Properties

Label 289.4.a
Level $289$
Weight $4$
Character orbit 289.a
Rep. character $\chi_{289}(1,\cdot)$
Character field $\Q$
Dimension $60$
Newform subspaces $9$
Sturm bound $102$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 289.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(102\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(289))\).

Total New Old
Modular forms 86 75 11
Cusp forms 68 60 8
Eisenstein series 18 15 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(17\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(45\)\(39\)\(6\)\(36\)\(32\)\(4\)\(9\)\(7\)\(2\)
\(-\)\(41\)\(36\)\(5\)\(32\)\(28\)\(4\)\(9\)\(8\)\(1\)

Trace form

\( 60 q + 2 q^{2} + 4 q^{3} + 198 q^{4} + 2 q^{5} + 50 q^{6} + 6 q^{7} + 18 q^{8} + 336 q^{9} + 74 q^{10} + 52 q^{11} - 14 q^{12} + 4 q^{13} - 176 q^{14} - 72 q^{15} + 574 q^{16} + 142 q^{18} - 184 q^{19}+ \cdots + 3808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(289))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 17
289.4.a.a 289.a 1.a $1$ $17.052$ \(\Q\) None 17.4.a.a \(-3\) \(8\) \(-6\) \(28\) $+$ $\mathrm{SU}(2)$ \(q-3q^{2}+8q^{3}+q^{4}-6q^{5}-24q^{6}+\cdots\)
289.4.a.b 289.a 1.a $3$ $17.052$ 3.3.2636.1 None 17.4.a.b \(1\) \(-4\) \(8\) \(-22\) $+$ $\mathrm{SU}(2)$ \(q+(\beta _{1}-\beta _{2})q^{2}+(-2+\beta _{1}-2\beta _{2})q^{3}+\cdots\)
289.4.a.c 289.a 1.a $4$ $17.052$ 4.4.2555057.1 None 289.4.a.c \(1\) \(-2\) \(14\) \(36\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+(3+\beta _{1}+\cdots)q^{4}+\cdots\)
289.4.a.d 289.a 1.a $4$ $17.052$ 4.4.2555057.1 None 289.4.a.c \(1\) \(2\) \(-14\) \(-36\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{1}-\beta _{2})q^{3}+(3+\beta _{1}+\cdots)q^{4}+\cdots\)
289.4.a.e 289.a 1.a $4$ $17.052$ 4.4.4669632.2 None 17.4.b.a \(2\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{2}-\beta _{1}q^{3}+(1+\beta _{2})q^{4}+\cdots\)
289.4.a.f 289.a 1.a $8$ $17.052$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 17.4.c.a \(8\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-\beta _{3}q^{3}+(5-\beta _{1}+\beta _{6}+\cdots)q^{4}+\cdots\)
289.4.a.g 289.a 1.a $12$ $17.052$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 17.4.d.a \(-8\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{5})q^{2}+\beta _{7}q^{3}+(2+2\beta _{1}+\cdots)q^{4}+\cdots\)
289.4.a.h 289.a 1.a $12$ $17.052$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 289.4.a.h \(0\) \(-18\) \(-30\) \(-24\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-2+\beta _{5})q^{3}+(4+\beta _{2})q^{4}+\cdots\)
289.4.a.i 289.a 1.a $12$ $17.052$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 289.4.a.h \(0\) \(18\) \(30\) \(24\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2-\beta _{5})q^{3}+(4+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(289))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(289)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)