Properties

Label 289.4.a.g.1.7
Level $289$
Weight $4$
Character 289.1
Self dual yes
Analytic conductor $17.052$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [289,4,Mod(1,289)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(289, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("289.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 289.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.0515519917\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 58 x^{10} + 204 x^{9} + 1191 x^{8} - 3456 x^{7} - 10364 x^{6} + 21448 x^{5} + 38476 x^{4} - 32336 x^{3} - 57024 x^{2} - 15776 x + 1156 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 17)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(3.07564\) of defining polynomial
Character \(\chi\) \(=\) 289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.227878 q^{2} -8.23916 q^{3} -7.94807 q^{4} -2.75144 q^{5} -1.87752 q^{6} +21.5220 q^{7} -3.63421 q^{8} +40.8838 q^{9} +O(q^{10})\) \(q+0.227878 q^{2} -8.23916 q^{3} -7.94807 q^{4} -2.75144 q^{5} -1.87752 q^{6} +21.5220 q^{7} -3.63421 q^{8} +40.8838 q^{9} -0.626993 q^{10} +54.5384 q^{11} +65.4854 q^{12} -52.4827 q^{13} +4.90438 q^{14} +22.6696 q^{15} +62.7564 q^{16} +9.31650 q^{18} -19.6304 q^{19} +21.8687 q^{20} -177.323 q^{21} +12.4281 q^{22} +13.9352 q^{23} +29.9428 q^{24} -117.430 q^{25} -11.9596 q^{26} -114.391 q^{27} -171.058 q^{28} +70.0221 q^{29} +5.16589 q^{30} -167.013 q^{31} +43.3745 q^{32} -449.350 q^{33} -59.2165 q^{35} -324.947 q^{36} +198.637 q^{37} -4.47334 q^{38} +432.414 q^{39} +9.99933 q^{40} -434.310 q^{41} -40.4079 q^{42} -127.141 q^{43} -433.475 q^{44} -112.489 q^{45} +3.17552 q^{46} +207.303 q^{47} -517.060 q^{48} +120.195 q^{49} -26.7596 q^{50} +417.136 q^{52} +312.078 q^{53} -26.0671 q^{54} -150.059 q^{55} -78.2154 q^{56} +161.738 q^{57} +15.9565 q^{58} -576.743 q^{59} -180.179 q^{60} +78.3874 q^{61} -38.0586 q^{62} +879.899 q^{63} -492.167 q^{64} +144.403 q^{65} -102.397 q^{66} -359.997 q^{67} -114.814 q^{69} -13.4941 q^{70} -213.190 q^{71} -148.580 q^{72} -29.0468 q^{73} +45.2650 q^{74} +967.521 q^{75} +156.024 q^{76} +1173.77 q^{77} +98.5374 q^{78} +855.508 q^{79} -172.671 q^{80} -161.379 q^{81} -98.9696 q^{82} +13.6871 q^{83} +1409.38 q^{84} -28.9727 q^{86} -576.923 q^{87} -198.204 q^{88} -651.126 q^{89} -25.6338 q^{90} -1129.53 q^{91} -110.758 q^{92} +1376.05 q^{93} +47.2397 q^{94} +54.0120 q^{95} -357.369 q^{96} -1198.65 q^{97} +27.3897 q^{98} +2229.73 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{2} + 16 q^{4} - 96 q^{8} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 8 q^{2} + 16 q^{4} - 96 q^{8} - 36 q^{9} - 8 q^{13} - 192 q^{15} - 184 q^{16} - 352 q^{19} - 256 q^{21} - 492 q^{25} - 784 q^{26} + 744 q^{30} + 24 q^{32} - 1400 q^{33} - 632 q^{35} - 856 q^{36} - 624 q^{38} - 1664 q^{42} - 1200 q^{43} - 1512 q^{47} - 1052 q^{49} - 2856 q^{50} + 792 q^{52} - 2504 q^{53} - 1424 q^{55} - 3408 q^{59} - 2808 q^{60} + 272 q^{64} + 272 q^{66} - 1080 q^{67} - 344 q^{69} + 2600 q^{70} + 248 q^{72} + 896 q^{76} + 848 q^{77} - 2404 q^{81} - 2960 q^{83} + 4768 q^{84} - 1200 q^{86} - 160 q^{87} - 2144 q^{89} + 3800 q^{93} + 5984 q^{94} + 3464 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.227878 0.0805670 0.0402835 0.999188i \(-0.487174\pi\)
0.0402835 + 0.999188i \(0.487174\pi\)
\(3\) −8.23916 −1.58563 −0.792814 0.609464i \(-0.791385\pi\)
−0.792814 + 0.609464i \(0.791385\pi\)
\(4\) −7.94807 −0.993509
\(5\) −2.75144 −0.246097 −0.123048 0.992401i \(-0.539267\pi\)
−0.123048 + 0.992401i \(0.539267\pi\)
\(6\) −1.87752 −0.127749
\(7\) 21.5220 1.16208 0.581038 0.813876i \(-0.302647\pi\)
0.581038 + 0.813876i \(0.302647\pi\)
\(8\) −3.63421 −0.160611
\(9\) 40.8838 1.51421
\(10\) −0.626993 −0.0198273
\(11\) 54.5384 1.49490 0.747452 0.664316i \(-0.231277\pi\)
0.747452 + 0.664316i \(0.231277\pi\)
\(12\) 65.4854 1.57533
\(13\) −52.4827 −1.11970 −0.559850 0.828594i \(-0.689141\pi\)
−0.559850 + 0.828594i \(0.689141\pi\)
\(14\) 4.90438 0.0936250
\(15\) 22.6696 0.390217
\(16\) 62.7564 0.980569
\(17\) 0 0
\(18\) 9.31650 0.121996
\(19\) −19.6304 −0.237028 −0.118514 0.992952i \(-0.537813\pi\)
−0.118514 + 0.992952i \(0.537813\pi\)
\(20\) 21.8687 0.244499
\(21\) −177.323 −1.84262
\(22\) 12.4281 0.120440
\(23\) 13.9352 0.126334 0.0631670 0.998003i \(-0.479880\pi\)
0.0631670 + 0.998003i \(0.479880\pi\)
\(24\) 29.9428 0.254669
\(25\) −117.430 −0.939436
\(26\) −11.9596 −0.0902108
\(27\) −114.391 −0.815351
\(28\) −171.058 −1.15453
\(29\) 70.0221 0.448372 0.224186 0.974546i \(-0.428028\pi\)
0.224186 + 0.974546i \(0.428028\pi\)
\(30\) 5.16589 0.0314386
\(31\) −167.013 −0.967627 −0.483813 0.875171i \(-0.660749\pi\)
−0.483813 + 0.875171i \(0.660749\pi\)
\(32\) 43.3745 0.239612
\(33\) −449.350 −2.37036
\(34\) 0 0
\(35\) −59.2165 −0.285983
\(36\) −324.947 −1.50438
\(37\) 198.637 0.882588 0.441294 0.897363i \(-0.354520\pi\)
0.441294 + 0.897363i \(0.354520\pi\)
\(38\) −4.47334 −0.0190966
\(39\) 432.414 1.77543
\(40\) 9.99933 0.0395258
\(41\) −434.310 −1.65434 −0.827168 0.561954i \(-0.810050\pi\)
−0.827168 + 0.561954i \(0.810050\pi\)
\(42\) −40.4079 −0.148454
\(43\) −127.141 −0.450904 −0.225452 0.974254i \(-0.572386\pi\)
−0.225452 + 0.974254i \(0.572386\pi\)
\(44\) −433.475 −1.48520
\(45\) −112.489 −0.372643
\(46\) 3.17552 0.0101784
\(47\) 207.303 0.643366 0.321683 0.946847i \(-0.395751\pi\)
0.321683 + 0.946847i \(0.395751\pi\)
\(48\) −517.060 −1.55482
\(49\) 120.195 0.350422
\(50\) −26.7596 −0.0756875
\(51\) 0 0
\(52\) 417.136 1.11243
\(53\) 312.078 0.808817 0.404408 0.914579i \(-0.367477\pi\)
0.404408 + 0.914579i \(0.367477\pi\)
\(54\) −26.0671 −0.0656903
\(55\) −150.059 −0.367891
\(56\) −78.2154 −0.186642
\(57\) 161.738 0.375838
\(58\) 15.9565 0.0361239
\(59\) −576.743 −1.27264 −0.636318 0.771427i \(-0.719543\pi\)
−0.636318 + 0.771427i \(0.719543\pi\)
\(60\) −180.179 −0.387684
\(61\) 78.3874 0.164533 0.0822663 0.996610i \(-0.473784\pi\)
0.0822663 + 0.996610i \(0.473784\pi\)
\(62\) −38.0586 −0.0779587
\(63\) 879.899 1.75963
\(64\) −492.167 −0.961264
\(65\) 144.403 0.275554
\(66\) −102.397 −0.190973
\(67\) −359.997 −0.656428 −0.328214 0.944603i \(-0.606447\pi\)
−0.328214 + 0.944603i \(0.606447\pi\)
\(68\) 0 0
\(69\) −114.814 −0.200319
\(70\) −13.4941 −0.0230408
\(71\) −213.190 −0.356352 −0.178176 0.983999i \(-0.557020\pi\)
−0.178176 + 0.983999i \(0.557020\pi\)
\(72\) −148.580 −0.243199
\(73\) −29.0468 −0.0465708 −0.0232854 0.999729i \(-0.507413\pi\)
−0.0232854 + 0.999729i \(0.507413\pi\)
\(74\) 45.2650 0.0711074
\(75\) 967.521 1.48960
\(76\) 156.024 0.235489
\(77\) 1173.77 1.73719
\(78\) 98.5374 0.143041
\(79\) 855.508 1.21838 0.609191 0.793024i \(-0.291494\pi\)
0.609191 + 0.793024i \(0.291494\pi\)
\(80\) −172.671 −0.241315
\(81\) −161.379 −0.221371
\(82\) −98.9696 −0.133285
\(83\) 13.6871 0.0181006 0.00905030 0.999959i \(-0.497119\pi\)
0.00905030 + 0.999959i \(0.497119\pi\)
\(84\) 1409.38 1.83066
\(85\) 0 0
\(86\) −28.9727 −0.0363280
\(87\) −576.923 −0.710950
\(88\) −198.204 −0.240098
\(89\) −651.126 −0.775497 −0.387748 0.921765i \(-0.626747\pi\)
−0.387748 + 0.921765i \(0.626747\pi\)
\(90\) −25.6338 −0.0300227
\(91\) −1129.53 −1.30118
\(92\) −110.758 −0.125514
\(93\) 1376.05 1.53430
\(94\) 47.2397 0.0518341
\(95\) 54.0120 0.0583318
\(96\) −357.369 −0.379936
\(97\) −1198.65 −1.25469 −0.627345 0.778742i \(-0.715858\pi\)
−0.627345 + 0.778742i \(0.715858\pi\)
\(98\) 27.3897 0.0282325
\(99\) 2229.73 2.26360
\(100\) 933.339 0.933339
\(101\) −89.2435 −0.0879214 −0.0439607 0.999033i \(-0.513998\pi\)
−0.0439607 + 0.999033i \(0.513998\pi\)
\(102\) 0 0
\(103\) −1242.17 −1.18830 −0.594150 0.804354i \(-0.702511\pi\)
−0.594150 + 0.804354i \(0.702511\pi\)
\(104\) 190.733 0.179836
\(105\) 487.894 0.453463
\(106\) 71.1158 0.0651639
\(107\) −1537.58 −1.38919 −0.694596 0.719400i \(-0.744417\pi\)
−0.694596 + 0.719400i \(0.744417\pi\)
\(108\) 909.184 0.810058
\(109\) −103.880 −0.0912839 −0.0456419 0.998958i \(-0.514533\pi\)
−0.0456419 + 0.998958i \(0.514533\pi\)
\(110\) −34.1952 −0.0296398
\(111\) −1636.60 −1.39946
\(112\) 1350.64 1.13950
\(113\) −368.211 −0.306534 −0.153267 0.988185i \(-0.548980\pi\)
−0.153267 + 0.988185i \(0.548980\pi\)
\(114\) 36.8566 0.0302801
\(115\) −38.3418 −0.0310904
\(116\) −556.541 −0.445461
\(117\) −2145.69 −1.69546
\(118\) −131.427 −0.102532
\(119\) 0 0
\(120\) −82.3860 −0.0626732
\(121\) 1643.43 1.23474
\(122\) 17.8628 0.0132559
\(123\) 3578.35 2.62316
\(124\) 1327.43 0.961346
\(125\) 667.031 0.477289
\(126\) 200.509 0.141768
\(127\) −1253.43 −0.875779 −0.437890 0.899029i \(-0.644274\pi\)
−0.437890 + 0.899029i \(0.644274\pi\)
\(128\) −459.150 −0.317059
\(129\) 1047.54 0.714965
\(130\) 32.9063 0.0222006
\(131\) −1954.81 −1.30376 −0.651879 0.758323i \(-0.726019\pi\)
−0.651879 + 0.758323i \(0.726019\pi\)
\(132\) 3571.47 2.35497
\(133\) −422.486 −0.275445
\(134\) −82.0354 −0.0528864
\(135\) 314.739 0.200655
\(136\) 0 0
\(137\) 1749.91 1.09127 0.545637 0.838022i \(-0.316288\pi\)
0.545637 + 0.838022i \(0.316288\pi\)
\(138\) −26.1636 −0.0161391
\(139\) −206.309 −0.125891 −0.0629456 0.998017i \(-0.520049\pi\)
−0.0629456 + 0.998017i \(0.520049\pi\)
\(140\) 470.657 0.284127
\(141\) −1708.00 −1.02014
\(142\) −48.5812 −0.0287102
\(143\) −2862.32 −1.67384
\(144\) 2565.72 1.48479
\(145\) −192.662 −0.110343
\(146\) −6.61911 −0.00375207
\(147\) −990.304 −0.555639
\(148\) −1578.78 −0.876859
\(149\) −2013.39 −1.10700 −0.553501 0.832849i \(-0.686708\pi\)
−0.553501 + 0.832849i \(0.686708\pi\)
\(150\) 220.477 0.120012
\(151\) 75.6527 0.0407717 0.0203859 0.999792i \(-0.493511\pi\)
0.0203859 + 0.999792i \(0.493511\pi\)
\(152\) 71.3412 0.0380693
\(153\) 0 0
\(154\) 267.477 0.139960
\(155\) 459.527 0.238130
\(156\) −3436.85 −1.76390
\(157\) 2301.81 1.17009 0.585046 0.811000i \(-0.301076\pi\)
0.585046 + 0.811000i \(0.301076\pi\)
\(158\) 194.951 0.0981613
\(159\) −2571.26 −1.28248
\(160\) −119.342 −0.0589678
\(161\) 299.912 0.146810
\(162\) −36.7748 −0.0178352
\(163\) −1893.00 −0.909640 −0.454820 0.890583i \(-0.650296\pi\)
−0.454820 + 0.890583i \(0.650296\pi\)
\(164\) 3451.93 1.64360
\(165\) 1236.36 0.583337
\(166\) 3.11898 0.00145831
\(167\) 108.478 0.0502650 0.0251325 0.999684i \(-0.491999\pi\)
0.0251325 + 0.999684i \(0.491999\pi\)
\(168\) 644.429 0.295945
\(169\) 557.436 0.253726
\(170\) 0 0
\(171\) −802.566 −0.358911
\(172\) 1010.53 0.447977
\(173\) 2755.78 1.21109 0.605543 0.795813i \(-0.292956\pi\)
0.605543 + 0.795813i \(0.292956\pi\)
\(174\) −131.468 −0.0572791
\(175\) −2527.31 −1.09170
\(176\) 3422.63 1.46586
\(177\) 4751.88 2.01793
\(178\) −148.377 −0.0624794
\(179\) 2006.15 0.837691 0.418846 0.908058i \(-0.362435\pi\)
0.418846 + 0.908058i \(0.362435\pi\)
\(180\) 894.073 0.370224
\(181\) −2424.21 −0.995525 −0.497762 0.867313i \(-0.665845\pi\)
−0.497762 + 0.867313i \(0.665845\pi\)
\(182\) −257.395 −0.104832
\(183\) −645.847 −0.260887
\(184\) −50.6433 −0.0202906
\(185\) −546.539 −0.217202
\(186\) 313.571 0.123614
\(187\) 0 0
\(188\) −1647.66 −0.639190
\(189\) −2461.91 −0.947500
\(190\) 12.3081 0.00469961
\(191\) −4153.64 −1.57354 −0.786772 0.617243i \(-0.788249\pi\)
−0.786772 + 0.617243i \(0.788249\pi\)
\(192\) 4055.04 1.52421
\(193\) −2076.42 −0.774425 −0.387212 0.921991i \(-0.626562\pi\)
−0.387212 + 0.921991i \(0.626562\pi\)
\(194\) −273.147 −0.101087
\(195\) −1189.76 −0.436926
\(196\) −955.317 −0.348148
\(197\) 3803.50 1.37558 0.687788 0.725912i \(-0.258582\pi\)
0.687788 + 0.725912i \(0.258582\pi\)
\(198\) 508.107 0.182372
\(199\) 3621.89 1.29020 0.645098 0.764100i \(-0.276817\pi\)
0.645098 + 0.764100i \(0.276817\pi\)
\(200\) 426.764 0.150884
\(201\) 2966.08 1.04085
\(202\) −20.3366 −0.00708356
\(203\) 1507.01 0.521042
\(204\) 0 0
\(205\) 1194.98 0.407127
\(206\) −283.063 −0.0957377
\(207\) 569.722 0.191297
\(208\) −3293.63 −1.09794
\(209\) −1070.61 −0.354334
\(210\) 111.180 0.0365341
\(211\) 632.505 0.206367 0.103183 0.994662i \(-0.467097\pi\)
0.103183 + 0.994662i \(0.467097\pi\)
\(212\) −2480.42 −0.803567
\(213\) 1756.51 0.565041
\(214\) −350.380 −0.111923
\(215\) 349.822 0.110966
\(216\) 415.719 0.130954
\(217\) −3594.45 −1.12446
\(218\) −23.6721 −0.00735447
\(219\) 239.321 0.0738439
\(220\) 1192.68 0.365503
\(221\) 0 0
\(222\) −372.946 −0.112750
\(223\) −533.811 −0.160299 −0.0801494 0.996783i \(-0.525540\pi\)
−0.0801494 + 0.996783i \(0.525540\pi\)
\(224\) 933.504 0.278448
\(225\) −4800.96 −1.42251
\(226\) −83.9071 −0.0246965
\(227\) −588.842 −0.172171 −0.0860855 0.996288i \(-0.527436\pi\)
−0.0860855 + 0.996288i \(0.527436\pi\)
\(228\) −1285.51 −0.373398
\(229\) 2641.15 0.762148 0.381074 0.924545i \(-0.375554\pi\)
0.381074 + 0.924545i \(0.375554\pi\)
\(230\) −8.73725 −0.00250486
\(231\) −9670.90 −2.75454
\(232\) −254.475 −0.0720134
\(233\) 383.377 0.107794 0.0538968 0.998547i \(-0.482836\pi\)
0.0538968 + 0.998547i \(0.482836\pi\)
\(234\) −488.955 −0.136598
\(235\) −570.382 −0.158330
\(236\) 4583.99 1.26438
\(237\) −7048.67 −1.93190
\(238\) 0 0
\(239\) −4344.62 −1.17586 −0.587929 0.808913i \(-0.700056\pi\)
−0.587929 + 0.808913i \(0.700056\pi\)
\(240\) 1422.66 0.382635
\(241\) 2053.67 0.548915 0.274458 0.961599i \(-0.411502\pi\)
0.274458 + 0.961599i \(0.411502\pi\)
\(242\) 374.502 0.0994790
\(243\) 4418.18 1.16636
\(244\) −623.029 −0.163465
\(245\) −330.709 −0.0862377
\(246\) 815.426 0.211340
\(247\) 1030.26 0.265400
\(248\) 606.961 0.155411
\(249\) −112.770 −0.0287008
\(250\) 152.002 0.0384537
\(251\) 907.953 0.228325 0.114162 0.993462i \(-0.463582\pi\)
0.114162 + 0.993462i \(0.463582\pi\)
\(252\) −6993.50 −1.74821
\(253\) 760.001 0.188857
\(254\) −285.629 −0.0705589
\(255\) 0 0
\(256\) 3832.71 0.935720
\(257\) −7490.82 −1.81815 −0.909075 0.416633i \(-0.863210\pi\)
−0.909075 + 0.416633i \(0.863210\pi\)
\(258\) 238.711 0.0576026
\(259\) 4275.06 1.02564
\(260\) −1147.73 −0.273765
\(261\) 2862.77 0.678930
\(262\) −445.457 −0.105040
\(263\) −7860.69 −1.84301 −0.921503 0.388371i \(-0.873038\pi\)
−0.921503 + 0.388371i \(0.873038\pi\)
\(264\) 1633.03 0.380706
\(265\) −858.666 −0.199047
\(266\) −96.2751 −0.0221917
\(267\) 5364.73 1.22965
\(268\) 2861.29 0.652167
\(269\) −7553.86 −1.71215 −0.856073 0.516856i \(-0.827102\pi\)
−0.856073 + 0.516856i \(0.827102\pi\)
\(270\) 71.7221 0.0161662
\(271\) −6394.46 −1.43334 −0.716672 0.697411i \(-0.754335\pi\)
−0.716672 + 0.697411i \(0.754335\pi\)
\(272\) 0 0
\(273\) 9306.39 2.06318
\(274\) 398.765 0.0879206
\(275\) −6404.42 −1.40437
\(276\) 912.551 0.199018
\(277\) 6762.61 1.46688 0.733440 0.679754i \(-0.237913\pi\)
0.733440 + 0.679754i \(0.237913\pi\)
\(278\) −47.0132 −0.0101427
\(279\) −6828.12 −1.46519
\(280\) 215.205 0.0459320
\(281\) −6298.04 −1.33704 −0.668522 0.743692i \(-0.733073\pi\)
−0.668522 + 0.743692i \(0.733073\pi\)
\(282\) −389.216 −0.0821895
\(283\) −2672.62 −0.561381 −0.280690 0.959798i \(-0.590563\pi\)
−0.280690 + 0.959798i \(0.590563\pi\)
\(284\) 1694.45 0.354039
\(285\) −445.014 −0.0924924
\(286\) −652.260 −0.134856
\(287\) −9347.20 −1.92247
\(288\) 1773.31 0.362824
\(289\) 0 0
\(290\) −43.9033 −0.00888998
\(291\) 9875.90 1.98947
\(292\) 230.866 0.0462685
\(293\) −2183.30 −0.435323 −0.217661 0.976024i \(-0.569843\pi\)
−0.217661 + 0.976024i \(0.569843\pi\)
\(294\) −225.668 −0.0447661
\(295\) 1586.88 0.313191
\(296\) −721.890 −0.141753
\(297\) −6238.68 −1.21887
\(298\) −458.806 −0.0891877
\(299\) −731.356 −0.141456
\(300\) −7689.93 −1.47993
\(301\) −2736.33 −0.523985
\(302\) 17.2396 0.00328485
\(303\) 735.292 0.139411
\(304\) −1231.94 −0.232422
\(305\) −215.679 −0.0404909
\(306\) 0 0
\(307\) −3905.30 −0.726018 −0.363009 0.931786i \(-0.618250\pi\)
−0.363009 + 0.931786i \(0.618250\pi\)
\(308\) −9329.23 −1.72592
\(309\) 10234.5 1.88420
\(310\) 104.716 0.0191854
\(311\) −7367.41 −1.34330 −0.671652 0.740867i \(-0.734415\pi\)
−0.671652 + 0.740867i \(0.734415\pi\)
\(312\) −1571.48 −0.285153
\(313\) 2326.83 0.420192 0.210096 0.977681i \(-0.432622\pi\)
0.210096 + 0.977681i \(0.432622\pi\)
\(314\) 524.532 0.0942708
\(315\) −2420.99 −0.433039
\(316\) −6799.64 −1.21047
\(317\) 7470.26 1.32357 0.661785 0.749694i \(-0.269799\pi\)
0.661785 + 0.749694i \(0.269799\pi\)
\(318\) −585.934 −0.103326
\(319\) 3818.89 0.670272
\(320\) 1354.17 0.236564
\(321\) 12668.4 2.20274
\(322\) 68.3433 0.0118280
\(323\) 0 0
\(324\) 1282.66 0.219934
\(325\) 6163.02 1.05189
\(326\) −431.373 −0.0732869
\(327\) 855.888 0.144742
\(328\) 1578.37 0.265705
\(329\) 4461.56 0.747641
\(330\) 281.739 0.0469977
\(331\) 9353.18 1.55316 0.776582 0.630016i \(-0.216952\pi\)
0.776582 + 0.630016i \(0.216952\pi\)
\(332\) −108.786 −0.0179831
\(333\) 8121.04 1.33643
\(334\) 24.7197 0.00404970
\(335\) 990.512 0.161545
\(336\) −11128.1 −1.80682
\(337\) 6944.09 1.12246 0.561229 0.827660i \(-0.310329\pi\)
0.561229 + 0.827660i \(0.310329\pi\)
\(338\) 127.027 0.0204419
\(339\) 3033.75 0.486049
\(340\) 0 0
\(341\) −9108.62 −1.44651
\(342\) −182.887 −0.0289164
\(343\) −4795.20 −0.754859
\(344\) 462.058 0.0724201
\(345\) 315.904 0.0492977
\(346\) 627.981 0.0975735
\(347\) −2409.98 −0.372838 −0.186419 0.982470i \(-0.559688\pi\)
−0.186419 + 0.982470i \(0.559688\pi\)
\(348\) 4585.43 0.706335
\(349\) 11005.3 1.68797 0.843985 0.536367i \(-0.180204\pi\)
0.843985 + 0.536367i \(0.180204\pi\)
\(350\) −575.919 −0.0879547
\(351\) 6003.53 0.912948
\(352\) 2365.57 0.358197
\(353\) 7713.23 1.16299 0.581493 0.813552i \(-0.302469\pi\)
0.581493 + 0.813552i \(0.302469\pi\)
\(354\) 1082.85 0.162578
\(355\) 586.580 0.0876970
\(356\) 5175.20 0.770463
\(357\) 0 0
\(358\) 457.157 0.0674902
\(359\) −10220.1 −1.50249 −0.751245 0.660023i \(-0.770546\pi\)
−0.751245 + 0.660023i \(0.770546\pi\)
\(360\) 408.810 0.0598505
\(361\) −6473.65 −0.943818
\(362\) −552.423 −0.0802064
\(363\) −13540.5 −1.95783
\(364\) 8977.59 1.29273
\(365\) 79.9205 0.0114609
\(366\) −147.174 −0.0210189
\(367\) 10322.4 1.46819 0.734096 0.679046i \(-0.237606\pi\)
0.734096 + 0.679046i \(0.237606\pi\)
\(368\) 874.521 0.123879
\(369\) −17756.2 −2.50502
\(370\) −124.544 −0.0174993
\(371\) 6716.54 0.939907
\(372\) −10936.9 −1.52434
\(373\) 2744.09 0.380921 0.190461 0.981695i \(-0.439002\pi\)
0.190461 + 0.981695i \(0.439002\pi\)
\(374\) 0 0
\(375\) −5495.78 −0.756802
\(376\) −753.382 −0.103332
\(377\) −3674.95 −0.502041
\(378\) −561.014 −0.0763372
\(379\) 6405.00 0.868082 0.434041 0.900893i \(-0.357087\pi\)
0.434041 + 0.900893i \(0.357087\pi\)
\(380\) −429.291 −0.0579531
\(381\) 10327.2 1.38866
\(382\) −946.523 −0.126776
\(383\) 3692.83 0.492676 0.246338 0.969184i \(-0.420773\pi\)
0.246338 + 0.969184i \(0.420773\pi\)
\(384\) 3783.01 0.502737
\(385\) −3229.57 −0.427517
\(386\) −473.170 −0.0623930
\(387\) −5198.01 −0.682765
\(388\) 9526.99 1.24654
\(389\) −2132.95 −0.278007 −0.139004 0.990292i \(-0.544390\pi\)
−0.139004 + 0.990292i \(0.544390\pi\)
\(390\) −271.120 −0.0352018
\(391\) 0 0
\(392\) −436.813 −0.0562816
\(393\) 16106.0 2.06727
\(394\) 866.734 0.110826
\(395\) −2353.88 −0.299840
\(396\) −17722.1 −2.24891
\(397\) 2364.86 0.298965 0.149483 0.988764i \(-0.452239\pi\)
0.149483 + 0.988764i \(0.452239\pi\)
\(398\) 825.348 0.103947
\(399\) 3480.93 0.436753
\(400\) −7369.46 −0.921182
\(401\) 2063.74 0.257003 0.128502 0.991709i \(-0.458983\pi\)
0.128502 + 0.991709i \(0.458983\pi\)
\(402\) 675.903 0.0838581
\(403\) 8765.30 1.08345
\(404\) 709.314 0.0873507
\(405\) 444.026 0.0544786
\(406\) 343.415 0.0419788
\(407\) 10833.4 1.31938
\(408\) 0 0
\(409\) 9245.03 1.11769 0.558847 0.829271i \(-0.311244\pi\)
0.558847 + 0.829271i \(0.311244\pi\)
\(410\) 272.309 0.0328009
\(411\) −14417.8 −1.73035
\(412\) 9872.87 1.18059
\(413\) −12412.6 −1.47890
\(414\) 129.827 0.0154122
\(415\) −37.6592 −0.00445449
\(416\) −2276.41 −0.268294
\(417\) 1699.81 0.199617
\(418\) −243.969 −0.0285476
\(419\) 4155.37 0.484494 0.242247 0.970215i \(-0.422116\pi\)
0.242247 + 0.970215i \(0.422116\pi\)
\(420\) −3877.82 −0.450519
\(421\) 4609.26 0.533591 0.266795 0.963753i \(-0.414035\pi\)
0.266795 + 0.963753i \(0.414035\pi\)
\(422\) 144.134 0.0166264
\(423\) 8475.32 0.974194
\(424\) −1134.16 −0.129905
\(425\) 0 0
\(426\) 400.269 0.0455237
\(427\) 1687.05 0.191199
\(428\) 12220.8 1.38017
\(429\) 23583.1 2.65409
\(430\) 79.7167 0.00894018
\(431\) 17330.4 1.93683 0.968416 0.249341i \(-0.0802141\pi\)
0.968416 + 0.249341i \(0.0802141\pi\)
\(432\) −7178.74 −0.799508
\(433\) 11353.9 1.26012 0.630061 0.776545i \(-0.283030\pi\)
0.630061 + 0.776545i \(0.283030\pi\)
\(434\) −819.095 −0.0905940
\(435\) 1587.37 0.174962
\(436\) 825.649 0.0906914
\(437\) −273.553 −0.0299447
\(438\) 54.5359 0.00594938
\(439\) −5128.08 −0.557516 −0.278758 0.960361i \(-0.589923\pi\)
−0.278758 + 0.960361i \(0.589923\pi\)
\(440\) 545.347 0.0590873
\(441\) 4914.02 0.530614
\(442\) 0 0
\(443\) −3133.00 −0.336012 −0.168006 0.985786i \(-0.553733\pi\)
−0.168006 + 0.985786i \(0.553733\pi\)
\(444\) 13007.8 1.39037
\(445\) 1791.54 0.190847
\(446\) −121.644 −0.0129148
\(447\) 16588.6 1.75529
\(448\) −10592.4 −1.11706
\(449\) −11749.6 −1.23496 −0.617480 0.786586i \(-0.711846\pi\)
−0.617480 + 0.786586i \(0.711846\pi\)
\(450\) −1094.03 −0.114607
\(451\) −23686.6 −2.47307
\(452\) 2926.57 0.304545
\(453\) −623.315 −0.0646488
\(454\) −134.184 −0.0138713
\(455\) 3107.84 0.320215
\(456\) −587.791 −0.0603637
\(457\) −12408.7 −1.27014 −0.635072 0.772453i \(-0.719030\pi\)
−0.635072 + 0.772453i \(0.719030\pi\)
\(458\) 601.859 0.0614039
\(459\) 0 0
\(460\) 304.744 0.0308886
\(461\) −7370.49 −0.744638 −0.372319 0.928105i \(-0.621437\pi\)
−0.372319 + 0.928105i \(0.621437\pi\)
\(462\) −2203.78 −0.221925
\(463\) 11446.9 1.14899 0.574495 0.818508i \(-0.305198\pi\)
0.574495 + 0.818508i \(0.305198\pi\)
\(464\) 4394.34 0.439659
\(465\) −3786.12 −0.377585
\(466\) 87.3632 0.00868460
\(467\) 4418.29 0.437803 0.218901 0.975747i \(-0.429753\pi\)
0.218901 + 0.975747i \(0.429753\pi\)
\(468\) 17054.1 1.68446
\(469\) −7747.85 −0.762820
\(470\) −129.977 −0.0127562
\(471\) −18965.0 −1.85533
\(472\) 2096.01 0.204399
\(473\) −6934.08 −0.674058
\(474\) −1606.23 −0.155647
\(475\) 2305.19 0.222673
\(476\) 0 0
\(477\) 12758.9 1.22472
\(478\) −990.042 −0.0947353
\(479\) 282.615 0.0269583 0.0134791 0.999909i \(-0.495709\pi\)
0.0134791 + 0.999909i \(0.495709\pi\)
\(480\) 983.281 0.0935009
\(481\) −10425.0 −0.988233
\(482\) 467.986 0.0442244
\(483\) −2471.02 −0.232786
\(484\) −13062.1 −1.22672
\(485\) 3298.03 0.308775
\(486\) 1006.80 0.0939703
\(487\) −7602.13 −0.707362 −0.353681 0.935366i \(-0.615070\pi\)
−0.353681 + 0.935366i \(0.615070\pi\)
\(488\) −284.877 −0.0264257
\(489\) 15596.7 1.44235
\(490\) −75.3613 −0.00694791
\(491\) −12834.9 −1.17970 −0.589850 0.807513i \(-0.700813\pi\)
−0.589850 + 0.807513i \(0.700813\pi\)
\(492\) −28441.0 −2.60613
\(493\) 0 0
\(494\) 234.773 0.0213825
\(495\) −6134.99 −0.557065
\(496\) −10481.1 −0.948825
\(497\) −4588.27 −0.414108
\(498\) −25.6977 −0.00231234
\(499\) −2717.22 −0.243767 −0.121883 0.992544i \(-0.538893\pi\)
−0.121883 + 0.992544i \(0.538893\pi\)
\(500\) −5301.61 −0.474191
\(501\) −893.765 −0.0797016
\(502\) 206.902 0.0183954
\(503\) 8214.44 0.728159 0.364079 0.931368i \(-0.381384\pi\)
0.364079 + 0.931368i \(0.381384\pi\)
\(504\) −3197.74 −0.282616
\(505\) 245.548 0.0216372
\(506\) 173.187 0.0152157
\(507\) −4592.80 −0.402315
\(508\) 9962.35 0.870094
\(509\) −8243.18 −0.717824 −0.358912 0.933371i \(-0.616852\pi\)
−0.358912 + 0.933371i \(0.616852\pi\)
\(510\) 0 0
\(511\) −625.144 −0.0541188
\(512\) 4546.59 0.392447
\(513\) 2245.54 0.193261
\(514\) −1706.99 −0.146483
\(515\) 3417.77 0.292436
\(516\) −8325.90 −0.710325
\(517\) 11306.0 0.961771
\(518\) 974.192 0.0826323
\(519\) −22705.3 −1.92033
\(520\) −524.792 −0.0442570
\(521\) −8953.14 −0.752868 −0.376434 0.926443i \(-0.622850\pi\)
−0.376434 + 0.926443i \(0.622850\pi\)
\(522\) 652.361 0.0546993
\(523\) −15665.1 −1.30973 −0.654864 0.755747i \(-0.727274\pi\)
−0.654864 + 0.755747i \(0.727274\pi\)
\(524\) 15536.9 1.29530
\(525\) 20822.9 1.73102
\(526\) −1791.28 −0.148485
\(527\) 0 0
\(528\) −28199.6 −2.32430
\(529\) −11972.8 −0.984040
\(530\) −195.671 −0.0160366
\(531\) −23579.4 −1.92704
\(532\) 3357.95 0.273657
\(533\) 22793.8 1.85236
\(534\) 1222.50 0.0990691
\(535\) 4230.57 0.341875
\(536\) 1308.31 0.105430
\(537\) −16529.0 −1.32827
\(538\) −1721.36 −0.137942
\(539\) 6555.23 0.523847
\(540\) −2501.57 −0.199353
\(541\) −9269.95 −0.736684 −0.368342 0.929690i \(-0.620074\pi\)
−0.368342 + 0.929690i \(0.620074\pi\)
\(542\) −1457.16 −0.115480
\(543\) 19973.4 1.57853
\(544\) 0 0
\(545\) 285.821 0.0224647
\(546\) 2120.72 0.166224
\(547\) 15692.5 1.22662 0.613312 0.789840i \(-0.289837\pi\)
0.613312 + 0.789840i \(0.289837\pi\)
\(548\) −13908.4 −1.08419
\(549\) 3204.77 0.249137
\(550\) −1459.42 −0.113146
\(551\) −1374.56 −0.106277
\(552\) 417.259 0.0321734
\(553\) 18412.2 1.41585
\(554\) 1541.05 0.118182
\(555\) 4503.02 0.344401
\(556\) 1639.76 0.125074
\(557\) 3540.22 0.269307 0.134654 0.990893i \(-0.457008\pi\)
0.134654 + 0.990893i \(0.457008\pi\)
\(558\) −1555.98 −0.118046
\(559\) 6672.72 0.504877
\(560\) −3716.21 −0.280426
\(561\) 0 0
\(562\) −1435.18 −0.107722
\(563\) 315.012 0.0235811 0.0117906 0.999930i \(-0.496247\pi\)
0.0117906 + 0.999930i \(0.496247\pi\)
\(564\) 13575.3 1.01352
\(565\) 1013.11 0.0754371
\(566\) −609.031 −0.0452287
\(567\) −3473.20 −0.257250
\(568\) 774.777 0.0572340
\(569\) −8531.61 −0.628583 −0.314291 0.949327i \(-0.601767\pi\)
−0.314291 + 0.949327i \(0.601767\pi\)
\(570\) −101.409 −0.00745183
\(571\) −8828.53 −0.647044 −0.323522 0.946221i \(-0.604867\pi\)
−0.323522 + 0.946221i \(0.604867\pi\)
\(572\) 22749.9 1.66298
\(573\) 34222.5 2.49505
\(574\) −2130.02 −0.154887
\(575\) −1636.40 −0.118683
\(576\) −20121.7 −1.45556
\(577\) 21726.1 1.56754 0.783769 0.621052i \(-0.213295\pi\)
0.783769 + 0.621052i \(0.213295\pi\)
\(578\) 0 0
\(579\) 17108.0 1.22795
\(580\) 1531.29 0.109626
\(581\) 294.572 0.0210343
\(582\) 2250.50 0.160286
\(583\) 17020.3 1.20910
\(584\) 105.562 0.00747978
\(585\) 5903.75 0.417248
\(586\) −497.525 −0.0350726
\(587\) 24674.7 1.73498 0.867489 0.497456i \(-0.165732\pi\)
0.867489 + 0.497456i \(0.165732\pi\)
\(588\) 7871.01 0.552032
\(589\) 3278.54 0.229355
\(590\) 361.614 0.0252329
\(591\) −31337.7 −2.18115
\(592\) 12465.8 0.865439
\(593\) 9437.74 0.653561 0.326781 0.945100i \(-0.394036\pi\)
0.326781 + 0.945100i \(0.394036\pi\)
\(594\) −1421.66 −0.0982007
\(595\) 0 0
\(596\) 16002.6 1.09982
\(597\) −29841.3 −2.04577
\(598\) −166.660 −0.0113967
\(599\) −28257.9 −1.92753 −0.963763 0.266759i \(-0.914047\pi\)
−0.963763 + 0.266759i \(0.914047\pi\)
\(600\) −3516.18 −0.239245
\(601\) −17440.7 −1.18373 −0.591863 0.806038i \(-0.701607\pi\)
−0.591863 + 0.806038i \(0.701607\pi\)
\(602\) −623.549 −0.0422159
\(603\) −14718.0 −0.993972
\(604\) −601.293 −0.0405071
\(605\) −4521.82 −0.303864
\(606\) 167.557 0.0112319
\(607\) 452.598 0.0302642 0.0151321 0.999886i \(-0.495183\pi\)
0.0151321 + 0.999886i \(0.495183\pi\)
\(608\) −851.460 −0.0567948
\(609\) −12416.5 −0.826179
\(610\) −49.1484 −0.00326223
\(611\) −10879.8 −0.720377
\(612\) 0 0
\(613\) −10731.9 −0.707106 −0.353553 0.935415i \(-0.615027\pi\)
−0.353553 + 0.935415i \(0.615027\pi\)
\(614\) −889.932 −0.0584930
\(615\) −9845.62 −0.645551
\(616\) −4265.74 −0.279012
\(617\) −20161.0 −1.31548 −0.657741 0.753244i \(-0.728488\pi\)
−0.657741 + 0.753244i \(0.728488\pi\)
\(618\) 2332.20 0.151804
\(619\) −2592.80 −0.168358 −0.0841790 0.996451i \(-0.526827\pi\)
−0.0841790 + 0.996451i \(0.526827\pi\)
\(620\) −3652.35 −0.236584
\(621\) −1594.05 −0.103007
\(622\) −1678.87 −0.108226
\(623\) −14013.5 −0.901187
\(624\) 27136.7 1.74093
\(625\) 12843.4 0.821977
\(626\) 530.232 0.0338536
\(627\) 8820.95 0.561841
\(628\) −18295.0 −1.16250
\(629\) 0 0
\(630\) −551.690 −0.0348887
\(631\) 20929.5 1.32043 0.660215 0.751077i \(-0.270465\pi\)
0.660215 + 0.751077i \(0.270465\pi\)
\(632\) −3109.10 −0.195685
\(633\) −5211.31 −0.327221
\(634\) 1702.31 0.106636
\(635\) 3448.74 0.215526
\(636\) 20436.6 1.27416
\(637\) −6308.15 −0.392367
\(638\) 870.240 0.0540018
\(639\) −8716.01 −0.539593
\(640\) 1263.32 0.0780270
\(641\) −9715.01 −0.598627 −0.299313 0.954155i \(-0.596758\pi\)
−0.299313 + 0.954155i \(0.596758\pi\)
\(642\) 2886.84 0.177468
\(643\) −24219.0 −1.48539 −0.742693 0.669632i \(-0.766452\pi\)
−0.742693 + 0.669632i \(0.766452\pi\)
\(644\) −2383.72 −0.145857
\(645\) −2882.24 −0.175951
\(646\) 0 0
\(647\) 5143.07 0.312511 0.156256 0.987717i \(-0.450058\pi\)
0.156256 + 0.987717i \(0.450058\pi\)
\(648\) 586.487 0.0355546
\(649\) −31454.6 −1.90247
\(650\) 1404.42 0.0847473
\(651\) 29615.2 1.78297
\(652\) 15045.7 0.903736
\(653\) 2922.83 0.175160 0.0875799 0.996157i \(-0.472087\pi\)
0.0875799 + 0.996157i \(0.472087\pi\)
\(654\) 195.038 0.0116614
\(655\) 5378.54 0.320850
\(656\) −27255.7 −1.62219
\(657\) −1187.54 −0.0705181
\(658\) 1016.69 0.0602352
\(659\) −17368.4 −1.02667 −0.513336 0.858188i \(-0.671591\pi\)
−0.513336 + 0.858188i \(0.671591\pi\)
\(660\) −9826.69 −0.579551
\(661\) 8041.13 0.473167 0.236584 0.971611i \(-0.423972\pi\)
0.236584 + 0.971611i \(0.423972\pi\)
\(662\) 2131.38 0.125134
\(663\) 0 0
\(664\) −49.7417 −0.00290715
\(665\) 1162.44 0.0677860
\(666\) 1850.60 0.107672
\(667\) 975.769 0.0566446
\(668\) −862.189 −0.0499387
\(669\) 4398.16 0.254174
\(670\) 225.716 0.0130152
\(671\) 4275.12 0.245960
\(672\) −7691.29 −0.441515
\(673\) 9076.35 0.519863 0.259931 0.965627i \(-0.416300\pi\)
0.259931 + 0.965627i \(0.416300\pi\)
\(674\) 1582.40 0.0904331
\(675\) 13432.8 0.765970
\(676\) −4430.54 −0.252079
\(677\) −24957.6 −1.41684 −0.708418 0.705794i \(-0.750591\pi\)
−0.708418 + 0.705794i \(0.750591\pi\)
\(678\) 691.324 0.0391595
\(679\) −25797.4 −1.45805
\(680\) 0 0
\(681\) 4851.56 0.272999
\(682\) −2075.65 −0.116541
\(683\) 6068.62 0.339984 0.169992 0.985445i \(-0.445626\pi\)
0.169992 + 0.985445i \(0.445626\pi\)
\(684\) 6378.85 0.356581
\(685\) −4814.77 −0.268559
\(686\) −1092.72 −0.0608167
\(687\) −21760.8 −1.20848
\(688\) −7978.93 −0.442142
\(689\) −16378.7 −0.905631
\(690\) 71.9876 0.00397177
\(691\) 17355.6 0.955484 0.477742 0.878500i \(-0.341455\pi\)
0.477742 + 0.878500i \(0.341455\pi\)
\(692\) −21903.1 −1.20322
\(693\) 47988.2 2.63048
\(694\) −549.182 −0.0300384
\(695\) 567.647 0.0309814
\(696\) 2096.66 0.114186
\(697\) 0 0
\(698\) 2507.87 0.135995
\(699\) −3158.71 −0.170920
\(700\) 20087.3 1.08461
\(701\) 34827.5 1.87649 0.938243 0.345976i \(-0.112452\pi\)
0.938243 + 0.345976i \(0.112452\pi\)
\(702\) 1368.07 0.0735534
\(703\) −3899.34 −0.209198
\(704\) −26842.0 −1.43700
\(705\) 4699.47 0.251053
\(706\) 1757.67 0.0936982
\(707\) −1920.70 −0.102171
\(708\) −37768.3 −2.00483
\(709\) −25687.0 −1.36064 −0.680322 0.732913i \(-0.738160\pi\)
−0.680322 + 0.732913i \(0.738160\pi\)
\(710\) 133.669 0.00706548
\(711\) 34976.4 1.84489
\(712\) 2366.33 0.124553
\(713\) −2327.35 −0.122244
\(714\) 0 0
\(715\) 7875.52 0.411927
\(716\) −15945.0 −0.832254
\(717\) 35796.0 1.86447
\(718\) −2328.92 −0.121051
\(719\) 18176.3 0.942783 0.471392 0.881924i \(-0.343752\pi\)
0.471392 + 0.881924i \(0.343752\pi\)
\(720\) −7059.43 −0.365402
\(721\) −26734.0 −1.38090
\(722\) −1475.20 −0.0760405
\(723\) −16920.5 −0.870375
\(724\) 19267.8 0.989063
\(725\) −8222.66 −0.421217
\(726\) −3085.58 −0.157737
\(727\) −8657.73 −0.441674 −0.220837 0.975311i \(-0.570879\pi\)
−0.220837 + 0.975311i \(0.570879\pi\)
\(728\) 4104.95 0.208983
\(729\) −32044.8 −1.62805
\(730\) 18.2121 0.000923371 0
\(731\) 0 0
\(732\) 5133.24 0.259194
\(733\) 11299.2 0.569366 0.284683 0.958622i \(-0.408112\pi\)
0.284683 + 0.958622i \(0.408112\pi\)
\(734\) 2352.25 0.118288
\(735\) 2724.77 0.136741
\(736\) 604.431 0.0302712
\(737\) −19633.7 −0.981297
\(738\) −4046.25 −0.201822
\(739\) 12566.0 0.625503 0.312752 0.949835i \(-0.398749\pi\)
0.312752 + 0.949835i \(0.398749\pi\)
\(740\) 4343.93 0.215792
\(741\) −8488.47 −0.420825
\(742\) 1530.55 0.0757254
\(743\) 14049.4 0.693707 0.346854 0.937919i \(-0.387250\pi\)
0.346854 + 0.937919i \(0.387250\pi\)
\(744\) −5000.85 −0.246425
\(745\) 5539.72 0.272429
\(746\) 625.317 0.0306897
\(747\) 559.578 0.0274082
\(748\) 0 0
\(749\) −33091.7 −1.61435
\(750\) −1252.37 −0.0609732
\(751\) 8131.49 0.395103 0.197551 0.980293i \(-0.436701\pi\)
0.197551 + 0.980293i \(0.436701\pi\)
\(752\) 13009.6 0.630865
\(753\) −7480.77 −0.362038
\(754\) −837.439 −0.0404479
\(755\) −208.154 −0.0100338
\(756\) 19567.4 0.941350
\(757\) −22973.8 −1.10304 −0.551518 0.834163i \(-0.685951\pi\)
−0.551518 + 0.834163i \(0.685951\pi\)
\(758\) 1459.56 0.0699387
\(759\) −6261.77 −0.299457
\(760\) −196.291 −0.00936872
\(761\) 15071.9 0.717946 0.358973 0.933348i \(-0.383127\pi\)
0.358973 + 0.933348i \(0.383127\pi\)
\(762\) 2353.34 0.111880
\(763\) −2235.71 −0.106079
\(764\) 33013.4 1.56333
\(765\) 0 0
\(766\) 841.515 0.0396934
\(767\) 30269.0 1.42497
\(768\) −31578.3 −1.48370
\(769\) −10392.1 −0.487321 −0.243660 0.969861i \(-0.578348\pi\)
−0.243660 + 0.969861i \(0.578348\pi\)
\(770\) −735.947 −0.0344438
\(771\) 61718.1 2.88291
\(772\) 16503.5 0.769398
\(773\) −34388.6 −1.60009 −0.800047 0.599937i \(-0.795192\pi\)
−0.800047 + 0.599937i \(0.795192\pi\)
\(774\) −1184.51 −0.0550083
\(775\) 19612.3 0.909024
\(776\) 4356.16 0.201517
\(777\) −35222.9 −1.62627
\(778\) −486.052 −0.0223982
\(779\) 8525.69 0.392124
\(780\) 9456.31 0.434090
\(781\) −11627.0 −0.532712
\(782\) 0 0
\(783\) −8009.87 −0.365580
\(784\) 7543.00 0.343613
\(785\) −6333.30 −0.287956
\(786\) 3670.19 0.166554
\(787\) −25621.7 −1.16050 −0.580252 0.814437i \(-0.697046\pi\)
−0.580252 + 0.814437i \(0.697046\pi\)
\(788\) −30230.5 −1.36665
\(789\) 64765.5 2.92232
\(790\) −536.397 −0.0241572
\(791\) −7924.63 −0.356216
\(792\) −8103.32 −0.363559
\(793\) −4113.99 −0.184227
\(794\) 538.900 0.0240867
\(795\) 7074.69 0.315614
\(796\) −28787.0 −1.28182
\(797\) 28437.6 1.26388 0.631940 0.775017i \(-0.282259\pi\)
0.631940 + 0.775017i \(0.282259\pi\)
\(798\) 793.226 0.0351878
\(799\) 0 0
\(800\) −5093.45 −0.225101
\(801\) −26620.5 −1.17427
\(802\) 470.281 0.0207060
\(803\) −1584.16 −0.0696188
\(804\) −23574.6 −1.03409
\(805\) −825.191 −0.0361294
\(806\) 1997.42 0.0872903
\(807\) 62237.5 2.71482
\(808\) 324.330 0.0141211
\(809\) 22354.1 0.971481 0.485741 0.874103i \(-0.338550\pi\)
0.485741 + 0.874103i \(0.338550\pi\)
\(810\) 101.184 0.00438918
\(811\) −6031.85 −0.261167 −0.130584 0.991437i \(-0.541685\pi\)
−0.130584 + 0.991437i \(0.541685\pi\)
\(812\) −11977.8 −0.517660
\(813\) 52685.0 2.27275
\(814\) 2468.68 0.106299
\(815\) 5208.49 0.223859
\(816\) 0 0
\(817\) 2495.84 0.106877
\(818\) 2106.74 0.0900493
\(819\) −46179.5 −1.97026
\(820\) −9497.78 −0.404484
\(821\) −12662.5 −0.538276 −0.269138 0.963102i \(-0.586739\pi\)
−0.269138 + 0.963102i \(0.586739\pi\)
\(822\) −3285.49 −0.139409
\(823\) −11029.9 −0.467166 −0.233583 0.972337i \(-0.575045\pi\)
−0.233583 + 0.972337i \(0.575045\pi\)
\(824\) 4514.32 0.190854
\(825\) 52767.0 2.22680
\(826\) −2828.57 −0.119151
\(827\) 28646.5 1.20452 0.602258 0.798301i \(-0.294268\pi\)
0.602258 + 0.798301i \(0.294268\pi\)
\(828\) −4528.19 −0.190055
\(829\) −15663.7 −0.656239 −0.328120 0.944636i \(-0.606415\pi\)
−0.328120 + 0.944636i \(0.606415\pi\)
\(830\) −8.58169 −0.000358885 0
\(831\) −55718.2 −2.32593
\(832\) 25830.3 1.07633
\(833\) 0 0
\(834\) 387.349 0.0160825
\(835\) −298.470 −0.0123700
\(836\) 8509.30 0.352034
\(837\) 19104.7 0.788955
\(838\) 946.916 0.0390342
\(839\) −22653.3 −0.932158 −0.466079 0.884743i \(-0.654334\pi\)
−0.466079 + 0.884743i \(0.654334\pi\)
\(840\) −1773.11 −0.0728311
\(841\) −19485.9 −0.798963
\(842\) 1050.35 0.0429898
\(843\) 51890.6 2.12005
\(844\) −5027.19 −0.205027
\(845\) −1533.75 −0.0624411
\(846\) 1931.34 0.0784879
\(847\) 35369.9 1.43486
\(848\) 19584.9 0.793100
\(849\) 22020.1 0.890141
\(850\) 0 0
\(851\) 2768.04 0.111501
\(852\) −13960.8 −0.561374
\(853\) 4449.94 0.178620 0.0893102 0.996004i \(-0.471534\pi\)
0.0893102 + 0.996004i \(0.471534\pi\)
\(854\) 384.442 0.0154044
\(855\) 2208.22 0.0883267
\(856\) 5587.89 0.223119
\(857\) 22724.0 0.905762 0.452881 0.891571i \(-0.350396\pi\)
0.452881 + 0.891571i \(0.350396\pi\)
\(858\) 5374.07 0.213832
\(859\) 42049.4 1.67021 0.835104 0.550092i \(-0.185408\pi\)
0.835104 + 0.550092i \(0.185408\pi\)
\(860\) −2780.41 −0.110246
\(861\) 77013.1 3.04831
\(862\) 3949.21 0.156045
\(863\) −7875.51 −0.310644 −0.155322 0.987864i \(-0.549641\pi\)
−0.155322 + 0.987864i \(0.549641\pi\)
\(864\) −4961.63 −0.195368
\(865\) −7582.37 −0.298044
\(866\) 2587.30 0.101524
\(867\) 0 0
\(868\) 28568.9 1.11716
\(869\) 46658.0 1.82136
\(870\) 361.727 0.0140962
\(871\) 18893.6 0.735002
\(872\) 377.524 0.0146612
\(873\) −49005.5 −1.89987
\(874\) −62.3368 −0.00241255
\(875\) 14355.8 0.554646
\(876\) −1902.14 −0.0733646
\(877\) −26126.7 −1.00597 −0.502986 0.864295i \(-0.667765\pi\)
−0.502986 + 0.864295i \(0.667765\pi\)
\(878\) −1168.57 −0.0449174
\(879\) 17988.5 0.690259
\(880\) −9417.18 −0.360742
\(881\) 6400.01 0.244747 0.122373 0.992484i \(-0.460949\pi\)
0.122373 + 0.992484i \(0.460949\pi\)
\(882\) 1119.80 0.0427500
\(883\) 43393.3 1.65379 0.826897 0.562354i \(-0.190104\pi\)
0.826897 + 0.562354i \(0.190104\pi\)
\(884\) 0 0
\(885\) −13074.5 −0.496605
\(886\) −713.941 −0.0270714
\(887\) −20465.4 −0.774704 −0.387352 0.921932i \(-0.626610\pi\)
−0.387352 + 0.921932i \(0.626610\pi\)
\(888\) 5947.77 0.224768
\(889\) −26976.3 −1.01772
\(890\) 408.251 0.0153760
\(891\) −8801.37 −0.330928
\(892\) 4242.77 0.159258
\(893\) −4069.44 −0.152496
\(894\) 3780.18 0.141418
\(895\) −5519.81 −0.206153
\(896\) −9881.81 −0.368446
\(897\) 6025.76 0.224297
\(898\) −2677.47 −0.0994970
\(899\) −11694.6 −0.433856
\(900\) 38158.4 1.41327
\(901\) 0 0
\(902\) −5397.64 −0.199248
\(903\) 22545.1 0.830845
\(904\) 1338.16 0.0492328
\(905\) 6670.07 0.244995
\(906\) −142.040 −0.00520856
\(907\) 30194.7 1.10540 0.552701 0.833379i \(-0.313597\pi\)
0.552701 + 0.833379i \(0.313597\pi\)
\(908\) 4680.16 0.171053
\(909\) −3648.61 −0.133132
\(910\) 708.208 0.0257987
\(911\) 22997.2 0.836368 0.418184 0.908362i \(-0.362667\pi\)
0.418184 + 0.908362i \(0.362667\pi\)
\(912\) 10150.1 0.368535
\(913\) 746.470 0.0270586
\(914\) −2827.68 −0.102332
\(915\) 1777.01 0.0642034
\(916\) −20992.0 −0.757201
\(917\) −42071.3 −1.51507
\(918\) 0 0
\(919\) −40432.8 −1.45131 −0.725656 0.688057i \(-0.758464\pi\)
−0.725656 + 0.688057i \(0.758464\pi\)
\(920\) 139.342 0.00499346
\(921\) 32176.4 1.15119
\(922\) −1679.57 −0.0599932
\(923\) 11188.8 0.399007
\(924\) 76865.0 2.73666
\(925\) −23325.9 −0.829135
\(926\) 2608.49 0.0925707
\(927\) −50784.7 −1.79934
\(928\) 3037.17 0.107435
\(929\) −34086.1 −1.20380 −0.601899 0.798572i \(-0.705589\pi\)
−0.601899 + 0.798572i \(0.705589\pi\)
\(930\) −862.772 −0.0304209
\(931\) −2359.48 −0.0830599
\(932\) −3047.11 −0.107094
\(933\) 60701.3 2.12998
\(934\) 1006.83 0.0352724
\(935\) 0 0
\(936\) 7797.89 0.272310
\(937\) 763.643 0.0266245 0.0133122 0.999911i \(-0.495762\pi\)
0.0133122 + 0.999911i \(0.495762\pi\)
\(938\) −1765.56 −0.0614581
\(939\) −19171.1 −0.666268
\(940\) 4533.44 0.157303
\(941\) 444.965 0.0154149 0.00770746 0.999970i \(-0.497547\pi\)
0.00770746 + 0.999970i \(0.497547\pi\)
\(942\) −4321.70 −0.149478
\(943\) −6052.18 −0.208999
\(944\) −36194.3 −1.24791
\(945\) 6773.80 0.233177
\(946\) −1580.12 −0.0543068
\(947\) −11153.9 −0.382739 −0.191369 0.981518i \(-0.561293\pi\)
−0.191369 + 0.981518i \(0.561293\pi\)
\(948\) 56023.3 1.91936
\(949\) 1524.45 0.0521453
\(950\) 525.302 0.0179401
\(951\) −61548.7 −2.09869
\(952\) 0 0
\(953\) 48344.2 1.64325 0.821627 0.570026i \(-0.193067\pi\)
0.821627 + 0.570026i \(0.193067\pi\)
\(954\) 2907.48 0.0986720
\(955\) 11428.5 0.387244
\(956\) 34531.3 1.16822
\(957\) −31464.5 −1.06280
\(958\) 64.4017 0.00217195
\(959\) 37661.4 1.26814
\(960\) −11157.2 −0.375102
\(961\) −1897.64 −0.0636985
\(962\) −2375.63 −0.0796189
\(963\) −62862.1 −2.10353
\(964\) −16322.7 −0.545352
\(965\) 5713.15 0.190583
\(966\) −563.092 −0.0187548
\(967\) −874.287 −0.0290746 −0.0145373 0.999894i \(-0.504628\pi\)
−0.0145373 + 0.999894i \(0.504628\pi\)
\(968\) −5972.59 −0.198312
\(969\) 0 0
\(970\) 751.547 0.0248770
\(971\) −28878.7 −0.954441 −0.477220 0.878784i \(-0.658356\pi\)
−0.477220 + 0.878784i \(0.658356\pi\)
\(972\) −35116.0 −1.15879
\(973\) −4440.17 −0.146295
\(974\) −1732.36 −0.0569900
\(975\) −50778.1 −1.66790
\(976\) 4919.31 0.161335
\(977\) −4446.04 −0.145590 −0.0727950 0.997347i \(-0.523192\pi\)
−0.0727950 + 0.997347i \(0.523192\pi\)
\(978\) 3554.15 0.116206
\(979\) −35511.3 −1.15929
\(980\) 2628.50 0.0856779
\(981\) −4247.02 −0.138223
\(982\) −2924.80 −0.0950448
\(983\) −41237.1 −1.33800 −0.669002 0.743261i \(-0.733278\pi\)
−0.669002 + 0.743261i \(0.733278\pi\)
\(984\) −13004.5 −0.421308
\(985\) −10465.1 −0.338524
\(986\) 0 0
\(987\) −36759.5 −1.18548
\(988\) −8188.57 −0.263677
\(989\) −1771.74 −0.0569645
\(990\) −1398.03 −0.0448810
\(991\) 33085.1 1.06053 0.530264 0.847832i \(-0.322093\pi\)
0.530264 + 0.847832i \(0.322093\pi\)
\(992\) −7244.10 −0.231855
\(993\) −77062.3 −2.46274
\(994\) −1045.56 −0.0333634
\(995\) −9965.42 −0.317513
\(996\) 896.303 0.0285145
\(997\) −11284.0 −0.358442 −0.179221 0.983809i \(-0.557358\pi\)
−0.179221 + 0.983809i \(0.557358\pi\)
\(998\) −619.195 −0.0196395
\(999\) −22722.2 −0.719619
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.4.a.g.1.7 12
17.4 even 4 289.4.b.e.288.6 12
17.5 odd 16 17.4.d.a.8.2 12
17.7 odd 16 17.4.d.a.15.2 yes 12
17.13 even 4 289.4.b.e.288.5 12
17.16 even 2 inner 289.4.a.g.1.8 12
51.5 even 16 153.4.l.a.127.2 12
51.41 even 16 153.4.l.a.100.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.4.d.a.8.2 12 17.5 odd 16
17.4.d.a.15.2 yes 12 17.7 odd 16
153.4.l.a.100.2 12 51.41 even 16
153.4.l.a.127.2 12 51.5 even 16
289.4.a.g.1.7 12 1.1 even 1 trivial
289.4.a.g.1.8 12 17.16 even 2 inner
289.4.b.e.288.5 12 17.13 even 4
289.4.b.e.288.6 12 17.4 even 4