Properties

Label 289.4.a.h.1.1
Level $289$
Weight $4$
Character 289.1
Self dual yes
Analytic conductor $17.052$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [289,4,Mod(1,289)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(289, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("289.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 289.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.0515519917\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 72 x^{10} - 17 x^{9} + 1872 x^{8} + 627 x^{7} - 20922 x^{6} - 5163 x^{5} + 93255 x^{4} - 4607 x^{3} - 117822 x^{2} + 21960 x + 29352 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 17^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.35197\) of defining polynomial
Character \(\chi\) \(=\) 289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.35197 q^{2} -1.66219 q^{3} +20.6436 q^{4} +5.96899 q^{5} +8.89600 q^{6} +27.8210 q^{7} -67.6680 q^{8} -24.2371 q^{9} +O(q^{10})\) \(q-5.35197 q^{2} -1.66219 q^{3} +20.6436 q^{4} +5.96899 q^{5} +8.89600 q^{6} +27.8210 q^{7} -67.6680 q^{8} -24.2371 q^{9} -31.9458 q^{10} -18.6361 q^{11} -34.3136 q^{12} -42.5466 q^{13} -148.897 q^{14} -9.92160 q^{15} +197.008 q^{16} +129.716 q^{18} +31.3435 q^{19} +123.221 q^{20} -46.2438 q^{21} +99.7396 q^{22} -60.3201 q^{23} +112.477 q^{24} -89.3712 q^{25} +227.708 q^{26} +85.1659 q^{27} +574.325 q^{28} -117.647 q^{29} +53.1001 q^{30} +228.520 q^{31} -513.039 q^{32} +30.9767 q^{33} +166.063 q^{35} -500.341 q^{36} -99.4898 q^{37} -167.749 q^{38} +70.7206 q^{39} -403.909 q^{40} -270.844 q^{41} +247.496 q^{42} +108.891 q^{43} -384.715 q^{44} -144.671 q^{45} +322.831 q^{46} -250.032 q^{47} -327.466 q^{48} +431.008 q^{49} +478.312 q^{50} -878.313 q^{52} +294.775 q^{53} -455.805 q^{54} -111.238 q^{55} -1882.59 q^{56} -52.0989 q^{57} +629.643 q^{58} +62.0744 q^{59} -204.817 q^{60} -799.234 q^{61} -1223.03 q^{62} -674.301 q^{63} +1169.70 q^{64} -253.960 q^{65} -165.786 q^{66} -645.320 q^{67} +100.264 q^{69} -888.765 q^{70} -1148.97 q^{71} +1640.08 q^{72} +550.710 q^{73} +532.466 q^{74} +148.552 q^{75} +647.041 q^{76} -518.474 q^{77} -378.494 q^{78} +253.834 q^{79} +1175.94 q^{80} +512.840 q^{81} +1449.55 q^{82} +717.541 q^{83} -954.638 q^{84} -582.784 q^{86} +195.552 q^{87} +1261.06 q^{88} -1590.45 q^{89} +774.275 q^{90} -1183.69 q^{91} -1245.22 q^{92} -379.844 q^{93} +1338.16 q^{94} +187.089 q^{95} +852.769 q^{96} -255.084 q^{97} -2306.74 q^{98} +451.684 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{3} + 48 q^{4} - 30 q^{5} + 9 q^{6} - 24 q^{7} - 51 q^{8} + 108 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 18 q^{3} + 48 q^{4} - 30 q^{5} + 9 q^{6} - 24 q^{7} - 51 q^{8} + 108 q^{9} - 60 q^{10} - 162 q^{11} - 216 q^{12} - 72 q^{13} - 267 q^{14} - 138 q^{15} + 192 q^{16} + 189 q^{18} - 66 q^{19} - 129 q^{20} + 246 q^{21} - 456 q^{22} - 282 q^{23} - 72 q^{24} + 444 q^{25} + 528 q^{26} - 1092 q^{27} - 120 q^{28} - 648 q^{29} - 1890 q^{30} - 504 q^{31} - 1353 q^{32} + 966 q^{33} - 66 q^{35} - 663 q^{36} + 30 q^{37} - 60 q^{38} - 1758 q^{39} + 450 q^{40} - 318 q^{41} + 804 q^{42} + 486 q^{43} - 2448 q^{44} - 486 q^{45} - 1617 q^{46} - 888 q^{47} - 1257 q^{48} - 570 q^{49} + 435 q^{50} + 225 q^{52} + 1026 q^{53} - 933 q^{54} + 972 q^{55} - 2661 q^{56} + 156 q^{57} - 201 q^{58} - 792 q^{59} + 1458 q^{60} - 1212 q^{61} - 2817 q^{62} - 2112 q^{63} - 1857 q^{64} - 2742 q^{65} - 594 q^{66} + 624 q^{67} - 1506 q^{69} - 1650 q^{70} - 2802 q^{71} + 1455 q^{72} - 726 q^{73} - 270 q^{74} + 264 q^{75} + 675 q^{76} - 1008 q^{77} + 3090 q^{78} + 444 q^{79} + 1143 q^{80} + 2520 q^{81} + 4950 q^{82} + 672 q^{83} - 777 q^{84} + 2778 q^{86} + 726 q^{87} + 3750 q^{88} - 906 q^{89} + 7755 q^{90} - 2280 q^{91} - 87 q^{92} + 132 q^{93} + 735 q^{94} - 966 q^{95} + 5046 q^{96} + 3246 q^{97} + 1911 q^{98} + 282 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.35197 −1.89221 −0.946103 0.323865i \(-0.895018\pi\)
−0.946103 + 0.323865i \(0.895018\pi\)
\(3\) −1.66219 −0.319889 −0.159944 0.987126i \(-0.551132\pi\)
−0.159944 + 0.987126i \(0.551132\pi\)
\(4\) 20.6436 2.58045
\(5\) 5.96899 0.533882 0.266941 0.963713i \(-0.413987\pi\)
0.266941 + 0.963713i \(0.413987\pi\)
\(6\) 8.89600 0.605296
\(7\) 27.8210 1.50219 0.751096 0.660193i \(-0.229525\pi\)
0.751096 + 0.660193i \(0.229525\pi\)
\(8\) −67.6680 −2.99053
\(9\) −24.2371 −0.897671
\(10\) −31.9458 −1.01022
\(11\) −18.6361 −0.510816 −0.255408 0.966833i \(-0.582210\pi\)
−0.255408 + 0.966833i \(0.582210\pi\)
\(12\) −34.3136 −0.825456
\(13\) −42.5466 −0.907715 −0.453857 0.891074i \(-0.649952\pi\)
−0.453857 + 0.891074i \(0.649952\pi\)
\(14\) −148.897 −2.84246
\(15\) −9.92160 −0.170783
\(16\) 197.008 3.07826
\(17\) 0 0
\(18\) 129.716 1.69858
\(19\) 31.3435 0.378457 0.189229 0.981933i \(-0.439401\pi\)
0.189229 + 0.981933i \(0.439401\pi\)
\(20\) 123.221 1.37765
\(21\) −46.2438 −0.480535
\(22\) 99.7396 0.966570
\(23\) −60.3201 −0.546853 −0.273426 0.961893i \(-0.588157\pi\)
−0.273426 + 0.961893i \(0.588157\pi\)
\(24\) 112.477 0.956638
\(25\) −89.3712 −0.714970
\(26\) 227.708 1.71758
\(27\) 85.1659 0.607044
\(28\) 574.325 3.87633
\(29\) −117.647 −0.753327 −0.376664 0.926350i \(-0.622929\pi\)
−0.376664 + 0.926350i \(0.622929\pi\)
\(30\) 53.1001 0.323157
\(31\) 228.520 1.32398 0.661991 0.749512i \(-0.269712\pi\)
0.661991 + 0.749512i \(0.269712\pi\)
\(32\) −513.039 −2.83417
\(33\) 30.9767 0.163405
\(34\) 0 0
\(35\) 166.063 0.801994
\(36\) −500.341 −2.31639
\(37\) −99.4898 −0.442055 −0.221027 0.975268i \(-0.570941\pi\)
−0.221027 + 0.975268i \(0.570941\pi\)
\(38\) −167.749 −0.716119
\(39\) 70.7206 0.290368
\(40\) −403.909 −1.59659
\(41\) −270.844 −1.03168 −0.515838 0.856686i \(-0.672519\pi\)
−0.515838 + 0.856686i \(0.672519\pi\)
\(42\) 247.496 0.909271
\(43\) 108.891 0.386181 0.193091 0.981181i \(-0.438149\pi\)
0.193091 + 0.981181i \(0.438149\pi\)
\(44\) −384.715 −1.31813
\(45\) −144.671 −0.479251
\(46\) 322.831 1.03476
\(47\) −250.032 −0.775975 −0.387988 0.921665i \(-0.626830\pi\)
−0.387988 + 0.921665i \(0.626830\pi\)
\(48\) −327.466 −0.984700
\(49\) 431.008 1.25658
\(50\) 478.312 1.35287
\(51\) 0 0
\(52\) −878.313 −2.34231
\(53\) 294.775 0.763971 0.381985 0.924168i \(-0.375240\pi\)
0.381985 + 0.924168i \(0.375240\pi\)
\(54\) −455.805 −1.14865
\(55\) −111.238 −0.272716
\(56\) −1882.59 −4.49235
\(57\) −52.0989 −0.121064
\(58\) 629.643 1.42545
\(59\) 62.0744 0.136973 0.0684864 0.997652i \(-0.478183\pi\)
0.0684864 + 0.997652i \(0.478183\pi\)
\(60\) −204.817 −0.440697
\(61\) −799.234 −1.67757 −0.838783 0.544466i \(-0.816732\pi\)
−0.838783 + 0.544466i \(0.816732\pi\)
\(62\) −1223.03 −2.50525
\(63\) −674.301 −1.34847
\(64\) 1169.70 2.28457
\(65\) −253.960 −0.484613
\(66\) −165.786 −0.309195
\(67\) −645.320 −1.17669 −0.588346 0.808609i \(-0.700221\pi\)
−0.588346 + 0.808609i \(0.700221\pi\)
\(68\) 0 0
\(69\) 100.264 0.174932
\(70\) −888.765 −1.51754
\(71\) −1148.97 −1.92053 −0.960263 0.279096i \(-0.909965\pi\)
−0.960263 + 0.279096i \(0.909965\pi\)
\(72\) 1640.08 2.68451
\(73\) 550.710 0.882955 0.441477 0.897272i \(-0.354455\pi\)
0.441477 + 0.897272i \(0.354455\pi\)
\(74\) 532.466 0.836459
\(75\) 148.552 0.228711
\(76\) 647.041 0.976588
\(77\) −518.474 −0.767345
\(78\) −378.494 −0.549436
\(79\) 253.834 0.361501 0.180750 0.983529i \(-0.442147\pi\)
0.180750 + 0.983529i \(0.442147\pi\)
\(80\) 1175.94 1.64343
\(81\) 512.840 0.703484
\(82\) 1449.55 1.95214
\(83\) 717.541 0.948920 0.474460 0.880277i \(-0.342643\pi\)
0.474460 + 0.880277i \(0.342643\pi\)
\(84\) −954.638 −1.23999
\(85\) 0 0
\(86\) −582.784 −0.730735
\(87\) 195.552 0.240981
\(88\) 1261.06 1.52761
\(89\) −1590.45 −1.89424 −0.947121 0.320877i \(-0.896022\pi\)
−0.947121 + 0.320877i \(0.896022\pi\)
\(90\) 774.275 0.906841
\(91\) −1183.69 −1.36356
\(92\) −1245.22 −1.41112
\(93\) −379.844 −0.423527
\(94\) 1338.16 1.46831
\(95\) 187.089 0.202052
\(96\) 852.769 0.906619
\(97\) −255.084 −0.267008 −0.133504 0.991048i \(-0.542623\pi\)
−0.133504 + 0.991048i \(0.542623\pi\)
\(98\) −2306.74 −2.37771
\(99\) 451.684 0.458545
\(100\) −1844.94 −1.84494
\(101\) 1006.58 0.991663 0.495832 0.868419i \(-0.334863\pi\)
0.495832 + 0.868419i \(0.334863\pi\)
\(102\) 0 0
\(103\) 1631.61 1.56084 0.780422 0.625253i \(-0.215004\pi\)
0.780422 + 0.625253i \(0.215004\pi\)
\(104\) 2879.04 2.71455
\(105\) −276.029 −0.256549
\(106\) −1577.63 −1.44559
\(107\) 42.5550 0.0384481 0.0192241 0.999815i \(-0.493880\pi\)
0.0192241 + 0.999815i \(0.493880\pi\)
\(108\) 1758.13 1.56644
\(109\) −1862.24 −1.63643 −0.818214 0.574914i \(-0.805036\pi\)
−0.818214 + 0.574914i \(0.805036\pi\)
\(110\) 595.344 0.516035
\(111\) 165.371 0.141408
\(112\) 5480.97 4.62414
\(113\) −13.5364 −0.0112690 −0.00563452 0.999984i \(-0.501794\pi\)
−0.00563452 + 0.999984i \(0.501794\pi\)
\(114\) 278.832 0.229079
\(115\) −360.050 −0.291955
\(116\) −2428.65 −1.94392
\(117\) 1031.21 0.814829
\(118\) −332.220 −0.259181
\(119\) 0 0
\(120\) 671.375 0.510732
\(121\) −983.698 −0.739067
\(122\) 4277.48 3.17430
\(123\) 450.195 0.330022
\(124\) 4717.47 3.41646
\(125\) −1279.58 −0.915592
\(126\) 3608.84 2.55159
\(127\) −1239.07 −0.865744 −0.432872 0.901455i \(-0.642500\pi\)
−0.432872 + 0.901455i \(0.642500\pi\)
\(128\) −2155.89 −1.48872
\(129\) −180.998 −0.123535
\(130\) 1359.19 0.916988
\(131\) −1310.04 −0.873733 −0.436866 0.899526i \(-0.643912\pi\)
−0.436866 + 0.899526i \(0.643912\pi\)
\(132\) 639.470 0.421657
\(133\) 872.007 0.568516
\(134\) 3453.73 2.22655
\(135\) 508.354 0.324090
\(136\) 0 0
\(137\) −592.057 −0.369218 −0.184609 0.982812i \(-0.559102\pi\)
−0.184609 + 0.982812i \(0.559102\pi\)
\(138\) −536.608 −0.331008
\(139\) −1723.70 −1.05182 −0.525908 0.850541i \(-0.676275\pi\)
−0.525908 + 0.850541i \(0.676275\pi\)
\(140\) 3428.14 2.06950
\(141\) 415.600 0.248226
\(142\) 6149.24 3.63403
\(143\) 792.900 0.463676
\(144\) −4774.92 −2.76326
\(145\) −702.233 −0.402188
\(146\) −2947.38 −1.67073
\(147\) −716.418 −0.401967
\(148\) −2053.82 −1.14070
\(149\) −230.059 −0.126491 −0.0632456 0.997998i \(-0.520145\pi\)
−0.0632456 + 0.997998i \(0.520145\pi\)
\(150\) −795.046 −0.432768
\(151\) −1876.54 −1.01133 −0.505663 0.862731i \(-0.668752\pi\)
−0.505663 + 0.862731i \(0.668752\pi\)
\(152\) −2120.95 −1.13179
\(153\) 0 0
\(154\) 2774.85 1.45197
\(155\) 1364.03 0.706851
\(156\) 1459.92 0.749279
\(157\) 1076.29 0.547118 0.273559 0.961855i \(-0.411799\pi\)
0.273559 + 0.961855i \(0.411799\pi\)
\(158\) −1358.51 −0.684034
\(159\) −489.973 −0.244386
\(160\) −3062.32 −1.51311
\(161\) −1678.17 −0.821478
\(162\) −2744.70 −1.33114
\(163\) 1240.38 0.596037 0.298018 0.954560i \(-0.403674\pi\)
0.298018 + 0.954560i \(0.403674\pi\)
\(164\) −5591.18 −2.66218
\(165\) 184.899 0.0872388
\(166\) −3840.26 −1.79555
\(167\) −2692.11 −1.24743 −0.623717 0.781650i \(-0.714378\pi\)
−0.623717 + 0.781650i \(0.714378\pi\)
\(168\) 3129.23 1.43705
\(169\) −386.790 −0.176054
\(170\) 0 0
\(171\) −759.675 −0.339730
\(172\) 2247.91 0.996520
\(173\) −1819.34 −0.799548 −0.399774 0.916614i \(-0.630911\pi\)
−0.399774 + 0.916614i \(0.630911\pi\)
\(174\) −1046.59 −0.455986
\(175\) −2486.40 −1.07402
\(176\) −3671.46 −1.57242
\(177\) −103.180 −0.0438161
\(178\) 8512.05 3.58430
\(179\) −2087.72 −0.871752 −0.435876 0.900007i \(-0.643561\pi\)
−0.435876 + 0.900007i \(0.643561\pi\)
\(180\) −2986.53 −1.23668
\(181\) 2882.67 1.18380 0.591898 0.806013i \(-0.298379\pi\)
0.591898 + 0.806013i \(0.298379\pi\)
\(182\) 6335.06 2.58014
\(183\) 1328.48 0.536635
\(184\) 4081.74 1.63538
\(185\) −593.853 −0.236005
\(186\) 2032.92 0.801401
\(187\) 0 0
\(188\) −5161.54 −2.00236
\(189\) 2369.40 0.911897
\(190\) −1001.29 −0.382323
\(191\) −242.916 −0.0920249 −0.0460124 0.998941i \(-0.514651\pi\)
−0.0460124 + 0.998941i \(0.514651\pi\)
\(192\) −1944.27 −0.730810
\(193\) −3202.66 −1.19447 −0.597234 0.802067i \(-0.703734\pi\)
−0.597234 + 0.802067i \(0.703734\pi\)
\(194\) 1365.20 0.505235
\(195\) 422.130 0.155022
\(196\) 8897.54 3.24254
\(197\) 3624.82 1.31095 0.655477 0.755215i \(-0.272468\pi\)
0.655477 + 0.755215i \(0.272468\pi\)
\(198\) −2417.40 −0.867662
\(199\) 65.9115 0.0234791 0.0117395 0.999931i \(-0.496263\pi\)
0.0117395 + 0.999931i \(0.496263\pi\)
\(200\) 6047.57 2.13814
\(201\) 1072.65 0.376411
\(202\) −5387.16 −1.87643
\(203\) −3273.06 −1.13164
\(204\) 0 0
\(205\) −1616.66 −0.550793
\(206\) −8732.31 −2.95344
\(207\) 1461.99 0.490894
\(208\) −8382.03 −2.79418
\(209\) −584.119 −0.193322
\(210\) 1477.30 0.485444
\(211\) −3523.72 −1.14968 −0.574841 0.818265i \(-0.694936\pi\)
−0.574841 + 0.818265i \(0.694936\pi\)
\(212\) 6085.21 1.97139
\(213\) 1909.80 0.614355
\(214\) −227.753 −0.0727518
\(215\) 649.972 0.206175
\(216\) −5763.01 −1.81538
\(217\) 6357.66 1.98888
\(218\) 9966.68 3.09646
\(219\) −915.385 −0.282447
\(220\) −2296.36 −0.703729
\(221\) 0 0
\(222\) −885.061 −0.267574
\(223\) −935.115 −0.280807 −0.140404 0.990094i \(-0.544840\pi\)
−0.140404 + 0.990094i \(0.544840\pi\)
\(224\) −14273.3 −4.25747
\(225\) 2166.10 0.641808
\(226\) 72.4466 0.0213233
\(227\) 4987.57 1.45831 0.729155 0.684349i \(-0.239913\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(228\) −1075.51 −0.312400
\(229\) −181.488 −0.0523714 −0.0261857 0.999657i \(-0.508336\pi\)
−0.0261857 + 0.999657i \(0.508336\pi\)
\(230\) 1926.98 0.552439
\(231\) 861.803 0.245465
\(232\) 7960.94 2.25285
\(233\) 2290.78 0.644095 0.322048 0.946723i \(-0.395629\pi\)
0.322048 + 0.946723i \(0.395629\pi\)
\(234\) −5518.98 −1.54183
\(235\) −1492.43 −0.414280
\(236\) 1281.44 0.353451
\(237\) −421.921 −0.115640
\(238\) 0 0
\(239\) 809.874 0.219190 0.109595 0.993976i \(-0.465045\pi\)
0.109595 + 0.993976i \(0.465045\pi\)
\(240\) −1954.64 −0.525714
\(241\) 5634.28 1.50596 0.752979 0.658044i \(-0.228616\pi\)
0.752979 + 0.658044i \(0.228616\pi\)
\(242\) 5264.72 1.39847
\(243\) −3151.92 −0.832081
\(244\) −16499.1 −4.32887
\(245\) 2572.68 0.670867
\(246\) −2409.43 −0.624469
\(247\) −1333.56 −0.343531
\(248\) −15463.5 −3.95941
\(249\) −1192.69 −0.303549
\(250\) 6848.27 1.73249
\(251\) 3676.86 0.924627 0.462314 0.886717i \(-0.347019\pi\)
0.462314 + 0.886717i \(0.347019\pi\)
\(252\) −13920.0 −3.47967
\(253\) 1124.13 0.279341
\(254\) 6631.45 1.63817
\(255\) 0 0
\(256\) 2180.66 0.532389
\(257\) −180.020 −0.0436938 −0.0218469 0.999761i \(-0.506955\pi\)
−0.0218469 + 0.999761i \(0.506955\pi\)
\(258\) 968.698 0.233754
\(259\) −2767.91 −0.664051
\(260\) −5242.64 −1.25052
\(261\) 2851.42 0.676240
\(262\) 7011.31 1.65328
\(263\) −2035.20 −0.477171 −0.238586 0.971121i \(-0.576684\pi\)
−0.238586 + 0.971121i \(0.576684\pi\)
\(264\) −2096.13 −0.488666
\(265\) 1759.51 0.407871
\(266\) −4666.95 −1.07575
\(267\) 2643.64 0.605947
\(268\) −13321.7 −3.03639
\(269\) −2036.45 −0.461578 −0.230789 0.973004i \(-0.574131\pi\)
−0.230789 + 0.973004i \(0.574131\pi\)
\(270\) −2720.70 −0.613245
\(271\) 5126.86 1.14920 0.574602 0.818433i \(-0.305157\pi\)
0.574602 + 0.818433i \(0.305157\pi\)
\(272\) 0 0
\(273\) 1967.52 0.436189
\(274\) 3168.67 0.698637
\(275\) 1665.53 0.365218
\(276\) 2069.80 0.451403
\(277\) −4012.79 −0.870415 −0.435208 0.900330i \(-0.643325\pi\)
−0.435208 + 0.900330i \(0.643325\pi\)
\(278\) 9225.20 1.99025
\(279\) −5538.67 −1.18850
\(280\) −11237.2 −2.39839
\(281\) −6603.25 −1.40184 −0.700920 0.713240i \(-0.747227\pi\)
−0.700920 + 0.713240i \(0.747227\pi\)
\(282\) −2224.28 −0.469695
\(283\) −108.788 −0.0228508 −0.0114254 0.999935i \(-0.503637\pi\)
−0.0114254 + 0.999935i \(0.503637\pi\)
\(284\) −23718.8 −4.95582
\(285\) −310.977 −0.0646341
\(286\) −4243.58 −0.877370
\(287\) −7535.15 −1.54978
\(288\) 12434.6 2.54415
\(289\) 0 0
\(290\) 3758.33 0.761023
\(291\) 423.998 0.0854131
\(292\) 11368.6 2.27842
\(293\) 9133.49 1.82111 0.910553 0.413393i \(-0.135656\pi\)
0.910553 + 0.413393i \(0.135656\pi\)
\(294\) 3834.25 0.760605
\(295\) 370.521 0.0731274
\(296\) 6732.27 1.32198
\(297\) −1587.16 −0.310088
\(298\) 1231.27 0.239348
\(299\) 2566.41 0.496387
\(300\) 3066.65 0.590176
\(301\) 3029.47 0.580119
\(302\) 10043.2 1.91364
\(303\) −1673.12 −0.317222
\(304\) 6174.93 1.16499
\(305\) −4770.62 −0.895622
\(306\) 0 0
\(307\) −4469.59 −0.830921 −0.415461 0.909611i \(-0.636380\pi\)
−0.415461 + 0.909611i \(0.636380\pi\)
\(308\) −10703.1 −1.98009
\(309\) −2712.04 −0.499297
\(310\) −7300.27 −1.33751
\(311\) 9396.83 1.71333 0.856664 0.515874i \(-0.172533\pi\)
0.856664 + 0.515874i \(0.172533\pi\)
\(312\) −4785.52 −0.868355
\(313\) 10276.8 1.85583 0.927917 0.372786i \(-0.121597\pi\)
0.927917 + 0.372786i \(0.121597\pi\)
\(314\) −5760.29 −1.03526
\(315\) −4024.89 −0.719927
\(316\) 5240.04 0.932833
\(317\) 7547.44 1.33724 0.668622 0.743602i \(-0.266884\pi\)
0.668622 + 0.743602i \(0.266884\pi\)
\(318\) 2622.32 0.462429
\(319\) 2192.48 0.384812
\(320\) 6981.93 1.21969
\(321\) −70.7346 −0.0122991
\(322\) 8981.49 1.55441
\(323\) 0 0
\(324\) 10586.9 1.81530
\(325\) 3802.44 0.648989
\(326\) −6638.47 −1.12782
\(327\) 3095.41 0.523475
\(328\) 18327.5 3.08526
\(329\) −6956.13 −1.16566
\(330\) −989.576 −0.165074
\(331\) 6285.90 1.04382 0.521910 0.853000i \(-0.325220\pi\)
0.521910 + 0.853000i \(0.325220\pi\)
\(332\) 14812.6 2.44864
\(333\) 2411.35 0.396820
\(334\) 14408.1 2.36040
\(335\) −3851.91 −0.628215
\(336\) −9110.43 −1.47921
\(337\) −464.322 −0.0750541 −0.0375271 0.999296i \(-0.511948\pi\)
−0.0375271 + 0.999296i \(0.511948\pi\)
\(338\) 2070.09 0.333130
\(339\) 22.5002 0.00360484
\(340\) 0 0
\(341\) −4258.71 −0.676312
\(342\) 4065.76 0.642839
\(343\) 2448.47 0.385437
\(344\) −7368.47 −1.15489
\(345\) 598.472 0.0933932
\(346\) 9737.05 1.51291
\(347\) −7445.29 −1.15183 −0.575914 0.817510i \(-0.695354\pi\)
−0.575914 + 0.817510i \(0.695354\pi\)
\(348\) 4036.89 0.621839
\(349\) 6395.90 0.980987 0.490494 0.871445i \(-0.336816\pi\)
0.490494 + 0.871445i \(0.336816\pi\)
\(350\) 13307.1 2.03227
\(351\) −3623.52 −0.551023
\(352\) 9561.02 1.44774
\(353\) −8031.82 −1.21102 −0.605511 0.795837i \(-0.707031\pi\)
−0.605511 + 0.795837i \(0.707031\pi\)
\(354\) 552.214 0.0829091
\(355\) −6858.17 −1.02534
\(356\) −32832.6 −4.88799
\(357\) 0 0
\(358\) 11173.4 1.64953
\(359\) −2730.88 −0.401477 −0.200738 0.979645i \(-0.564334\pi\)
−0.200738 + 0.979645i \(0.564334\pi\)
\(360\) 9789.60 1.43321
\(361\) −5876.59 −0.856770
\(362\) −15428.0 −2.23999
\(363\) 1635.09 0.236419
\(364\) −24435.5 −3.51860
\(365\) 3287.18 0.471394
\(366\) −7109.99 −1.01542
\(367\) −2802.02 −0.398541 −0.199270 0.979945i \(-0.563857\pi\)
−0.199270 + 0.979945i \(0.563857\pi\)
\(368\) −11883.6 −1.68335
\(369\) 6564.48 0.926106
\(370\) 3178.28 0.446570
\(371\) 8200.93 1.14763
\(372\) −7841.35 −1.09289
\(373\) 8987.58 1.24761 0.623806 0.781579i \(-0.285585\pi\)
0.623806 + 0.781579i \(0.285585\pi\)
\(374\) 0 0
\(375\) 2126.91 0.292888
\(376\) 16919.1 2.32058
\(377\) 5005.47 0.683807
\(378\) −12681.0 −1.72550
\(379\) −7786.77 −1.05536 −0.527678 0.849445i \(-0.676937\pi\)
−0.527678 + 0.849445i \(0.676937\pi\)
\(380\) 3862.18 0.521383
\(381\) 2059.57 0.276942
\(382\) 1300.08 0.174130
\(383\) 7557.45 1.00827 0.504135 0.863625i \(-0.331811\pi\)
0.504135 + 0.863625i \(0.331811\pi\)
\(384\) 3583.51 0.476225
\(385\) −3094.76 −0.409672
\(386\) 17140.5 2.26018
\(387\) −2639.22 −0.346664
\(388\) −5265.84 −0.689001
\(389\) 10883.8 1.41859 0.709296 0.704911i \(-0.249013\pi\)
0.709296 + 0.704911i \(0.249013\pi\)
\(390\) −2259.23 −0.293334
\(391\) 0 0
\(392\) −29165.4 −3.75785
\(393\) 2177.54 0.279497
\(394\) −19399.9 −2.48060
\(395\) 1515.13 0.192999
\(396\) 9324.37 1.18325
\(397\) −2103.72 −0.265952 −0.132976 0.991119i \(-0.542453\pi\)
−0.132976 + 0.991119i \(0.542453\pi\)
\(398\) −352.756 −0.0444273
\(399\) −1449.44 −0.181862
\(400\) −17606.9 −2.20086
\(401\) −10029.6 −1.24901 −0.624505 0.781021i \(-0.714699\pi\)
−0.624505 + 0.781021i \(0.714699\pi\)
\(402\) −5740.77 −0.712247
\(403\) −9722.75 −1.20180
\(404\) 20779.3 2.55893
\(405\) 3061.13 0.375578
\(406\) 17517.3 2.14130
\(407\) 1854.10 0.225809
\(408\) 0 0
\(409\) −515.825 −0.0623616 −0.0311808 0.999514i \(-0.509927\pi\)
−0.0311808 + 0.999514i \(0.509927\pi\)
\(410\) 8652.33 1.04222
\(411\) 984.113 0.118109
\(412\) 33682.2 4.02767
\(413\) 1726.97 0.205760
\(414\) −7824.50 −0.928873
\(415\) 4282.99 0.506611
\(416\) 21828.1 2.57262
\(417\) 2865.12 0.336465
\(418\) 3126.18 0.365805
\(419\) −9370.98 −1.09261 −0.546304 0.837587i \(-0.683966\pi\)
−0.546304 + 0.837587i \(0.683966\pi\)
\(420\) −5698.22 −0.662011
\(421\) −283.696 −0.0328421 −0.0164210 0.999865i \(-0.505227\pi\)
−0.0164210 + 0.999865i \(0.505227\pi\)
\(422\) 18858.8 2.17544
\(423\) 6060.04 0.696571
\(424\) −19946.8 −2.28468
\(425\) 0 0
\(426\) −10221.2 −1.16249
\(427\) −22235.5 −2.52003
\(428\) 878.487 0.0992133
\(429\) −1317.95 −0.148325
\(430\) −3478.63 −0.390126
\(431\) 8243.79 0.921321 0.460661 0.887576i \(-0.347613\pi\)
0.460661 + 0.887576i \(0.347613\pi\)
\(432\) 16778.4 1.86864
\(433\) −1340.39 −0.148765 −0.0743824 0.997230i \(-0.523699\pi\)
−0.0743824 + 0.997230i \(0.523699\pi\)
\(434\) −34026.0 −3.76336
\(435\) 1167.25 0.128656
\(436\) −38443.4 −4.22272
\(437\) −1890.64 −0.206960
\(438\) 4899.11 0.534449
\(439\) −4717.90 −0.512923 −0.256461 0.966554i \(-0.582557\pi\)
−0.256461 + 0.966554i \(0.582557\pi\)
\(440\) 7527.27 0.815565
\(441\) −10446.4 −1.12800
\(442\) 0 0
\(443\) 14002.0 1.50171 0.750855 0.660467i \(-0.229642\pi\)
0.750855 + 0.660467i \(0.229642\pi\)
\(444\) 3413.85 0.364897
\(445\) −9493.38 −1.01130
\(446\) 5004.71 0.531345
\(447\) 382.403 0.0404632
\(448\) 32542.3 3.43187
\(449\) 4574.27 0.480787 0.240393 0.970676i \(-0.422724\pi\)
0.240393 + 0.970676i \(0.422724\pi\)
\(450\) −11592.9 −1.21443
\(451\) 5047.46 0.526997
\(452\) −279.440 −0.0290791
\(453\) 3119.16 0.323512
\(454\) −26693.3 −2.75942
\(455\) −7065.42 −0.727982
\(456\) 3525.43 0.362046
\(457\) −1535.79 −0.157202 −0.0786009 0.996906i \(-0.525045\pi\)
−0.0786009 + 0.996906i \(0.525045\pi\)
\(458\) 971.318 0.0990976
\(459\) 0 0
\(460\) −7432.72 −0.753374
\(461\) 14514.7 1.46642 0.733209 0.680003i \(-0.238022\pi\)
0.733209 + 0.680003i \(0.238022\pi\)
\(462\) −4612.34 −0.464471
\(463\) 145.386 0.0145932 0.00729659 0.999973i \(-0.497677\pi\)
0.00729659 + 0.999973i \(0.497677\pi\)
\(464\) −23177.4 −2.31894
\(465\) −2267.29 −0.226114
\(466\) −12260.2 −1.21876
\(467\) 6038.32 0.598330 0.299165 0.954201i \(-0.403292\pi\)
0.299165 + 0.954201i \(0.403292\pi\)
\(468\) 21287.8 2.10262
\(469\) −17953.4 −1.76762
\(470\) 7987.46 0.783903
\(471\) −1789.01 −0.175017
\(472\) −4200.45 −0.409622
\(473\) −2029.31 −0.197268
\(474\) 2258.11 0.218815
\(475\) −2801.20 −0.270585
\(476\) 0 0
\(477\) −7144.50 −0.685795
\(478\) −4334.42 −0.414753
\(479\) −9142.21 −0.872063 −0.436031 0.899931i \(-0.643616\pi\)
−0.436031 + 0.899931i \(0.643616\pi\)
\(480\) 5090.17 0.484028
\(481\) 4232.95 0.401260
\(482\) −30154.5 −2.84958
\(483\) 2789.43 0.262782
\(484\) −20307.0 −1.90712
\(485\) −1522.59 −0.142551
\(486\) 16869.0 1.57447
\(487\) −4376.57 −0.407231 −0.203615 0.979051i \(-0.565269\pi\)
−0.203615 + 0.979051i \(0.565269\pi\)
\(488\) 54082.6 5.01681
\(489\) −2061.75 −0.190666
\(490\) −13768.9 −1.26942
\(491\) 9490.30 0.872284 0.436142 0.899878i \(-0.356345\pi\)
0.436142 + 0.899878i \(0.356345\pi\)
\(492\) 9293.62 0.851603
\(493\) 0 0
\(494\) 7137.16 0.650032
\(495\) 2696.10 0.244809
\(496\) 45020.4 4.07556
\(497\) −31965.4 −2.88500
\(498\) 6383.24 0.574377
\(499\) 2331.32 0.209147 0.104573 0.994517i \(-0.466652\pi\)
0.104573 + 0.994517i \(0.466652\pi\)
\(500\) −26415.1 −2.36264
\(501\) 4474.80 0.399041
\(502\) −19678.4 −1.74959
\(503\) −4372.95 −0.387635 −0.193817 0.981038i \(-0.562087\pi\)
−0.193817 + 0.981038i \(0.562087\pi\)
\(504\) 45628.6 4.03266
\(505\) 6008.23 0.529431
\(506\) −6016.30 −0.528572
\(507\) 642.919 0.0563176
\(508\) −25578.8 −2.23401
\(509\) 4983.33 0.433954 0.216977 0.976177i \(-0.430380\pi\)
0.216977 + 0.976177i \(0.430380\pi\)
\(510\) 0 0
\(511\) 15321.3 1.32637
\(512\) 5576.30 0.481328
\(513\) 2669.40 0.229740
\(514\) 963.460 0.0826778
\(515\) 9739.03 0.833307
\(516\) −3736.46 −0.318776
\(517\) 4659.60 0.396381
\(518\) 14813.7 1.25652
\(519\) 3024.09 0.255767
\(520\) 17185.0 1.44925
\(521\) 6480.02 0.544903 0.272452 0.962169i \(-0.412166\pi\)
0.272452 + 0.962169i \(0.412166\pi\)
\(522\) −15260.7 −1.27959
\(523\) −15597.0 −1.30403 −0.652017 0.758204i \(-0.726077\pi\)
−0.652017 + 0.758204i \(0.726077\pi\)
\(524\) −27044.0 −2.25462
\(525\) 4132.87 0.343568
\(526\) 10892.4 0.902907
\(527\) 0 0
\(528\) 6102.67 0.503001
\(529\) −8528.48 −0.700952
\(530\) −9416.83 −0.771775
\(531\) −1504.50 −0.122957
\(532\) 18001.3 1.46702
\(533\) 11523.5 0.936468
\(534\) −14148.7 −1.14658
\(535\) 254.010 0.0205268
\(536\) 43667.5 3.51894
\(537\) 3470.19 0.278864
\(538\) 10899.0 0.873402
\(539\) −8032.29 −0.641883
\(540\) 10494.2 0.836297
\(541\) 10629.6 0.844739 0.422370 0.906424i \(-0.361198\pi\)
0.422370 + 0.906424i \(0.361198\pi\)
\(542\) −27438.8 −2.17453
\(543\) −4791.55 −0.378683
\(544\) 0 0
\(545\) −11115.7 −0.873660
\(546\) −10530.1 −0.825359
\(547\) −12199.5 −0.953588 −0.476794 0.879015i \(-0.658201\pi\)
−0.476794 + 0.879015i \(0.658201\pi\)
\(548\) −12222.2 −0.952747
\(549\) 19371.1 1.50590
\(550\) −8913.85 −0.691068
\(551\) −3687.46 −0.285102
\(552\) −6784.64 −0.523140
\(553\) 7061.91 0.543044
\(554\) 21476.3 1.64701
\(555\) 987.098 0.0754954
\(556\) −35583.4 −2.71416
\(557\) −17588.3 −1.33796 −0.668978 0.743282i \(-0.733268\pi\)
−0.668978 + 0.743282i \(0.733268\pi\)
\(558\) 29642.8 2.24889
\(559\) −4632.96 −0.350542
\(560\) 32715.8 2.46874
\(561\) 0 0
\(562\) 35340.4 2.65257
\(563\) −4001.08 −0.299513 −0.149756 0.988723i \(-0.547849\pi\)
−0.149756 + 0.988723i \(0.547849\pi\)
\(564\) 8579.48 0.640534
\(565\) −80.7988 −0.00601634
\(566\) 582.229 0.0432384
\(567\) 14267.7 1.05677
\(568\) 77748.3 5.74339
\(569\) −8055.37 −0.593495 −0.296747 0.954956i \(-0.595902\pi\)
−0.296747 + 0.954956i \(0.595902\pi\)
\(570\) 1664.34 0.122301
\(571\) −12525.5 −0.917998 −0.458999 0.888437i \(-0.651792\pi\)
−0.458999 + 0.888437i \(0.651792\pi\)
\(572\) 16368.3 1.19649
\(573\) 403.772 0.0294378
\(574\) 40327.9 2.93250
\(575\) 5390.88 0.390983
\(576\) −28350.2 −2.05080
\(577\) 7783.77 0.561599 0.280799 0.959766i \(-0.409400\pi\)
0.280799 + 0.959766i \(0.409400\pi\)
\(578\) 0 0
\(579\) 5323.43 0.382097
\(580\) −14496.6 −1.03782
\(581\) 19962.7 1.42546
\(582\) −2269.22 −0.161619
\(583\) −5493.44 −0.390249
\(584\) −37265.4 −2.64050
\(585\) 6155.25 0.435023
\(586\) −48882.1 −3.44591
\(587\) 17282.7 1.21522 0.607608 0.794237i \(-0.292129\pi\)
0.607608 + 0.794237i \(0.292129\pi\)
\(588\) −14789.4 −1.03725
\(589\) 7162.62 0.501070
\(590\) −1983.02 −0.138372
\(591\) −6025.15 −0.419360
\(592\) −19600.3 −1.36076
\(593\) 22285.6 1.54327 0.771636 0.636065i \(-0.219439\pi\)
0.771636 + 0.636065i \(0.219439\pi\)
\(594\) 8494.41 0.586751
\(595\) 0 0
\(596\) −4749.25 −0.326404
\(597\) −109.557 −0.00751070
\(598\) −13735.4 −0.939266
\(599\) 14494.3 0.988681 0.494340 0.869268i \(-0.335410\pi\)
0.494340 + 0.869268i \(0.335410\pi\)
\(600\) −10052.2 −0.683967
\(601\) −13389.8 −0.908790 −0.454395 0.890800i \(-0.650144\pi\)
−0.454395 + 0.890800i \(0.650144\pi\)
\(602\) −16213.6 −1.09770
\(603\) 15640.7 1.05628
\(604\) −38738.4 −2.60967
\(605\) −5871.68 −0.394575
\(606\) 8954.49 0.600250
\(607\) −5081.09 −0.339761 −0.169881 0.985465i \(-0.554338\pi\)
−0.169881 + 0.985465i \(0.554338\pi\)
\(608\) −16080.4 −1.07261
\(609\) 5440.45 0.362000
\(610\) 25532.2 1.69470
\(611\) 10638.0 0.704365
\(612\) 0 0
\(613\) −29310.1 −1.93120 −0.965598 0.260040i \(-0.916264\pi\)
−0.965598 + 0.260040i \(0.916264\pi\)
\(614\) 23921.1 1.57227
\(615\) 2687.20 0.176193
\(616\) 35084.1 2.29477
\(617\) 9815.75 0.640466 0.320233 0.947339i \(-0.396239\pi\)
0.320233 + 0.947339i \(0.396239\pi\)
\(618\) 14514.8 0.944773
\(619\) −10696.9 −0.694579 −0.347290 0.937758i \(-0.612898\pi\)
−0.347290 + 0.937758i \(0.612898\pi\)
\(620\) 28158.5 1.82399
\(621\) −5137.22 −0.331964
\(622\) −50291.5 −3.24197
\(623\) −44247.9 −2.84552
\(624\) 13932.5 0.893827
\(625\) 3533.62 0.226151
\(626\) −55000.8 −3.51162
\(627\) 970.917 0.0618416
\(628\) 22218.5 1.41181
\(629\) 0 0
\(630\) 21541.1 1.36225
\(631\) −6104.87 −0.385152 −0.192576 0.981282i \(-0.561684\pi\)
−0.192576 + 0.981282i \(0.561684\pi\)
\(632\) −17176.4 −1.08108
\(633\) 5857.10 0.367771
\(634\) −40393.7 −2.53034
\(635\) −7395.98 −0.462205
\(636\) −10114.8 −0.630625
\(637\) −18337.9 −1.14062
\(638\) −11734.1 −0.728144
\(639\) 27847.7 1.72400
\(640\) −12868.5 −0.794800
\(641\) 3753.93 0.231312 0.115656 0.993289i \(-0.463103\pi\)
0.115656 + 0.993289i \(0.463103\pi\)
\(642\) 378.569 0.0232725
\(643\) −22480.9 −1.37879 −0.689394 0.724386i \(-0.742123\pi\)
−0.689394 + 0.724386i \(0.742123\pi\)
\(644\) −34643.3 −2.11978
\(645\) −1080.38 −0.0659532
\(646\) 0 0
\(647\) 20385.1 1.23867 0.619337 0.785126i \(-0.287402\pi\)
0.619337 + 0.785126i \(0.287402\pi\)
\(648\) −34702.9 −2.10379
\(649\) −1156.82 −0.0699680
\(650\) −20350.5 −1.22802
\(651\) −10567.7 −0.636220
\(652\) 25605.9 1.53804
\(653\) −7944.24 −0.476083 −0.238041 0.971255i \(-0.576505\pi\)
−0.238041 + 0.971255i \(0.576505\pi\)
\(654\) −16566.5 −0.990524
\(655\) −7819.63 −0.466470
\(656\) −53358.5 −3.17576
\(657\) −13347.6 −0.792603
\(658\) 37229.0 2.20568
\(659\) −672.385 −0.0397457 −0.0198728 0.999803i \(-0.506326\pi\)
−0.0198728 + 0.999803i \(0.506326\pi\)
\(660\) 3816.98 0.225115
\(661\) −7967.64 −0.468843 −0.234421 0.972135i \(-0.575320\pi\)
−0.234421 + 0.972135i \(0.575320\pi\)
\(662\) −33642.0 −1.97512
\(663\) 0 0
\(664\) −48554.5 −2.83777
\(665\) 5205.00 0.303520
\(666\) −12905.4 −0.750865
\(667\) 7096.48 0.411959
\(668\) −55574.7 −3.21894
\(669\) 1554.34 0.0898271
\(670\) 20615.3 1.18871
\(671\) 14894.6 0.856928
\(672\) 23724.9 1.36192
\(673\) −20798.2 −1.19125 −0.595626 0.803262i \(-0.703096\pi\)
−0.595626 + 0.803262i \(0.703096\pi\)
\(674\) 2485.04 0.142018
\(675\) −7611.38 −0.434018
\(676\) −7984.72 −0.454297
\(677\) 19180.9 1.08890 0.544449 0.838794i \(-0.316739\pi\)
0.544449 + 0.838794i \(0.316739\pi\)
\(678\) −120.420 −0.00682110
\(679\) −7096.68 −0.401098
\(680\) 0 0
\(681\) −8290.29 −0.466497
\(682\) 22792.5 1.27972
\(683\) 7081.83 0.396748 0.198374 0.980126i \(-0.436434\pi\)
0.198374 + 0.980126i \(0.436434\pi\)
\(684\) −15682.4 −0.876655
\(685\) −3533.98 −0.197119
\(686\) −13104.1 −0.729326
\(687\) 301.668 0.0167530
\(688\) 21452.5 1.18876
\(689\) −12541.7 −0.693468
\(690\) −3203.00 −0.176719
\(691\) 27665.8 1.52309 0.761547 0.648110i \(-0.224440\pi\)
0.761547 + 0.648110i \(0.224440\pi\)
\(692\) −37557.7 −2.06319
\(693\) 12566.3 0.688823
\(694\) 39847.0 2.17950
\(695\) −10288.8 −0.561546
\(696\) −13232.6 −0.720662
\(697\) 0 0
\(698\) −34230.7 −1.85623
\(699\) −3807.72 −0.206039
\(700\) −51328.1 −2.77146
\(701\) −7813.26 −0.420974 −0.210487 0.977597i \(-0.567505\pi\)
−0.210487 + 0.977597i \(0.567505\pi\)
\(702\) 19393.0 1.04265
\(703\) −3118.36 −0.167299
\(704\) −21798.6 −1.16700
\(705\) 2480.71 0.132523
\(706\) 42986.0 2.29150
\(707\) 28003.9 1.48967
\(708\) −2129.99 −0.113065
\(709\) 21810.2 1.15529 0.577645 0.816288i \(-0.303972\pi\)
0.577645 + 0.816288i \(0.303972\pi\)
\(710\) 36704.7 1.94015
\(711\) −6152.20 −0.324509
\(712\) 107623. 5.66479
\(713\) −13784.4 −0.724023
\(714\) 0 0
\(715\) 4732.81 0.247548
\(716\) −43098.0 −2.24951
\(717\) −1346.17 −0.0701164
\(718\) 14615.6 0.759677
\(719\) 2333.31 0.121026 0.0605131 0.998167i \(-0.480726\pi\)
0.0605131 + 0.998167i \(0.480726\pi\)
\(720\) −28501.4 −1.47526
\(721\) 45392.9 2.34469
\(722\) 31451.3 1.62119
\(723\) −9365.26 −0.481740
\(724\) 59508.6 3.05472
\(725\) 10514.3 0.538606
\(726\) −8750.97 −0.447354
\(727\) 545.182 0.0278125 0.0139063 0.999903i \(-0.495573\pi\)
0.0139063 + 0.999903i \(0.495573\pi\)
\(728\) 80097.8 4.07778
\(729\) −8607.59 −0.437311
\(730\) −17592.9 −0.891975
\(731\) 0 0
\(732\) 27424.6 1.38476
\(733\) −2753.41 −0.138744 −0.0693721 0.997591i \(-0.522100\pi\)
−0.0693721 + 0.997591i \(0.522100\pi\)
\(734\) 14996.4 0.754122
\(735\) −4276.29 −0.214603
\(736\) 30946.6 1.54987
\(737\) 12026.2 0.601074
\(738\) −35132.9 −1.75238
\(739\) 25776.3 1.28308 0.641540 0.767089i \(-0.278296\pi\)
0.641540 + 0.767089i \(0.278296\pi\)
\(740\) −12259.2 −0.608999
\(741\) 2216.63 0.109892
\(742\) −43891.1 −2.17156
\(743\) 17597.0 0.868872 0.434436 0.900703i \(-0.356948\pi\)
0.434436 + 0.900703i \(0.356948\pi\)
\(744\) 25703.3 1.26657
\(745\) −1373.22 −0.0675314
\(746\) −48101.3 −2.36074
\(747\) −17391.1 −0.851818
\(748\) 0 0
\(749\) 1183.92 0.0577565
\(750\) −11383.1 −0.554204
\(751\) −1515.51 −0.0736373 −0.0368186 0.999322i \(-0.511722\pi\)
−0.0368186 + 0.999322i \(0.511722\pi\)
\(752\) −49258.3 −2.38865
\(753\) −6111.65 −0.295778
\(754\) −26789.1 −1.29390
\(755\) −11201.0 −0.539929
\(756\) 48912.9 2.35310
\(757\) 19464.1 0.934523 0.467261 0.884119i \(-0.345241\pi\)
0.467261 + 0.884119i \(0.345241\pi\)
\(758\) 41674.6 1.99695
\(759\) −1868.52 −0.0893583
\(760\) −12659.9 −0.604242
\(761\) 11937.8 0.568652 0.284326 0.958728i \(-0.408230\pi\)
0.284326 + 0.958728i \(0.408230\pi\)
\(762\) −11022.7 −0.524031
\(763\) −51809.5 −2.45823
\(764\) −5014.65 −0.237465
\(765\) 0 0
\(766\) −40447.2 −1.90786
\(767\) −2641.05 −0.124332
\(768\) −3624.68 −0.170305
\(769\) 26884.3 1.26069 0.630345 0.776315i \(-0.282913\pi\)
0.630345 + 0.776315i \(0.282913\pi\)
\(770\) 16563.1 0.775184
\(771\) 299.227 0.0139772
\(772\) −66114.3 −3.08226
\(773\) −12551.4 −0.584013 −0.292006 0.956416i \(-0.594323\pi\)
−0.292006 + 0.956416i \(0.594323\pi\)
\(774\) 14125.0 0.655959
\(775\) −20423.1 −0.946607
\(776\) 17261.0 0.798497
\(777\) 4600.79 0.212423
\(778\) −58249.9 −2.68427
\(779\) −8489.19 −0.390445
\(780\) 8714.27 0.400027
\(781\) 21412.2 0.981036
\(782\) 0 0
\(783\) −10019.5 −0.457303
\(784\) 84912.2 3.86808
\(785\) 6424.38 0.292097
\(786\) −11654.1 −0.528867
\(787\) −17781.7 −0.805400 −0.402700 0.915332i \(-0.631928\pi\)
−0.402700 + 0.915332i \(0.631928\pi\)
\(788\) 74829.3 3.38285
\(789\) 3382.90 0.152642
\(790\) −8108.94 −0.365194
\(791\) −376.597 −0.0169283
\(792\) −30564.6 −1.37129
\(793\) 34004.7 1.52275
\(794\) 11259.1 0.503235
\(795\) −2924.64 −0.130473
\(796\) 1360.65 0.0605865
\(797\) 36529.5 1.62352 0.811758 0.583995i \(-0.198511\pi\)
0.811758 + 0.583995i \(0.198511\pi\)
\(798\) 7757.37 0.344120
\(799\) 0 0
\(800\) 45850.9 2.02634
\(801\) 38548.0 1.70041
\(802\) 53677.9 2.36338
\(803\) −10263.1 −0.451028
\(804\) 22143.2 0.971308
\(805\) −10017.0 −0.438573
\(806\) 52035.9 2.27405
\(807\) 3384.97 0.147654
\(808\) −68112.9 −2.96560
\(809\) 19732.6 0.857555 0.428777 0.903410i \(-0.358945\pi\)
0.428777 + 0.903410i \(0.358945\pi\)
\(810\) −16383.1 −0.710671
\(811\) 14943.7 0.647035 0.323517 0.946222i \(-0.395135\pi\)
0.323517 + 0.946222i \(0.395135\pi\)
\(812\) −67567.6 −2.92014
\(813\) −8521.82 −0.367618
\(814\) −9923.07 −0.427277
\(815\) 7403.80 0.318213
\(816\) 0 0
\(817\) 3413.04 0.146153
\(818\) 2760.68 0.118001
\(819\) 28689.2 1.22403
\(820\) −33373.7 −1.42129
\(821\) −31002.2 −1.31789 −0.658943 0.752193i \(-0.728996\pi\)
−0.658943 + 0.752193i \(0.728996\pi\)
\(822\) −5266.94 −0.223486
\(823\) −27393.7 −1.16025 −0.580124 0.814528i \(-0.696996\pi\)
−0.580124 + 0.814528i \(0.696996\pi\)
\(824\) −110408. −4.66775
\(825\) −2768.42 −0.116829
\(826\) −9242.70 −0.389340
\(827\) −674.496 −0.0283610 −0.0141805 0.999899i \(-0.504514\pi\)
−0.0141805 + 0.999899i \(0.504514\pi\)
\(828\) 30180.6 1.26673
\(829\) 42790.2 1.79272 0.896359 0.443328i \(-0.146202\pi\)
0.896359 + 0.443328i \(0.146202\pi\)
\(830\) −22922.4 −0.958613
\(831\) 6670.02 0.278436
\(832\) −49766.8 −2.07374
\(833\) 0 0
\(834\) −15334.1 −0.636661
\(835\) −16069.2 −0.665983
\(836\) −12058.3 −0.498857
\(837\) 19462.1 0.803715
\(838\) 50153.2 2.06744
\(839\) 25582.3 1.05268 0.526340 0.850274i \(-0.323564\pi\)
0.526340 + 0.850274i \(0.323564\pi\)
\(840\) 18678.3 0.767218
\(841\) −10548.2 −0.432498
\(842\) 1518.33 0.0621440
\(843\) 10975.9 0.448433
\(844\) −72742.2 −2.96669
\(845\) −2308.74 −0.0939919
\(846\) −32433.2 −1.31806
\(847\) −27367.4 −1.11022
\(848\) 58073.2 2.35170
\(849\) 180.826 0.00730971
\(850\) 0 0
\(851\) 6001.24 0.241739
\(852\) 39425.2 1.58531
\(853\) 26776.3 1.07480 0.537400 0.843328i \(-0.319407\pi\)
0.537400 + 0.843328i \(0.319407\pi\)
\(854\) 119004. 4.76841
\(855\) −4534.49 −0.181376
\(856\) −2879.61 −0.114980
\(857\) −2239.80 −0.0892767 −0.0446383 0.999003i \(-0.514214\pi\)
−0.0446383 + 0.999003i \(0.514214\pi\)
\(858\) 7053.64 0.280661
\(859\) −13841.5 −0.549784 −0.274892 0.961475i \(-0.588642\pi\)
−0.274892 + 0.961475i \(0.588642\pi\)
\(860\) 13417.7 0.532024
\(861\) 12524.9 0.495756
\(862\) −44120.5 −1.74333
\(863\) 41377.2 1.63209 0.816046 0.577987i \(-0.196161\pi\)
0.816046 + 0.577987i \(0.196161\pi\)
\(864\) −43693.4 −1.72046
\(865\) −10859.6 −0.426864
\(866\) 7173.74 0.281494
\(867\) 0 0
\(868\) 131245. 5.13219
\(869\) −4730.46 −0.184660
\(870\) −6247.07 −0.243443
\(871\) 27456.2 1.06810
\(872\) 126014. 4.89379
\(873\) 6182.49 0.239686
\(874\) 10118.7 0.391612
\(875\) −35599.2 −1.37540
\(876\) −18896.8 −0.728840
\(877\) 12605.0 0.485337 0.242668 0.970109i \(-0.421977\pi\)
0.242668 + 0.970109i \(0.421977\pi\)
\(878\) 25250.1 0.970556
\(879\) −15181.6 −0.582552
\(880\) −21914.9 −0.839489
\(881\) 20007.8 0.765132 0.382566 0.923928i \(-0.375040\pi\)
0.382566 + 0.923928i \(0.375040\pi\)
\(882\) 55908.8 2.13441
\(883\) 43309.8 1.65061 0.825307 0.564685i \(-0.191002\pi\)
0.825307 + 0.564685i \(0.191002\pi\)
\(884\) 0 0
\(885\) −615.877 −0.0233926
\(886\) −74938.5 −2.84154
\(887\) −39472.3 −1.49420 −0.747098 0.664714i \(-0.768553\pi\)
−0.747098 + 0.664714i \(0.768553\pi\)
\(888\) −11190.3 −0.422886
\(889\) −34472.1 −1.30051
\(890\) 50808.3 1.91359
\(891\) −9557.31 −0.359351
\(892\) −19304.1 −0.724607
\(893\) −7836.86 −0.293673
\(894\) −2046.61 −0.0765647
\(895\) −12461.6 −0.465413
\(896\) −59979.1 −2.23634
\(897\) −4265.87 −0.158789
\(898\) −24481.4 −0.909748
\(899\) −26884.7 −0.997392
\(900\) 44716.1 1.65615
\(901\) 0 0
\(902\) −27013.9 −0.997187
\(903\) −5035.56 −0.185574
\(904\) 915.984 0.0337004
\(905\) 17206.6 0.632008
\(906\) −16693.7 −0.612152
\(907\) 8879.42 0.325068 0.162534 0.986703i \(-0.448033\pi\)
0.162534 + 0.986703i \(0.448033\pi\)
\(908\) 102961. 3.76309
\(909\) −24396.5 −0.890187
\(910\) 37813.9 1.37749
\(911\) −9321.10 −0.338992 −0.169496 0.985531i \(-0.554214\pi\)
−0.169496 + 0.985531i \(0.554214\pi\)
\(912\) −10263.9 −0.372667
\(913\) −13372.1 −0.484724
\(914\) 8219.50 0.297458
\(915\) 7929.68 0.286500
\(916\) −3746.56 −0.135142
\(917\) −36446.7 −1.31251
\(918\) 0 0
\(919\) −8783.98 −0.315296 −0.157648 0.987495i \(-0.550391\pi\)
−0.157648 + 0.987495i \(0.550391\pi\)
\(920\) 24363.9 0.873101
\(921\) 7429.31 0.265803
\(922\) −77682.5 −2.77477
\(923\) 48884.6 1.74329
\(924\) 17790.7 0.633410
\(925\) 8891.52 0.316056
\(926\) −778.100 −0.0276133
\(927\) −39545.4 −1.40112
\(928\) 60357.5 2.13506
\(929\) 24381.1 0.861054 0.430527 0.902578i \(-0.358328\pi\)
0.430527 + 0.902578i \(0.358328\pi\)
\(930\) 12134.4 0.427854
\(931\) 13509.3 0.475563
\(932\) 47289.9 1.66205
\(933\) −15619.3 −0.548075
\(934\) −32316.9 −1.13216
\(935\) 0 0
\(936\) −69779.7 −2.43677
\(937\) 23120.9 0.806113 0.403056 0.915175i \(-0.367948\pi\)
0.403056 + 0.915175i \(0.367948\pi\)
\(938\) 96086.3 3.34470
\(939\) −17081.9 −0.593661
\(940\) −30809.2 −1.06903
\(941\) −46768.5 −1.62020 −0.810101 0.586291i \(-0.800588\pi\)
−0.810101 + 0.586291i \(0.800588\pi\)
\(942\) 9574.70 0.331168
\(943\) 16337.3 0.564175
\(944\) 12229.2 0.421638
\(945\) 14142.9 0.486846
\(946\) 10860.8 0.373271
\(947\) −38093.5 −1.30715 −0.653576 0.756861i \(-0.726732\pi\)
−0.653576 + 0.756861i \(0.726732\pi\)
\(948\) −8709.95 −0.298403
\(949\) −23430.8 −0.801471
\(950\) 14992.0 0.512003
\(951\) −12545.3 −0.427770
\(952\) 0 0
\(953\) −31247.7 −1.06213 −0.531066 0.847330i \(-0.678208\pi\)
−0.531066 + 0.847330i \(0.678208\pi\)
\(954\) 38237.1 1.29767
\(955\) −1449.96 −0.0491305
\(956\) 16718.7 0.565608
\(957\) −3644.31 −0.123097
\(958\) 48928.8 1.65012
\(959\) −16471.6 −0.554637
\(960\) −11605.3 −0.390166
\(961\) 22430.5 0.752928
\(962\) −22654.6 −0.759266
\(963\) −1031.41 −0.0345138
\(964\) 116312. 3.88604
\(965\) −19116.6 −0.637705
\(966\) −14929.0 −0.497238
\(967\) −48567.3 −1.61512 −0.807558 0.589788i \(-0.799211\pi\)
−0.807558 + 0.589788i \(0.799211\pi\)
\(968\) 66564.8 2.21020
\(969\) 0 0
\(970\) 8148.86 0.269736
\(971\) 16286.5 0.538267 0.269133 0.963103i \(-0.413263\pi\)
0.269133 + 0.963103i \(0.413263\pi\)
\(972\) −65066.9 −2.14714
\(973\) −47955.1 −1.58003
\(974\) 23423.3 0.770565
\(975\) −6320.38 −0.207604
\(976\) −157456. −5.16398
\(977\) 12003.7 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(978\) 11034.4 0.360779
\(979\) 29639.7 0.967610
\(980\) 53109.3 1.73114
\(981\) 45135.4 1.46897
\(982\) −50791.8 −1.65054
\(983\) −10008.2 −0.324731 −0.162365 0.986731i \(-0.551912\pi\)
−0.162365 + 0.986731i \(0.551912\pi\)
\(984\) −30463.8 −0.986940
\(985\) 21636.5 0.699895
\(986\) 0 0
\(987\) 11562.4 0.372883
\(988\) −27529.4 −0.886464
\(989\) −6568.35 −0.211184
\(990\) −14429.4 −0.463229
\(991\) −13384.7 −0.429040 −0.214520 0.976720i \(-0.568819\pi\)
−0.214520 + 0.976720i \(0.568819\pi\)
\(992\) −117240. −3.75239
\(993\) −10448.4 −0.333907
\(994\) 171078. 5.45902
\(995\) 393.425 0.0125351
\(996\) −24621.4 −0.783292
\(997\) −21615.7 −0.686635 −0.343317 0.939219i \(-0.611551\pi\)
−0.343317 + 0.939219i \(0.611551\pi\)
\(998\) −12477.1 −0.395748
\(999\) −8473.14 −0.268347
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.4.a.h.1.1 12
17.4 even 4 289.4.b.f.288.23 24
17.13 even 4 289.4.b.f.288.24 24
17.16 even 2 289.4.a.i.1.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
289.4.a.h.1.1 12 1.1 even 1 trivial
289.4.a.i.1.1 yes 12 17.16 even 2
289.4.b.f.288.23 24 17.4 even 4
289.4.b.f.288.24 24 17.13 even 4