Newspace parameters
Level: | \( N \) | \(=\) | \( 289 = 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 289.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(17.0515519917\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 17) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).
\(n\) | \(3\) |
\(\chi(n)\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
288.1 |
|
3.00000 | − | 8.00000i | 1.00000 | 6.00000i | − | 24.0000i | 28.0000i | −21.0000 | −37.0000 | 18.0000i | ||||||||||||||||||||||
288.2 | 3.00000 | 8.00000i | 1.00000 | − | 6.00000i | 24.0000i | − | 28.0000i | −21.0000 | −37.0000 | − | 18.0000i | ||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 289.4.b.a | 2 | |
17.b | even | 2 | 1 | inner | 289.4.b.a | 2 | |
17.c | even | 4 | 1 | 17.4.a.a | ✓ | 1 | |
17.c | even | 4 | 1 | 289.4.a.a | 1 | ||
51.f | odd | 4 | 1 | 153.4.a.d | 1 | ||
68.f | odd | 4 | 1 | 272.4.a.d | 1 | ||
85.f | odd | 4 | 1 | 425.4.b.c | 2 | ||
85.i | odd | 4 | 1 | 425.4.b.c | 2 | ||
85.j | even | 4 | 1 | 425.4.a.d | 1 | ||
119.f | odd | 4 | 1 | 833.4.a.a | 1 | ||
136.i | even | 4 | 1 | 1088.4.a.l | 1 | ||
136.j | odd | 4 | 1 | 1088.4.a.a | 1 | ||
187.f | odd | 4 | 1 | 2057.4.a.d | 1 | ||
204.l | even | 4 | 1 | 2448.4.a.f | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
17.4.a.a | ✓ | 1 | 17.c | even | 4 | 1 | |
153.4.a.d | 1 | 51.f | odd | 4 | 1 | ||
272.4.a.d | 1 | 68.f | odd | 4 | 1 | ||
289.4.a.a | 1 | 17.c | even | 4 | 1 | ||
289.4.b.a | 2 | 1.a | even | 1 | 1 | trivial | |
289.4.b.a | 2 | 17.b | even | 2 | 1 | inner | |
425.4.a.d | 1 | 85.j | even | 4 | 1 | ||
425.4.b.c | 2 | 85.f | odd | 4 | 1 | ||
425.4.b.c | 2 | 85.i | odd | 4 | 1 | ||
833.4.a.a | 1 | 119.f | odd | 4 | 1 | ||
1088.4.a.a | 1 | 136.j | odd | 4 | 1 | ||
1088.4.a.l | 1 | 136.i | even | 4 | 1 | ||
2057.4.a.d | 1 | 187.f | odd | 4 | 1 | ||
2448.4.a.f | 1 | 204.l | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} - 3 \)
acting on \(S_{4}^{\mathrm{new}}(289, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T - 3)^{2} \)
$3$
\( T^{2} + 64 \)
$5$
\( T^{2} + 36 \)
$7$
\( T^{2} + 784 \)
$11$
\( T^{2} + 576 \)
$13$
\( (T + 58)^{2} \)
$17$
\( T^{2} \)
$19$
\( (T + 116)^{2} \)
$23$
\( T^{2} + 3600 \)
$29$
\( T^{2} + 900 \)
$31$
\( T^{2} + 29584 \)
$37$
\( T^{2} + 3364 \)
$41$
\( T^{2} + 116964 \)
$43$
\( (T - 148)^{2} \)
$47$
\( (T - 288)^{2} \)
$53$
\( (T + 318)^{2} \)
$59$
\( (T + 252)^{2} \)
$61$
\( T^{2} + 12100 \)
$67$
\( (T + 484)^{2} \)
$71$
\( T^{2} + 501264 \)
$73$
\( T^{2} + 131044 \)
$79$
\( T^{2} + 234256 \)
$83$
\( (T + 756)^{2} \)
$89$
\( (T + 774)^{2} \)
$97$
\( T^{2} + 145924 \)
show more
show less