 8246.14 1.10015 0.550076 0.835115i \(-0.314599\pi\)
0.550076 + 0.835115i \(0.314599\pi\)
\(384\) − 5766.50i − 0.766329i
\(385\) 5749.82i 0.761138i
\(386\) − 110.237i − 0.0145361i
\(387\) −293.048 −0.0384922
\(388\) − 3804.72i − 0.497823i
\(389\) 3801.18 0.495443 0.247722 0.968831i \(-0.420318\pi\)
0.247722 + 0.968831i \(0.420318\pi\)
\(390\) −5212.53 −0.676786
\(391\) 0 0
\(392\) 11144.8 1.43596
\(393\) −6567.24 −0.842935
\(394\) − 4813.70i − 0.615510i
\(395\) 15489.4 1.97306
\(396\) 160.777i 0.0204024i
\(397\) 8372.90i 1.05850i 0.848466 + 0.529249i \(0.177526\pi\)
−0.848466 + 0.529249i \(0.822474\pi\)
\(398\) 1986.35i 0.250167i
\(399\) 16619.8 2.08529
\(400\) −854.586 −0.106823
\(401\) 2173.63i 0.270688i 0.990799 + 0.135344i \(0.0432139\pi\)
−0.990799 + 0.135344i \(0.956786\pi\)
\(402\) 1261.26i 0.156483i
\(403\) − 1376.89i − 0.170194i
\(404\) 3032.95 0.373503
\(405\) − 9621.49i − 1.18048i
\(406\) 58.9382 0.00720457
\(407\) 5392.80 0.656785
\(408\) 0 0
\(409\) 4538.13 0.548646 0.274323 0.961638i \(-0.411546\pi\)
0.274323 + 0.961638i \(0.411546\pi\)
\(410\) 4218.54 0.508143
\(411\) 2418.24i 0.290227i
\(412\) 967.557 0.115699
\(413\) − 18393.8i − 2.19153i
\(414\) − 494.005i − 0.0586449i
\(415\) − 681.822i − 0.0806490i
\(416\) 8556.23 1.00842
\(417\) 5066.91 0.595031
\(418\) 2427.14i 0.284008i
\(419\) − 4239.67i − 0.494323i −0.968974 0.247161i \(-0.920502\pi\)
0.968974 0.247161i \(-0.0794978\pi\)
\(420\) 11642.2i 1.35257i
\(421\) 14001.6 1.62090 0.810448 0.585811i \(-0.199224\pi\)
0.810448 + 0.585811i \(0.199224\pi\)
\(422\) − 1676.98i − 0.193446i
\(423\) 534.948 0.0614895
\(424\) −13562.0 −1.55337
\(425\) 0 0
\(426\) −153.384 −0.0174448
\(427\) −4907.80 −0.556218
\(428\) − 816.537i − 0.0922168i
\(429\) 3086.59 0.347371
\(430\) − 3098.98i − 0.347549i
\(431\) − 6401.94i − 0.715477i −0.933822 0.357738i \(-0.883548\pi\)
0.933822 0.357738i \(-0.116452\pi\)
\(432\) 1483.56i 0.165227i
\(433\) −13.2865 −0.00147462 −0.000737310 1.00000i \(-0.500235\pi\)
−0.000737310 1.00000i \(0.500235\pi\)
\(434\) 1399.67 0.154807
\(435\) 91.2180i 0.0100542i
\(436\) − 3865.57i − 0.424603i
\(437\) 16385.7i 1.79367i
\(438\) −2649.22 −0.289006
\(439\) − 14294.8i − 1.55410i −0.629437 0.777052i \(-0.716714\pi\)
0.629437 0.777052i \(-0.283286\pi\)
\(440\) −4174.25 −0.452272
\(441\) −1128.00 −0.121801
\(442\) 0 0
\(443\) 16530.3 1.77286 0.886430 0.462862i \(-0.153177\pi\)
0.886430 + 0.462862i \(0.153177\pi\)
\(444\) 10919.3 1.16713
\(445\) − 9048.39i − 0.963898i
\(446\) 2212.76 0.234927
\(447\) − 6593.22i − 0.697648i
\(448\) 6296.01i 0.663970i
\(449\) − 16571.9i − 1.74182i −0.491443 0.870910i \(-0.663530\pi\)
0.491443 0.870910i \(-0.336470\pi\)
\(450\) −286.184 −0.0299796
\(451\) −2498.00 −0.260812
\(452\) − 10924.4i − 1.13681i
\(453\) 7312.91i 0.758478i
\(454\) − 3854.40i − 0.398449i
\(455\) −19445.5 −2.00356
\(456\) 12065.6i 1.23909i
\(457\) 14718.1 1.50653 0.753263 0.657719i \(-0.228479\pi\)
0.753263 + 0.657719i \(0.228479\pi\)
\(458\) −7952.35 −0.811329
\(459\) 0 0
\(460\) −11478.2 −1.16342
\(461\) 15330.5 1.54884 0.774419 0.632672i \(-0.218042\pi\)
0.774419 + 0.632672i \(0.218042\pi\)
\(462\) 3137.64i 0.315966i
\(463\) 11158.0 1.11999 0.559993 0.828497i \(-0.310804\pi\)
0.559993 + 0.828497i \(0.310804\pi\)
\(464\) − 12.9321i − 0.00129388i
\(465\) 2166.25i 0.216037i
\(466\) − 1409.61i − 0.140126i
\(467\) 14748.4 1.46140 0.730700 0.682699i \(-0.239194\pi\)
0.730700 + 0.682699i \(0.239194\pi\)
\(468\) −543.737 −0.0537057
\(469\) 4705.19i 0.463253i
\(470\) 5657.07i 0.555194i
\(471\) − 16961.2i − 1.65931i
\(472\) 13353.5 1.30222
\(473\) 1835.06i 0.178385i
\(474\) 8452.48 0.819062
\(475\) 9492.45 0.916934
\(476\) 0 0
\(477\) 1372.65 0.131760
\(478\) −256.219 −0.0245171
\(479\) 14914.1i 1.42264i 0.702868 + 0.711320i \(0.251902\pi\)
−0.702868 + 0.711320i \(0.748098\pi\)
\(480\) −13461.4 −1.28006
\(481\) 18238.1i 1.72887i
\(482\) 5484.86i 0.518317i
\(483\) 21182.3i 1.99550i
\(484\) −6310.77 −0.592672
\(485\) −9998.04 −0.936057
\(486\) 956.813i 0.0893043i
\(487\) − 3034.34i − 0.282339i −0.989985 0.141169i \(-0.954914\pi\)
0.989985 0.141169i \(-0.0450862\pi\)
\(488\) − 3562.96i − 0.330507i
\(489\) −1884.18 −0.174245
\(490\) − 11928.6i − 1.09975i
\(491\) −10032.0 −0.922073 −0.461036 0.887381i \(-0.652522\pi\)
−0.461036 + 0.887381i \(0.652522\pi\)
\(492\) −5057.94 −0.463475
\(493\) 0 0
\(494\) −8208.43 −0.747601
\(495\) 422.490 0.0383626
\(496\) − 307.112i − 0.0278019i
\(497\) −572.207 −0.0516438
\(498\) − 372.066i − 0.0334793i
\(499\) − 13921.2i − 1.24890i −0.781066 0.624449i \(-0.785324\pi\)
0.781066 0.624449i \(-0.214676\pi\)
\(500\) − 3278.89i − 0.293273i
\(501\) −2852.86 −0.254404
\(502\) −6847.23 −0.608779
\(503\) 10270.2i 0.910387i 0.890392 + 0.455194i \(0.150430\pi\)
−0.890392 + 0.455194i \(0.849570\pi\)
\(504\) − 1357.03i − 0.119934i
\(505\) − 7970.00i − 0.702298i
\(506\) −3093.44 −0.271779
\(507\) − 510.908i − 0.0447539i
\(508\) −8586.90 −0.749965
\(509\) 18020.5 1.56924 0.784621 0.619975i \(-0.212857\pi\)
0.784621 + 0.619975i \(0.212857\pi\)
\(510\) 0 0
\(511\) −9883.03 −0.855576
\(512\) 3652.06 0.315234
\(513\) − 16478.9i − 1.41825i
\(514\) 7225.00 0.620002
\(515\) − 2542.55i − 0.217550i
\(516\) 3715.61i 0.316998i
\(517\) − 3349.82i − 0.284962i
\(518\) −18539.8 −1.57257
\(519\) −16554.6 −1.40013
\(520\) − 14117.1i − 1.19053i
\(521\) 18326.3i 1.54106i 0.637405 + 0.770529i \(0.280008\pi\)
−0.637405 + 0.770529i \(0.719992\pi\)
\(522\) − 4.33071i 0 0.000363122i
\(523\) −15369.6 −1.28502 −0.642512 0.766276i \(-0.722108\pi\)
−0.642512 + 0.766276i \(0.722108\pi\)
\(524\) − 7244.42i − 0.603958i
\(525\) 12271.2 1.02011
\(526\) −7452.09 −0.617731
\(527\) 0 0
\(528\) 688.455 0.0567447
\(529\) −8716.90 −0.716438
\(530\) 14515.8i 1.18967i
\(531\) −1351.56 −0.110457
\(532\) 18333.6i 1.49410i
\(533\) − 8448.08i − 0.686542i
\(534\) − 4937.65i − 0.400137i
\(535\) −2145.70 −0.173395
\(536\) −3415.87 −0.275267
\(537\) 10435.0i 0.838556i
\(538\) − 5788.09i − 0.463833i
\(539\) 7063.50i 0.564464i
\(540\) 11543.5 0.919913
\(541\) 18606.9i 1.47870i 0.673323 + 0.739348i \(0.264866\pi\)
−0.673323 + 0.739348i \(0.735134\pi\)
\(542\) −12184.0 −0.965586
\(543\) −3399.16 −0.268641
\(544\) 0 0
\(545\) −10157.9 −0.798382
\(546\) −10611.3 −0.831725
\(547\) − 3946.20i − 0.308459i −0.988035 0.154230i \(-0.950710\pi\)
0.988035 0.154230i \(-0.0492896\pi\)
\(548\) −2667.60 −0.207946
\(549\) 360.619i 0.0280343i
\(550\) 1792.07i 0.138935i
\(551\) 143.646i 0.0111062i
\(552\) −15377.9 −1.18574
\(553\) 31532.3 2.42476
\(554\) − 5145.11i − 0.394576i
\(555\) − 28693.8i − 2.19457i
\(556\) 5589.39i 0.426336i
\(557\) 14883.1 1.13217 0.566084 0.824347i \(-0.308458\pi\)
0.566084 + 0.824347i \(0.308458\pi\)
\(558\) − 102.846i − 0.00780253i
\(559\) −6206.05 −0.469567
\(560\) −4337.27 −0.327291
\(561\) 0 0
\(562\) 10818.7 0.812027
\(563\) −25751.7 −1.92771 −0.963857 0.266420i \(-0.914159\pi\)
−0.963857 + 0.266420i \(0.914159\pi\)
\(564\) − 6782.71i − 0.506389i
\(565\) −28707.0 −2.13755
\(566\) − 4953.22i − 0.367843i
\(567\) − 19586.8i − 1.45074i
\(568\) − 415.410i − 0.0306870i
\(569\) 2194.88 0.161712 0.0808561 0.996726i \(-0.474235\pi\)
0.0808561 + 0.996726i \(0.474235\pi\)
\(570\) 12914.2 0.948977
\(571\) 5227.87i 0.383151i 0.981478 + 0.191576i \(0.0613598\pi\)
−0.981478 + 0.191576i \(0.938640\pi\)
\(572\) 3404.86i 0.248889i
\(573\) 9574.77i 0.698066i
\(574\) 8587.81 0.624474
\(575\) 12098.3i 0.877453i
\(576\) 462.623 0.0334652
\(577\) −6527.86 −0.470985 −0.235492 0.971876i \(-0.575670\pi\)
−0.235492 + 0.971876i \(0.575670\pi\)
\(578\) 0 0
\(579\) 347.323 0.0249296
\(580\) −100.624 −0.00720376
\(581\) − 1388.01i − 0.0991122i
\(582\) −5455.87 −0.388579
\(583\) − 8595.50i − 0.610617i
\(584\) − 7174.87i − 0.508387i
\(585\) 1428.83i 0.100983i
\(586\) 8535.65 0.601714
\(587\) 6648.24 0.467465 0.233733 0.972301i \(-0.424906\pi\)
0.233733 + 0.972301i \(0.424906\pi\)
\(588\) 14302.1i 1.00308i
\(589\) 3411.30i 0.238642i
\(590\) − 14292.7i − 0.997324i
\(591\) 15166.4 1.05561
\(592\) 4067.96i 0.282419i
\(593\) 1450.60 0.100453 0.0502267 0.998738i \(-0.484006\pi\)
0.0502267 + 0.998738i \(0.484006\pi\)
\(594\) 3111.04 0.214895
\(595\) 0 0
\(596\) 7273.09 0.499861
\(597\) −6258.35 −0.429040
\(598\) − 10461.8i − 0.715411i
\(599\) −10070.9 −0.686957 −0.343479 0.939161i \(-0.611605\pi\)
−0.343479 + 0.939161i \(0.611605\pi\)
\(600\) 8908.64i 0.606156i
\(601\) − 9209.45i − 0.625060i −0.949908 0.312530i \(-0.898823\pi\)
0.949908 0.312530i \(-0.101177\pi\)
\(602\) − 6308.69i − 0.427115i
\(603\) 345.732 0.0233487
\(604\) −8066.99 −0.543445
\(605\) 16583.5i 1.11440i
\(606\) − 4349.18i − 0.291540i
\(607\) − 5813.89i − 0.388762i −0.980926 0.194381i \(-0.937730\pi\)
0.980926 0.194381i \(-0.0622698\pi\)
\(608\) −21198.4 −1.41399
\(609\) 185.695i 0.0123559i
\(610\) −3813.54 −0.253124
\(611\) 11328.9 0.750111
\(612\) 0 0
\(613\) −23778.5 −1.56673 −0.783365 0.621562i \(-0.786498\pi\)
−0.783365 + 0.621562i \(0.786498\pi\)
\(614\) 3411.42 0.224224
\(615\) 13291.3i 0.871472i
\(616\) −8497.65 −0.555812
\(617\) − 19716.9i − 1.28650i −0.765655 0.643251i \(-0.777585\pi\)
0.765655 0.643251i \(-0.222415\pi\)
\(618\) − 1387.45i − 0.0903099i
\(619\) 6184.28i 0.401562i 0.979636 + 0.200781i \(0.0643480\pi\)
−0.979636 + 0.200781i \(0.935652\pi\)
\(620\) −2389.62 −0.154790
\(621\) 21002.7 1.35718
\(622\) 4317.50i 0.278322i
\(623\) − 18420.1i − 1.18457i
\(624\) 2328.31i 0.149370i
\(625\) −19081.0 −1.22119
\(626\) 7932.56i 0.506468i
\(627\) −7647.13 −0.487077
\(628\) 18710.2 1.18888
\(629\) 0 0
\(630\) −1452.47 −0.0918534
\(631\) −14216.8 −0.896926 −0.448463 0.893801i \(-0.648028\pi\)
−0.448463 + 0.893801i \(0.648028\pi\)
\(632\) 22891.8i 1.44080i
\(633\) 5283.64 0.331763
\(634\) 1842.09i 0.115393i
\(635\) 22564.7i 1.41016i
\(636\) − 17404.1i − 1.08509i
\(637\) −23888.3 −1.48585
\(638\) −27.1187 −0.00168282
\(639\) 42.0450i 0.00260294i
\(640\) − 16715.7i − 1.03242i
\(641\) − 14249.8i − 0.878058i −0.898473 0.439029i \(-0.855323\pi\)
0.898473 0.439029i \(-0.144677\pi\)
\(642\) −1170.89 −0.0719805
\(643\) − 1767.83i − 0.108424i −0.998529 0.0542118i \(-0.982735\pi\)
0.998529 0.0542118i \(-0.0172646\pi\)
\(644\) −23366.5 −1.42977
\(645\) 9763.89 0.596051
\(646\) 0 0
\(647\) −14274.5 −0.867369 −0.433685 0.901065i \(-0.642787\pi\)
−0.433685 + 0.901065i \(0.642787\pi\)
\(648\) 14219.6 0.862035
\(649\) 8463.40i 0.511891i
\(650\) −6060.68 −0.365722
\(651\) 4409.90i 0.265496i
\(652\) − 2078.47i − 0.124845i
\(653\) 14516.1i 0.869924i 0.900449 + 0.434962i \(0.143238\pi\)
−0.900449 + 0.434962i \(0.856762\pi\)
\(654\) −5543.13 −0.331427
\(655\) −19036.9 −1.13562
\(656\) − 1884.32i − 0.112150i
\(657\) 726.193i 0.0431225i
\(658\) 11516.3i 0.682296i
\(659\) 23248.8 1.37427 0.687135 0.726530i \(-0.258868\pi\)
0.687135 + 0.726530i \(0.258868\pi\)
\(660\) − 5356.83i − 0.315931i
\(661\) 28695.7 1.68855 0.844277 0.535907i \(-0.180030\pi\)
0.844277 + 0.535907i \(0.180030\pi\)
\(662\) −3391.51 −0.199116
\(663\) 0 0
\(664\) 1007.66 0.0588930
\(665\) 48177.0 2.80936
\(666\) 1362.28i 0.0792602i
\(667\) −183.079 −0.0106280
\(668\) − 3147.03i − 0.182279i
\(669\) 6971.71i 0.402903i
\(670\) 3656.11i 0.210818i
\(671\) 2258.18 0.129920
\(672\) −27403.8 −1.57310
\(673\) − 6852.55i − 0.392491i −0.980555 0.196246i \(-0.937125\pi\)
0.980555 0.196246i \(-0.0628750\pi\)
\(674\) − 3092.63i − 0.176742i
\(675\) − 12167.2i − 0.693799i
\(676\) 563.590 0.0320659
\(677\) 2123.19i 0.120533i 0.998182 + 0.0602665i \(0.0191951\pi\)
−0.998182 + 0.0602665i \(0.980805\pi\)
\(678\) −15665.2 −0.887345
\(679\) −20353.3 −1.15035
\(680\) 0 0
\(681\) 12144.0 0.683345
\(682\) −644.017 −0.0361594
\(683\) 4035.12i 0.226061i 0.993592 + 0.113030i \(0.0360558\pi\)
−0.993592 + 0.113030i \(0.963944\pi\)
\(684\) 1347.13 0.0753052
\(685\) 7009.92i 0.391001i
\(686\) − 8326.18i − 0.463404i
\(687\) − 25055.3i − 1.39144i
\(688\) −1384.24 −0.0767060
\(689\) 29069.5 1.60734
\(690\) 16459.4i 0.908116i
\(691\) 20015.0i 1.10189i 0.834540 + 0.550947i \(0.185733\pi\)
−0.834540 + 0.550947i \(0.814267\pi\)
\(692\) − 18261.7i − 1.00319i
\(693\) 860.076 0.0471451
\(694\) 17252.6i 0.943661i
\(695\) 14687.8 0.801641
\(696\) −134.811 −0.00734195
\(697\) 0 0
\(698\) −14624.5 −0.793047
\(699\) 4441.23 0.240319
\(700\) 13536.6i 0.730905i
\(701\) 19025.4 1.02508 0.512539 0.858664i \(-0.328705\pi\)
0.512539 + 0.858664i \(0.328705\pi\)
\(702\) 10521.3i 0.565673i
\(703\) − 45185.6i − 2.42419i
\(704\) − 2896.93i − 0.155088i
\(705\) −17823.6 −0.952164
\(706\) −6368.69 −0.339502
\(707\) − 16224.8i − 0.863077i
\(708\) 17136.6i 0.909653i
\(709\) 11992.4i 0.635237i 0.948219 + 0.317619i \(0.102883\pi\)
−0.948219 + 0.317619i \(0.897117\pi\)
\(710\) −444.626 −0.0235021
\(711\) − 2316.96i − 0.122212i
\(712\) 13372.6 0.703876
\(713\) −4347.78 −0.228367
\(714\) 0 0
\(715\) 8947.31 0.467987
\(716\) −11511.0 −0.600821
\(717\) − 807.265i − 0.0420472i
\(718\) 16423.1 0.853629
\(719\) 12005.7i 0.622721i 0.950292 + 0.311361i \(0.100785\pi\)
−0.950292 + 0.311361i \(0.899215\pi\)
\(720\) 318.697i 0.0164960i
\(721\) − 5175.95i − 0.267354i
\(722\) 9486.83 0.489007
\(723\) −17281.0 −0.888919
\(724\) − 3749.66i − 0.192479i
\(725\) 106.060i 0.00543309i
\(726\) 9049.49i 0.462614i
\(727\) −22403.9 −1.14294 −0.571468 0.820624i \(-0.693626\pi\)
−0.571468 + 0.820624i \(0.693626\pi\)
\(728\) − 28738.5i − 1.46308i
\(729\) −20996.1 −1.06671
\(730\) −7679.48 −0.389357
\(731\) 0 0
\(732\) 4572.36 0.230873
\(733\) 17400.5 0.876810 0.438405 0.898777i \(-0.355543\pi\)
0.438405 + 0.898777i \(0.355543\pi\)
\(734\) − 19233.9i − 0.967218i
\(735\) 37583.2 1.88609
\(736\) − 27017.8i − 1.35311i
\(737\) − 2164.96i − 0.108205i
\(738\) − 631.022i − 0.0314746i
\(739\) 7691.26 0.382852 0.191426 0.981507i \(-0.438689\pi\)
0.191426 + 0.981507i \(0.438689\pi\)
\(740\) 31652.6 1.57239
\(741\) − 25862.1i − 1.28214i
\(742\) 29550.3i 1.46203i
\(743\) 33377.5i 1.64805i 0.566551 + 0.824027i \(0.308277\pi\)
−0.566551 + 0.824027i \(0.691723\pi\)
\(744\) −3201.50 −0.157759
\(745\) − 19112.2i − 0.939890i
\(746\) 18182.5 0.892371
\(747\) −101.989 −0.00499543
\(748\) 0 0
\(749\) −4368.06 −0.213092
\(750\) −4701.84 −0.228916
\(751\) 30285.6i 1.47155i 0.677224 + 0.735777i \(0.263183\pi\)
−0.677224 + 0.735777i \(0.736817\pi\)
\(752\) 2526.88 0.122534
\(753\) − 21573.4i − 1.04406i
\(754\) − 91.7139i − 0.00442974i
\(755\) 21198.4i 1.02184i
\(756\) 23499.5 1.13051
\(757\) 13809.3 0.663023 0.331511 0.943451i \(-0.392441\pi\)
0.331511 + 0.943451i \(0.392441\pi\)
\(758\) − 1717.81i − 0.0823135i
\(759\) − 9746.44i − 0.466104i
\(760\) 34975.5i 1.66933i
\(761\) 33269.2 1.58477 0.792383 0.610023i \(-0.208840\pi\)
0.792383 + 0.610023i \(0.208840\pi\)
\(762\) 12313.4i 0.585390i
\(763\) −20678.8 −0.981159
\(764\) −10562.1 −0.500160
\(765\) 0 0
\(766\) 13044.1 0.615276
\(767\) −28622.7 −1.34746
\(768\) − 17657.0i − 0.829613i
\(769\) −22932.1 −1.07536 −0.537681 0.843148i \(-0.680700\pi\)
−0.537681 + 0.843148i \(0.680700\pi\)
\(770\) 9095.29i 0.425677i
\(771\) 22763.7i 1.06331i
\(772\) 383.137i 0.0178619i
\(773\) −3142.46 −0.146218 −0.0731090 0.997324i \(-0.523292\pi\)
−0.0731090 + 0.997324i \(0.523292\pi\)
\(774\) −463.555 −0.0215273
\(775\) 2518.73i 0.116742i
\(776\) − 14776.1i − 0.683545i
\(777\) − 58412.9i − 2.69698i
\(778\) 6012.85 0.277084
\(779\) 20930.4i 0.962657i
\(780\) 18116.5 0.831633
\(781\) 263.285 0.0120628
\(782\) 0 0
\(783\) 184.121 0.00840351
\(784\) −5328.22 −0.242721
\(785\) − 49166.7i − 2.23546i
\(786\) −10388.3 −0.471424
\(787\) − 11712.3i − 0.530492i −0.964181 0.265246i \(-0.914547\pi\)
0.964181 0.265246i \(-0.0854532\pi\)
\(788\) 16730.3i 0.756337i
\(789\) − 23479.1i − 1.05942i
\(790\) 24501.8 1.10346
\(791\) −58439.8 −2.62690
\(792\) 624.397i 0.0280139i
\(793\) 7637.04i 0.341991i
\(794\) 13244.6i 0.591981i
\(795\) −45734.6 −2.04030
\(796\) − 6903.68i − 0.307405i
\(797\) 12691.2 0.564045 0.282022 0.959408i \(-0.408995\pi\)
0.282022 + 0.959408i \(0.408995\pi\)
\(798\) 26289.9 1.16623
\(799\) 0 0
\(800\) −15651.8 −0.691717
\(801\) −1353.49 −0.0597042
\(802\) 3438.33i 0.151386i
\(803\) 4547.39 0.199843
\(804\) − 4383.60i − 0.192286i
\(805\) 61402.6i 2.68839i
\(806\) − 2178.03i − 0.0951832i
\(807\) 18236.4 0.795480
\(808\) 11778.9 0.512845
\(809\) − 22034.9i − 0.957610i −0.877921 0.478805i \(-0.841070\pi\)
0.877921 0.478805i \(-0.158930\pi\)
\(810\) − 15219.7i − 0.660203i
\(811\) 2987.60i 0.129357i 0.997906 + 0.0646787i \(0.0206023\pi\)
−0.997906 + 0.0646787i \(0.979398\pi\)
\(812\) −204.843 −0.00885295
\(813\) − 38387.9i − 1.65599i
\(814\) 8530.55 0.367316
\(815\) −5461.81 −0.234747
\(816\) 0 0
\(817\) 15375.7 0.658418
\(818\) 7178.59 0.306838
\(819\) 2908.72i 0.124101i
\(820\) −14661.8 −0.624405
\(821\) 39918.9i 1.69693i 0.529251 + 0.848465i \(0.322473\pi\)
−0.529251 + 0.848465i \(0.677527\pi\)
\(822\) 3825.27i 0.162313i
\(823\) 15017.3i 0.636050i 0.948082 + 0.318025i \(0.103020\pi\)
−0.948082 + 0.318025i \(0.896980\pi\)
\(824\) 3757.63 0.158863
\(825\) −5646.25 −0.238275
\(826\) − 29096.1i − 1.22564i
\(827\) 3898.57i 0.163926i 0.996635 + 0.0819628i \(0.0261189\pi\)
−0.996635 + 0.0819628i \(0.973881\pi\)
\(828\) 1716.94i 0.0720627i
\(829\) −4410.66 −0.184787 −0.0923937 0.995723i \(-0.529452\pi\)
−0.0923937 + 0.995723i \(0.529452\pi\)
\(830\) − 1078.53i − 0.0451041i
\(831\) 16210.6 0.676702
\(832\) 9797.23 0.408243
\(833\) 0 0
\(834\) 8015.05 0.332780
\(835\) −8269.77 −0.342739
\(836\) − 8435.67i − 0.348988i
\(837\) 4372.52 0.180569
\(838\) − 6706.47i − 0.276457i
\(839\) 29154.8i 1.19969i 0.800118 + 0.599843i \(0.204770\pi\)
−0.800118 + 0.599843i \(0.795230\pi\)
\(840\) 45214.0i 1.85718i
\(841\) 24387.4 0.999934
\(842\) 22148.3 0.906510
\(843\) 34086.2i 1.39264i
\(844\) 5828.46i 0.237706i
\(845\) − 1481.00i − 0.0602936i
\(846\) 846.202 0.0343889
\(847\) 33759.5i 1.36953i
\(848\) 6483.86 0.262567
\(849\) 15606.0 0.630856
\(850\) 0 0
\(851\) 57590.0 2.31981
\(852\) 533.097 0.0214362
\(853\) − 24310.2i − 0.975808i −0.872897 0.487904i \(-0.837762\pi\)
0.872897 0.487904i \(-0.162238\pi\)
\(854\) −7763.35 −0.311073
\(855\) − 3539.99i − 0.141596i
\(856\) − 3171.12i − 0.126620i
\(857\) 13081.1i 0.521403i 0.965419 + 0.260701i \(0.0839538\pi\)
−0.965419 + 0.260701i \(0.916046\pi\)
\(858\) 4882.49 0.194272
\(859\) −1740.97 −0.0691514 −0.0345757 0.999402i \(-0.511008\pi\)
−0.0345757 + 0.999402i \(0.511008\pi\)
\(860\) 10770.7i 0.427067i
\(861\) 27057.4i 1.07098i
\(862\) − 10126.8i − 0.400141i
\(863\) −15561.9 −0.613826 −0.306913 0.951738i \(-0.599296\pi\)
−0.306913 + 0.951738i \(0.599296\pi\)
\(864\) 27171.5i 1.06990i
\(865\) −47988.0 −1.88629
\(866\) −21.0172 −0.000824703 0
\(867\) 0 0
\(868\) −4864.63 −0.190226
\(869\) −14508.7 −0.566368
\(870\) 144.292i 0.00562295i
\(871\) 7321.76 0.284832
\(872\) − 15012.4i − 0.583010i
\(873\) 1495.54i 0.0579797i
\(874\) 25919.5i 1.00314i
\(875\) −17540.4 −0.677685
\(876\) 9207.54 0.355130
\(877\) 32043.6i 1.23379i 0.787045 + 0.616895i \(0.211610\pi\)
−0.787045 + 0.616895i \(0.788390\pi\)
\(878\) − 22612.0i − 0.869156i
\(879\) 26893.1i 1.03195i
\(880\) 1995.67 0.0764478
\(881\) − 38673.0i − 1.47892i −0.673202 0.739458i \(-0.735082\pi\)
0.673202 0.739458i \(-0.264918\pi\)
\(882\) −1784.31 −0.0681191
\(883\) −45977.4 −1.75228 −0.876140 0.482056i \(-0.839890\pi\)
−0.876140 + 0.482056i \(0.839890\pi\)
\(884\) 0 0
\(885\) 45031.7 1.71042
\(886\) 26148.3 0.991499
\(887\) − 5325.60i − 0.201596i −0.994907 0.100798i \(-0.967860\pi\)
0.994907 0.100798i \(-0.0321396\pi\)
\(888\) 42406.5 1.60256
\(889\) 45935.6i 1.73299i
\(890\) − 14313.1i − 0.539074i
\(891\) 9012.30i 0.338859i
\(892\) −7690.60 −0.288677
\(893\) −28067.7 −1.05179
\(894\) − 10429.4i − 0.390170i
\(895\) 30248.7i 1.12972i
\(896\) − 34028.8i − 1.26877i
\(897\) 32961.8 1.22694
\(898\) − 26214.1i − 0.974139i
\(899\) −38.1150 −0.00141402
\(900\) 994.649 0.0368389
\(901\) 0 0
\(902\) −3951.44 −0.145863
\(903\) 19876.7 0.732507
\(904\) − 42426.1i − 1.56092i
\(905\) −9853.37 −0.361919
\(906\) 11567.9i 0.424190i
\(907\) 12188.4i 0.446207i 0.974795 + 0.223104i \(0.0716189\pi\)
−0.974795 + 0.223104i \(0.928381\pi\)
\(908\) 13396.2i 0.489613i
\(909\) −1192.18 −0.0435006
\(910\) −30759.7 −1.12052
\(911\) − 24738.8i − 0.899707i −0.893102 0.449854i \(-0.851476\pi\)
0.893102 0.449854i \(-0.148524\pi\)
\(912\) − 5768.48i − 0.209444i
\(913\) 638.652i 0.0231504i
\(914\) 23281.6 0.842547
\(915\) − 12015.3i − 0.434111i
\(916\) 27638.9 0.996959
\(917\) −38754.0 −1.39561
\(918\) 0 0
\(919\) 1584.70 0.0568820 0.0284410 0.999595i \(-0.490946\pi\)
0.0284410 + 0.999595i \(0.490946\pi\)
\(920\) −44577.0 −1.59746
\(921\) 10748.3i 0.384548i
\(922\) 24250.5 0.866211
\(923\) 890.412i 0.0317533i
\(924\) − 10905.1i − 0.388258i
\(925\) − 33362.7i − 1.18590i
\(926\) 17650.1 0.626369
\(927\) −380.322 −0.0134751
\(928\) − 236.852i − 0.00837829i
\(929\) 7266.92i 0.256642i 0.991733 + 0.128321i \(0.0409587\pi\)
−0.991733 + 0.128321i \(0.959041\pi\)
\(930\) 3426.66i 0.120822i
\(931\) 59184.1 2.08344
\(932\) 4899.19i 0.172187i
\(933\) −13603.1 −0.477325
\(934\) 23329.6 0.817310
\(935\) 0 0
\(936\) −2111.67 −0.0737416
\(937\) 3617.62 0.126129 0.0630643 0.998009i \(-0.479913\pi\)
0.0630643 + 0.998009i \(0.479913\pi\)
\(938\) 7442.86i 0.259081i
\(939\) −24992.9 −0.868598
\(940\) − 19661.5i − 0.682220i
\(941\) − 35841.7i − 1.24166i −0.783944 0.620832i \(-0.786795\pi\)
0.783944 0.620832i \(-0.213205\pi\)
\(942\) − 26830.0i − 0.927991i
\(943\) −26676.3 −0.921208
\(944\) −6384.21 −0.220115
\(945\) − 61751.9i − 2.12570i
\(946\) 2902.77i 0.0997643i
\(947\) 33544.8i 1.15107i 0.817778 + 0.575534i \(0.195206\pi\)
−0.817778 + 0.575534i \(0.804794\pi\)
\(948\) −29377.1 −1.00646
\(949\) 15379.0i 0.526052i
\(950\) 15015.5 0.512809
\(951\) −5803.85 −0.197900
\(952\) 0 0
\(953\) −51190.9 −1.74002 −0.870008 0.493038i \(-0.835886\pi\)
−0.870008 + 0.493038i \(0.835886\pi\)
\(954\) 2171.32 0.0736886
\(955\) 27755.0i 0.940452i
\(956\) 890.506 0.0301266
\(957\) − 85.4425i − 0.00288606i
\(958\) 23591.8i 0.795633i
\(959\) 14270.3i 0.480514i
\(960\) −15413.9 −0.518209
\(961\) 28885.8 0.969616
\(962\) 28849.8i 0.966896i
\(963\) 320.960i 0.0107402i
\(964\) − 19063.0i − 0.636906i
\(965\) 1006.81 0.0335858
\(966\) 33507.0i 1.11602i
\(967\) −11754.1 −0.390885 −0.195442 0.980715i \(-0.562614\pi\)
−0.195442 + 0.980715i \(0.562614\pi\)
\(968\) −24508.7 −0.813779
\(969\) 0 0
\(970\) −15815.3 −0.523503
\(971\) 16608.7 0.548919 0.274459 0.961599i \(-0.411501\pi\)
0.274459 + 0.961599i \(0.411501\pi\)
\(972\) − 3325.46i − 0.109737i
\(973\) 29900.4 0.985164
\(974\) − 4799.84i − 0.157902i
\(975\) − 19095.3i − 0.627218i
\(976\) 1703.42i 0.0558659i
\(977\) 47963.6 1.57062 0.785308 0.619105i \(-0.212504\pi\)
0.785308 + 0.619105i \(0.212504\pi\)
\(978\) −2980.48 −0.0974490
\(979\) 8475.48i 0.276688i
\(980\) 41458.5i 1.35137i
\(981\) 1519.46i 0.0494521i
\(982\) −15869.0 −0.515683
\(983\) − 49858.2i − 1.61773i −0.587993 0.808866i \(-0.700082\pi\)
0.587993 0.808866i \(-0.299918\pi\)
\(984\) −19643.1 −0.636382
\(985\) 43964.0 1.42214
\(986\) 0 0
\(987\) −36284.1 −1.17015
\(988\) 28528.9 0.918649
\(989\) 19596.7i 0.630068i
\(990\) 668.311 0.0214549
\(991\) − 50467.6i − 1.61772i −0.588005 0.808858i \(-0.700086\pi\)
0.588005 0.808858i \(-0.299914\pi\)
\(992\) − 5624.78i − 0.180027i
\(993\) − 10685.6i − 0.341487i
\(994\) −905.139 −0.0288826
\(995\) −18141.5 −0.578014
\(996\) 1293.14i 0.0411392i
\(997\) − 40927.6i − 1.30009i −0.759895 0.650046i \(-0.774750\pi\)
0.759895 0.650046i \(-0.225250\pi\)
\(998\) − 22021.2i − 0.698465i
\(999\) −57917.6 −1.83427
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.4.b.d.288.6 8
17.4 even 4 289.4.a.c.1.2 4
17.13 even 4 289.4.a.d.1.2 yes 4
17.16 even 2 inner 289.4.b.d.288.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
289.4.a.c.1.2 4 17.4 even 4
289.4.a.d.1.2 yes 4 17.13 even 4
289.4.b.d.288.5 8 17.16 even 2 inner
289.4.b.d.288.6 8 1.1 even 1 trivial