Properties

Label 289.3.e.h.249.1
Level $289$
Weight $3$
Character 289.249
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,-8,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 249.1
Root \(-0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.249
Dual form 289.3.e.h.65.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.63099 + 0.675577i) q^{2} +(-0.789499 - 3.96908i) q^{3} +(-0.624715 - 0.624715i) q^{4} +(6.43416 + 4.29916i) q^{5} +(1.39376 - 7.00688i) q^{6} +(3.40262 - 2.27356i) q^{7} +(-3.29916 - 7.96489i) q^{8} +(-6.81537 + 2.82302i) q^{9} +(7.58960 + 11.3586i) q^{10} +(6.80638 + 1.35387i) q^{11} +(-1.98633 + 2.97275i) q^{12} +(2.37416 - 2.37416i) q^{13} +(7.08560 - 1.40941i) q^{14} +(11.9840 - 28.9319i) q^{15} -11.6855i q^{16} -13.0229 q^{18} +(-22.7712 - 9.43215i) q^{19} +(-1.33376 - 6.70526i) q^{20} +(-11.7103 - 11.7103i) q^{21} +(10.1865 + 6.80638i) q^{22} +(2.24740 - 11.2984i) q^{23} +(-29.0086 + 19.3829i) q^{24} +(13.3484 + 32.2260i) q^{25} +(5.47615 - 2.26829i) q^{26} +(-3.64922 - 5.46144i) q^{27} +(-3.54600 - 0.705343i) q^{28} +(6.67355 - 9.98767i) q^{29} +(39.0914 - 39.0914i) q^{30} +(37.1045 - 7.38055i) q^{31} +(-5.30218 + 12.8006i) q^{32} -28.0839i q^{33} +31.6674 q^{35} +(6.02124 + 2.49408i) q^{36} +(6.29529 + 31.6486i) q^{37} +(-30.7674 - 30.7674i) q^{38} +(-11.2976 - 7.54883i) q^{39} +(13.0150 - 65.4310i) q^{40} +(-28.1140 + 18.7852i) q^{41} +(-11.1881 - 27.0106i) q^{42} +(-3.21547 + 1.33189i) q^{43} +(-3.40626 - 5.09783i) q^{44} +(-55.9877 - 11.1367i) q^{45} +(11.2984 - 16.9093i) q^{46} +(3.16735 - 3.16735i) q^{47} +(-46.3809 + 9.22573i) q^{48} +(-12.3427 + 29.7979i) q^{49} +61.5781i q^{50} -2.96634 q^{52} +(28.3919 + 11.7603i) q^{53} +(-2.26220 - 11.3729i) q^{54} +(37.9728 + 37.9728i) q^{55} +(-29.3345 - 19.6007i) q^{56} +(-19.4591 + 97.8275i) q^{57} +(17.6319 - 11.7813i) q^{58} +(4.49481 + 10.8514i) q^{59} +(-25.5607 + 10.5876i) q^{60} +(39.3733 + 58.9263i) q^{61} +(65.5031 + 13.0294i) q^{62} +(-16.7718 + 25.1008i) q^{63} +(-50.3473 + 50.3473i) q^{64} +(25.4826 - 5.06881i) q^{65} +(18.9728 - 45.8045i) q^{66} +28.5842i q^{67} -46.6187 q^{69} +(51.6491 + 21.3938i) q^{70} +(6.70446 + 33.7056i) q^{71} +(44.9700 + 44.9700i) q^{72} +(77.8880 + 52.0431i) q^{73} +(-11.1135 + 55.8713i) q^{74} +(117.369 - 78.4234i) q^{75} +(8.33312 + 20.1179i) q^{76} +(26.2377 - 10.8680i) q^{77} +(-13.3265 - 19.9444i) q^{78} +(21.0499 + 4.18708i) q^{79} +(50.2381 - 75.1866i) q^{80} +(-65.7422 + 65.7422i) q^{81} +(-58.5443 + 11.6452i) q^{82} +(-43.4522 + 104.903i) q^{83} +14.6312i q^{84} -6.14419 q^{86} +(-44.9106 - 18.6026i) q^{87} +(-11.6719 - 58.6787i) q^{88} +(-28.3238 - 28.3238i) q^{89} +(-83.7916 - 55.9877i) q^{90} +(2.68058 - 13.4762i) q^{91} +(-8.46229 + 5.65432i) q^{92} +(-58.5880 - 141.444i) q^{93} +(7.30570 - 3.02612i) q^{94} +(-105.963 - 158.585i) q^{95} +(54.9926 + 10.9387i) q^{96} +(-92.4136 + 138.307i) q^{97} +(-40.2616 + 40.2616i) q^{98} +(-50.2100 + 9.98738i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 8 q^{4} + 8 q^{5} - 24 q^{6} - 8 q^{7} - 16 q^{8} - 8 q^{9} + 8 q^{10} - 32 q^{12} + 24 q^{14} - 32 q^{15} - 136 q^{18} + 32 q^{19} - 64 q^{21} + 8 q^{22} - 32 q^{23} - 48 q^{24} - 16 q^{25}+ \cdots - 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.63099 + 0.675577i 0.815493 + 0.337788i 0.751143 0.660139i \(-0.229503\pi\)
0.0643498 + 0.997927i \(0.479503\pi\)
\(3\) −0.789499 3.96908i −0.263166 1.32303i −0.855696 0.517478i \(-0.826871\pi\)
0.592530 0.805548i \(-0.298129\pi\)
\(4\) −0.624715 0.624715i −0.156179 0.156179i
\(5\) 6.43416 + 4.29916i 1.28683 + 0.859833i 0.995311 0.0967316i \(-0.0308388\pi\)
0.291521 + 0.956565i \(0.405839\pi\)
\(6\) 1.39376 7.00688i 0.232293 1.16781i
\(7\) 3.40262 2.27356i 0.486089 0.324794i −0.288261 0.957552i \(-0.593077\pi\)
0.774350 + 0.632757i \(0.218077\pi\)
\(8\) −3.29916 7.96489i −0.412396 0.995611i
\(9\) −6.81537 + 2.82302i −0.757263 + 0.313669i
\(10\) 7.58960 + 11.3586i 0.758960 + 1.13586i
\(11\) 6.80638 + 1.35387i 0.618761 + 0.123079i 0.494511 0.869172i \(-0.335347\pi\)
0.124251 + 0.992251i \(0.460347\pi\)
\(12\) −1.98633 + 2.97275i −0.165528 + 0.247729i
\(13\) 2.37416 2.37416i 0.182628 0.182628i −0.609872 0.792500i \(-0.708779\pi\)
0.792500 + 0.609872i \(0.208779\pi\)
\(14\) 7.08560 1.40941i 0.506114 0.100672i
\(15\) 11.9840 28.9319i 0.798931 1.92879i
\(16\) 11.6855i 0.730347i
\(17\) 0 0
\(18\) −13.0229 −0.723496
\(19\) −22.7712 9.43215i −1.19849 0.496429i −0.307977 0.951394i \(-0.599652\pi\)
−0.890509 + 0.454965i \(0.849652\pi\)
\(20\) −1.33376 6.70526i −0.0666880 0.335263i
\(21\) −11.7103 11.7103i −0.557634 0.557634i
\(22\) 10.1865 + 6.80638i 0.463021 + 0.309381i
\(23\) 2.24740 11.2984i 0.0977131 0.491237i −0.900676 0.434492i \(-0.856928\pi\)
0.998389 0.0567447i \(-0.0180721\pi\)
\(24\) −29.0086 + 19.3829i −1.20869 + 0.807622i
\(25\) 13.3484 + 32.2260i 0.533938 + 1.28904i
\(26\) 5.47615 2.26829i 0.210621 0.0872421i
\(27\) −3.64922 5.46144i −0.135156 0.202276i
\(28\) −3.54600 0.705343i −0.126643 0.0251908i
\(29\) 6.67355 9.98767i 0.230122 0.344402i −0.698381 0.715726i \(-0.746096\pi\)
0.928504 + 0.371324i \(0.121096\pi\)
\(30\) 39.0914 39.0914i 1.30305 1.30305i
\(31\) 37.1045 7.38055i 1.19692 0.238082i 0.443898 0.896077i \(-0.353595\pi\)
0.753022 + 0.657995i \(0.228595\pi\)
\(32\) −5.30218 + 12.8006i −0.165693 + 0.400019i
\(33\) 28.0839i 0.851028i
\(34\) 0 0
\(35\) 31.6674 0.904784
\(36\) 6.02124 + 2.49408i 0.167257 + 0.0692800i
\(37\) 6.29529 + 31.6486i 0.170143 + 0.855366i 0.967696 + 0.252118i \(0.0811272\pi\)
−0.797554 + 0.603248i \(0.793873\pi\)
\(38\) −30.7674 30.7674i −0.809669 0.809669i
\(39\) −11.2976 7.54883i −0.289683 0.193560i
\(40\) 13.0150 65.4310i 0.325376 1.63577i
\(41\) −28.1140 + 18.7852i −0.685707 + 0.458175i −0.848993 0.528404i \(-0.822791\pi\)
0.163286 + 0.986579i \(0.447791\pi\)
\(42\) −11.1881 27.0106i −0.266384 0.643109i
\(43\) −3.21547 + 1.33189i −0.0747784 + 0.0309742i −0.419759 0.907636i \(-0.637885\pi\)
0.344981 + 0.938610i \(0.387885\pi\)
\(44\) −3.40626 5.09783i −0.0774150 0.115860i
\(45\) −55.9877 11.1367i −1.24417 0.247481i
\(46\) 11.2984 16.9093i 0.245618 0.367594i
\(47\) 3.16735 3.16735i 0.0673905 0.0673905i −0.672608 0.739999i \(-0.734826\pi\)
0.739999 + 0.672608i \(0.234826\pi\)
\(48\) −46.3809 + 9.22573i −0.966268 + 0.192203i
\(49\) −12.3427 + 29.7979i −0.251892 + 0.608121i
\(50\) 61.5781i 1.23156i
\(51\) 0 0
\(52\) −2.96634 −0.0570451
\(53\) 28.3919 + 11.7603i 0.535697 + 0.221893i 0.634096 0.773254i \(-0.281372\pi\)
−0.0983994 + 0.995147i \(0.531372\pi\)
\(54\) −2.26220 11.3729i −0.0418927 0.210609i
\(55\) 37.9728 + 37.9728i 0.690414 + 0.690414i
\(56\) −29.3345 19.6007i −0.523830 0.350012i
\(57\) −19.4591 + 97.8275i −0.341388 + 1.71627i
\(58\) 17.6319 11.7813i 0.303998 0.203125i
\(59\) 4.49481 + 10.8514i 0.0761832 + 0.183923i 0.957383 0.288822i \(-0.0932635\pi\)
−0.881200 + 0.472744i \(0.843263\pi\)
\(60\) −25.5607 + 10.5876i −0.426012 + 0.176460i
\(61\) 39.3733 + 58.9263i 0.645464 + 0.966006i 0.999526 + 0.0307835i \(0.00980025\pi\)
−0.354062 + 0.935222i \(0.615200\pi\)
\(62\) 65.5031 + 13.0294i 1.05650 + 0.210151i
\(63\) −16.7718 + 25.1008i −0.266220 + 0.398426i
\(64\) −50.3473 + 50.3473i −0.786676 + 0.786676i
\(65\) 25.4826 5.06881i 0.392040 0.0779816i
\(66\) 18.9728 45.8045i 0.287467 0.694008i
\(67\) 28.5842i 0.426629i 0.976984 + 0.213315i \(0.0684260\pi\)
−0.976984 + 0.213315i \(0.931574\pi\)
\(68\) 0 0
\(69\) −46.6187 −0.675634
\(70\) 51.6491 + 21.3938i 0.737845 + 0.305625i
\(71\) 6.70446 + 33.7056i 0.0944290 + 0.474726i 0.998844 + 0.0480724i \(0.0153078\pi\)
−0.904415 + 0.426654i \(0.859692\pi\)
\(72\) 44.9700 + 44.9700i 0.624584 + 0.624584i
\(73\) 77.8880 + 52.0431i 1.06696 + 0.712919i 0.959619 0.281303i \(-0.0907666\pi\)
0.107340 + 0.994222i \(0.465767\pi\)
\(74\) −11.1135 + 55.8713i −0.150182 + 0.755018i
\(75\) 117.369 78.4234i 1.56492 1.04565i
\(76\) 8.33312 + 20.1179i 0.109646 + 0.264710i
\(77\) 26.2377 10.8680i 0.340749 0.141143i
\(78\) −13.3265 19.9444i −0.170852 0.255698i
\(79\) 21.0499 + 4.18708i 0.266454 + 0.0530011i 0.326509 0.945194i \(-0.394128\pi\)
−0.0600549 + 0.998195i \(0.519128\pi\)
\(80\) 50.2381 75.1866i 0.627976 0.939833i
\(81\) −65.7422 + 65.7422i −0.811632 + 0.811632i
\(82\) −58.5443 + 11.6452i −0.713955 + 0.142015i
\(83\) −43.4522 + 104.903i −0.523521 + 1.26389i 0.412182 + 0.911102i \(0.364767\pi\)
−0.935703 + 0.352789i \(0.885233\pi\)
\(84\) 14.6312i 0.174181i
\(85\) 0 0
\(86\) −6.14419 −0.0714440
\(87\) −44.9106 18.6026i −0.516214 0.213823i
\(88\) −11.6719 58.6787i −0.132635 0.666803i
\(89\) −28.3238 28.3238i −0.318245 0.318245i 0.529848 0.848093i \(-0.322249\pi\)
−0.848093 + 0.529848i \(0.822249\pi\)
\(90\) −83.7916 55.9877i −0.931018 0.622086i
\(91\) 2.68058 13.4762i 0.0294569 0.148090i
\(92\) −8.46229 + 5.65432i −0.0919814 + 0.0614600i
\(93\) −58.5880 141.444i −0.629978 1.52090i
\(94\) 7.30570 3.02612i 0.0777202 0.0321928i
\(95\) −105.963 158.585i −1.11540 1.66932i
\(96\) 54.9926 + 10.9387i 0.572840 + 0.113945i
\(97\) −92.4136 + 138.307i −0.952718 + 1.42584i −0.0484747 + 0.998824i \(0.515436\pi\)
−0.904243 + 0.427018i \(0.859564\pi\)
\(98\) −40.2616 + 40.2616i −0.410833 + 0.410833i
\(99\) −50.2100 + 9.98738i −0.507171 + 0.100883i
\(100\) 11.7931 28.4710i 0.117931 0.284710i
\(101\) 124.444i 1.23211i −0.787701 0.616057i \(-0.788729\pi\)
0.787701 0.616057i \(-0.211271\pi\)
\(102\) 0 0
\(103\) 175.084 1.69984 0.849922 0.526908i \(-0.176649\pi\)
0.849922 + 0.526908i \(0.176649\pi\)
\(104\) −26.7427 11.0772i −0.257141 0.106511i
\(105\) −25.0014 125.691i −0.238109 1.19705i
\(106\) 38.3619 + 38.3619i 0.361904 + 0.361904i
\(107\) −33.1477 22.1486i −0.309791 0.206996i 0.390949 0.920412i \(-0.372147\pi\)
−0.700740 + 0.713416i \(0.747147\pi\)
\(108\) −1.13212 + 5.69157i −0.0104826 + 0.0526997i
\(109\) 38.1042 25.4604i 0.349580 0.233582i −0.368366 0.929681i \(-0.620083\pi\)
0.717946 + 0.696099i \(0.245083\pi\)
\(110\) 36.2795 + 87.5866i 0.329814 + 0.796241i
\(111\) 120.645 49.9730i 1.08690 0.450207i
\(112\) −26.5678 39.7615i −0.237213 0.355014i
\(113\) −183.644 36.5291i −1.62517 0.323267i −0.703338 0.710855i \(-0.748308\pi\)
−0.921832 + 0.387589i \(0.873308\pi\)
\(114\) −97.8275 + 146.409i −0.858136 + 1.28429i
\(115\) 63.0340 63.0340i 0.548122 0.548122i
\(116\) −10.4085 + 2.07038i −0.0897285 + 0.0178481i
\(117\) −9.47847 + 22.8831i −0.0810126 + 0.195582i
\(118\) 20.7351i 0.175721i
\(119\) 0 0
\(120\) −269.976 −2.24980
\(121\) −67.2956 27.8748i −0.556162 0.230370i
\(122\) 24.4081 + 122.708i 0.200066 + 1.00580i
\(123\) 96.7557 + 96.7557i 0.786632 + 0.786632i
\(124\) −27.7905 18.5690i −0.224117 0.149750i
\(125\) −14.9173 + 74.9942i −0.119338 + 0.599953i
\(126\) −44.3122 + 29.6084i −0.351684 + 0.234988i
\(127\) 15.7175 + 37.9454i 0.123760 + 0.298783i 0.973601 0.228256i \(-0.0733023\pi\)
−0.849841 + 0.527039i \(0.823302\pi\)
\(128\) −64.9268 + 26.8936i −0.507241 + 0.210106i
\(129\) 7.82500 + 11.7109i 0.0606589 + 0.0907825i
\(130\) 44.9862 + 8.94830i 0.346047 + 0.0688331i
\(131\) 106.938 160.044i 0.816323 1.22171i −0.155927 0.987769i \(-0.549837\pi\)
0.972250 0.233944i \(-0.0751634\pi\)
\(132\) −17.5444 + 17.5444i −0.132912 + 0.132912i
\(133\) −98.9266 + 19.6777i −0.743809 + 0.147953i
\(134\) −19.3108 + 46.6204i −0.144110 + 0.347913i
\(135\) 50.8284i 0.376507i
\(136\) 0 0
\(137\) 52.8361 0.385665 0.192832 0.981232i \(-0.438233\pi\)
0.192832 + 0.981232i \(0.438233\pi\)
\(138\) −76.0345 31.4945i −0.550975 0.228221i
\(139\) 10.2376 + 51.4676i 0.0736514 + 0.370271i 0.999979 0.00644773i \(-0.00205239\pi\)
−0.926328 + 0.376719i \(0.877052\pi\)
\(140\) −19.7831 19.7831i −0.141308 0.141308i
\(141\) −15.0721 10.0709i −0.106894 0.0714245i
\(142\) −11.8358 + 59.5027i −0.0833509 + 0.419033i
\(143\) 19.3737 12.9451i 0.135481 0.0905253i
\(144\) 32.9885 + 79.6413i 0.229087 + 0.553064i
\(145\) 85.8773 35.5715i 0.592257 0.245321i
\(146\) 91.8752 + 137.501i 0.629282 + 0.941787i
\(147\) 128.015 + 25.4638i 0.870850 + 0.173223i
\(148\) 15.8386 23.7041i 0.107017 0.160163i
\(149\) 36.5973 36.5973i 0.245620 0.245620i −0.573551 0.819170i \(-0.694434\pi\)
0.819170 + 0.573551i \(0.194434\pi\)
\(150\) 244.408 48.6158i 1.62939 0.324105i
\(151\) 91.9670 222.028i 0.609053 1.47038i −0.254979 0.966947i \(-0.582069\pi\)
0.864032 0.503437i \(-0.167931\pi\)
\(152\) 212.489i 1.39795i
\(153\) 0 0
\(154\) 50.1354 0.325555
\(155\) 270.467 + 112.031i 1.74495 + 0.722780i
\(156\) 2.34193 + 11.7737i 0.0150123 + 0.0754721i
\(157\) −190.153 190.153i −1.21117 1.21117i −0.970644 0.240522i \(-0.922681\pi\)
−0.240522 0.970644i \(-0.577319\pi\)
\(158\) 31.5034 + 21.0499i 0.199389 + 0.133227i
\(159\) 24.2623 121.975i 0.152593 0.767136i
\(160\) −89.1469 + 59.5661i −0.557168 + 0.372288i
\(161\) −18.0406 43.5540i −0.112054 0.270522i
\(162\) −151.638 + 62.8107i −0.936040 + 0.387720i
\(163\) 21.5571 + 32.2626i 0.132252 + 0.197930i 0.891685 0.452656i \(-0.149523\pi\)
−0.759433 + 0.650586i \(0.774523\pi\)
\(164\) 29.2986 + 5.82785i 0.178650 + 0.0355357i
\(165\) 120.737 180.696i 0.731742 1.09513i
\(166\) −141.740 + 141.740i −0.853855 + 0.853855i
\(167\) 35.3355 7.02867i 0.211590 0.0420878i −0.0881571 0.996107i \(-0.528098\pi\)
0.299747 + 0.954019i \(0.403098\pi\)
\(168\) −54.6371 + 131.906i −0.325221 + 0.785152i
\(169\) 157.727i 0.933294i
\(170\) 0 0
\(171\) 181.821 1.06328
\(172\) 2.84081 + 1.17670i 0.0165163 + 0.00684128i
\(173\) 37.6555 + 189.307i 0.217662 + 1.09426i 0.922827 + 0.385215i \(0.125873\pi\)
−0.705165 + 0.709043i \(0.749127\pi\)
\(174\) −60.6811 60.6811i −0.348742 0.348742i
\(175\) 118.688 + 79.3045i 0.678215 + 0.453168i
\(176\) 15.8207 79.5362i 0.0898905 0.451910i
\(177\) 39.5216 26.4075i 0.223286 0.149195i
\(178\) −27.0608 65.3307i −0.152027 0.367026i
\(179\) −223.947 + 92.7619i −1.25110 + 0.518223i −0.907167 0.420771i \(-0.861759\pi\)
−0.343933 + 0.938994i \(0.611759\pi\)
\(180\) 28.0191 + 41.9336i 0.155662 + 0.232964i
\(181\) −133.895 26.6333i −0.739750 0.147146i −0.189190 0.981941i \(-0.560586\pi\)
−0.550561 + 0.834795i \(0.685586\pi\)
\(182\) 13.4762 20.1685i 0.0740449 0.110816i
\(183\) 202.798 202.798i 1.10819 1.10819i
\(184\) −97.4054 + 19.3751i −0.529377 + 0.105300i
\(185\) −95.5575 + 230.696i −0.516527 + 1.24701i
\(186\) 270.274i 1.45308i
\(187\) 0 0
\(188\) −3.95738 −0.0210499
\(189\) −24.8339 10.2865i −0.131396 0.0544260i
\(190\) −65.6882 330.237i −0.345727 1.73809i
\(191\) 123.244 + 123.244i 0.645254 + 0.645254i 0.951842 0.306588i \(-0.0991874\pi\)
−0.306588 + 0.951842i \(0.599187\pi\)
\(192\) 239.581 + 160.083i 1.24782 + 0.833767i
\(193\) 36.6126 184.064i 0.189703 0.953700i −0.762210 0.647330i \(-0.775886\pi\)
0.951913 0.306370i \(-0.0991144\pi\)
\(194\) −244.162 + 163.144i −1.25857 + 0.840948i
\(195\) −40.2370 97.1407i −0.206344 0.498157i
\(196\) 26.3259 10.9045i 0.134316 0.0556354i
\(197\) 159.522 + 238.742i 0.809759 + 1.21189i 0.974241 + 0.225509i \(0.0724046\pi\)
−0.164482 + 0.986380i \(0.552595\pi\)
\(198\) −88.6390 17.6314i −0.447672 0.0890474i
\(199\) −50.8883 + 76.1598i −0.255720 + 0.382712i −0.937011 0.349301i \(-0.886419\pi\)
0.681290 + 0.732013i \(0.261419\pi\)
\(200\) 212.638 212.638i 1.06319 1.06319i
\(201\) 113.453 22.5672i 0.564442 0.112274i
\(202\) 84.0712 202.966i 0.416194 1.00478i
\(203\) 49.1570i 0.242153i
\(204\) 0 0
\(205\) −261.650 −1.27634
\(206\) 285.560 + 118.283i 1.38621 + 0.574188i
\(207\) 16.5788 + 83.3475i 0.0800911 + 0.402645i
\(208\) −27.7433 27.7433i −0.133381 0.133381i
\(209\) −142.220 95.0281i −0.680477 0.454680i
\(210\) 44.1367 221.890i 0.210175 1.05662i
\(211\) −30.0653 + 20.0890i −0.142490 + 0.0952086i −0.624772 0.780807i \(-0.714808\pi\)
0.482282 + 0.876016i \(0.339808\pi\)
\(212\) −10.3900 25.0837i −0.0490095 0.118319i
\(213\) 128.487 53.2210i 0.603225 0.249864i
\(214\) −39.1003 58.5178i −0.182712 0.273448i
\(215\) −26.4149 5.25425i −0.122860 0.0244384i
\(216\) −31.4604 + 47.0838i −0.145650 + 0.217981i
\(217\) 109.473 109.473i 0.504482 0.504482i
\(218\) 79.3479 15.7833i 0.363981 0.0724004i
\(219\) 145.071 350.232i 0.662423 1.59923i
\(220\) 47.4443i 0.215656i
\(221\) 0 0
\(222\) 230.532 1.03843
\(223\) −372.417 154.260i −1.67003 0.691750i −0.671256 0.741226i \(-0.734245\pi\)
−0.998775 + 0.0494759i \(0.984245\pi\)
\(224\) 11.0616 + 55.6104i 0.0493822 + 0.248261i
\(225\) −181.949 181.949i −0.808663 0.808663i
\(226\) −274.843 183.644i −1.21612 0.812585i
\(227\) −24.6288 + 123.817i −0.108497 + 0.545450i 0.887856 + 0.460121i \(0.152194\pi\)
−0.996353 + 0.0853288i \(0.972806\pi\)
\(228\) 73.2707 48.9579i 0.321363 0.214728i
\(229\) 47.0477 + 113.583i 0.205449 + 0.495997i 0.992696 0.120640i \(-0.0384947\pi\)
−0.787248 + 0.616637i \(0.788495\pi\)
\(230\) 145.392 60.2233i 0.632139 0.261840i
\(231\) −63.8505 95.5591i −0.276409 0.413676i
\(232\) −101.568 20.2031i −0.437792 0.0870823i
\(233\) 33.4139 50.0074i 0.143407 0.214624i −0.752812 0.658236i \(-0.771303\pi\)
0.896219 + 0.443612i \(0.146303\pi\)
\(234\) −30.9185 + 30.9185i −0.132130 + 0.132130i
\(235\) 33.9962 6.76227i 0.144665 0.0287756i
\(236\) 3.97107 9.58702i 0.0168266 0.0406230i
\(237\) 86.8544i 0.366474i
\(238\) 0 0
\(239\) −285.920 −1.19632 −0.598160 0.801377i \(-0.704101\pi\)
−0.598160 + 0.801377i \(0.704101\pi\)
\(240\) −338.085 140.039i −1.40869 0.583497i
\(241\) −24.2566 121.946i −0.100650 0.506002i −0.997917 0.0645131i \(-0.979451\pi\)
0.897267 0.441489i \(-0.145549\pi\)
\(242\) −90.9267 90.9267i −0.375730 0.375730i
\(243\) 263.686 + 176.189i 1.08513 + 0.725060i
\(244\) 12.2151 61.4092i 0.0500617 0.251677i
\(245\) −207.521 + 138.661i −0.847025 + 0.565964i
\(246\) 92.4414 + 223.173i 0.375778 + 0.907208i
\(247\) −76.4560 + 31.6691i −0.309538 + 0.128215i
\(248\) −181.199 271.184i −0.730642 1.09348i
\(249\) 450.674 + 89.6446i 1.80993 + 0.360018i
\(250\) −74.9942 + 112.237i −0.299977 + 0.448947i
\(251\) −99.6747 + 99.6747i −0.397110 + 0.397110i −0.877213 0.480102i \(-0.840600\pi\)
0.480102 + 0.877213i \(0.340600\pi\)
\(252\) 26.1585 5.20324i 0.103803 0.0206478i
\(253\) 30.5933 73.8588i 0.120922 0.291932i
\(254\) 72.5069i 0.285460i
\(255\) 0 0
\(256\) 160.744 0.627906
\(257\) −363.098 150.400i −1.41283 0.585214i −0.459783 0.888032i \(-0.652073\pi\)
−0.953048 + 0.302818i \(0.902073\pi\)
\(258\) 4.85083 + 24.3868i 0.0188017 + 0.0945224i
\(259\) 93.3754 + 93.3754i 0.360523 + 0.360523i
\(260\) −19.0859 12.7528i −0.0734074 0.0490492i
\(261\) −17.2873 + 86.9092i −0.0662349 + 0.332985i
\(262\) 282.537 188.785i 1.07839 0.720554i
\(263\) 111.542 + 269.286i 0.424113 + 1.02390i 0.981121 + 0.193393i \(0.0619493\pi\)
−0.557008 + 0.830507i \(0.688051\pi\)
\(264\) −223.685 + 92.6535i −0.847293 + 0.350960i
\(265\) 132.119 + 197.729i 0.498561 + 0.746149i
\(266\) −174.642 34.7384i −0.656548 0.130595i
\(267\) −90.0578 + 134.781i −0.337295 + 0.504798i
\(268\) 17.8569 17.8569i 0.0666304 0.0666304i
\(269\) 99.9342 19.8781i 0.371503 0.0738965i −0.00580827 0.999983i \(-0.501849\pi\)
0.377311 + 0.926087i \(0.376849\pi\)
\(270\) 34.3385 82.9004i 0.127180 0.307038i
\(271\) 381.059i 1.40612i −0.711129 0.703061i \(-0.751816\pi\)
0.711129 0.703061i \(-0.248184\pi\)
\(272\) 0 0
\(273\) −55.6043 −0.203679
\(274\) 86.1749 + 35.6948i 0.314507 + 0.130273i
\(275\) 47.2247 + 237.414i 0.171726 + 0.863325i
\(276\) 29.1234 + 29.1234i 0.105520 + 0.105520i
\(277\) 55.8881 + 37.3432i 0.201762 + 0.134813i 0.652347 0.757920i \(-0.273785\pi\)
−0.450585 + 0.892734i \(0.648785\pi\)
\(278\) −18.0730 + 90.8593i −0.0650109 + 0.326832i
\(279\) −232.046 + 155.048i −0.831705 + 0.555727i
\(280\) −104.476 252.228i −0.373129 0.900813i
\(281\) 348.356 144.294i 1.23970 0.513501i 0.336079 0.941834i \(-0.390899\pi\)
0.903621 + 0.428333i \(0.140899\pi\)
\(282\) −17.7788 26.6078i −0.0630452 0.0943539i
\(283\) 291.125 + 57.9083i 1.02871 + 0.204623i 0.680465 0.732781i \(-0.261778\pi\)
0.348245 + 0.937404i \(0.386778\pi\)
\(284\) 16.8680 25.2447i 0.0593944 0.0888899i
\(285\) −545.780 + 545.780i −1.91502 + 1.91502i
\(286\) 40.3437 8.02486i 0.141062 0.0280590i
\(287\) −52.9521 + 127.838i −0.184502 + 0.445428i
\(288\) 102.209i 0.354892i
\(289\) 0 0
\(290\) 164.096 0.565848
\(291\) 621.911 + 257.604i 2.13715 + 0.885237i
\(292\) −16.1457 81.1699i −0.0552935 0.277979i
\(293\) 99.8472 + 99.8472i 0.340776 + 0.340776i 0.856659 0.515883i \(-0.172536\pi\)
−0.515883 + 0.856659i \(0.672536\pi\)
\(294\) 191.588 + 128.015i 0.651660 + 0.435425i
\(295\) −17.7318 + 89.1437i −0.0601078 + 0.302182i
\(296\) 231.308 154.555i 0.781446 0.522146i
\(297\) −17.4439 42.1132i −0.0587336 0.141795i
\(298\) 84.4140 34.9654i 0.283269 0.117334i
\(299\) −21.4886 32.1600i −0.0718683 0.107559i
\(300\) −122.314 24.3298i −0.407715 0.0810995i
\(301\) −7.91291 + 11.8425i −0.0262887 + 0.0393439i
\(302\) 299.994 299.994i 0.993357 0.993357i
\(303\) −493.926 + 98.2481i −1.63012 + 0.324251i
\(304\) −110.220 + 266.094i −0.362565 + 0.875310i
\(305\) 548.414i 1.79808i
\(306\) 0 0
\(307\) −259.641 −0.845735 −0.422868 0.906192i \(-0.638976\pi\)
−0.422868 + 0.906192i \(0.638976\pi\)
\(308\) −23.1804 9.60165i −0.0752612 0.0311742i
\(309\) −138.229 694.922i −0.447342 2.24894i
\(310\) 365.442 + 365.442i 1.17884 + 1.17884i
\(311\) −469.055 313.413i −1.50822 1.00776i −0.988126 0.153646i \(-0.950898\pi\)
−0.520090 0.854112i \(-0.674102\pi\)
\(312\) −22.8529 + 114.889i −0.0732464 + 0.368234i
\(313\) 378.950 253.206i 1.21070 0.808966i 0.224495 0.974475i \(-0.427927\pi\)
0.986208 + 0.165509i \(0.0529267\pi\)
\(314\) −181.674 438.600i −0.578580 1.39681i
\(315\) −215.825 + 89.3977i −0.685159 + 0.283802i
\(316\) −10.5344 15.7659i −0.0333368 0.0498921i
\(317\) −325.560 64.7580i −1.02700 0.204284i −0.347288 0.937759i \(-0.612897\pi\)
−0.679717 + 0.733475i \(0.737897\pi\)
\(318\) 121.975 182.548i 0.383568 0.574050i
\(319\) 58.9447 58.9447i 0.184780 0.184780i
\(320\) −540.393 + 107.491i −1.68873 + 0.335909i
\(321\) −61.7394 + 149.052i −0.192334 + 0.464336i
\(322\) 83.2238i 0.258459i
\(323\) 0 0
\(324\) 82.1402 0.253519
\(325\) 108.201 + 44.8183i 0.332926 + 0.137903i
\(326\) 13.3636 + 67.1833i 0.0409926 + 0.206084i
\(327\) −131.138 131.138i −0.401033 0.401033i
\(328\) 242.374 + 161.949i 0.738946 + 0.493748i
\(329\) 3.57614 17.9785i 0.0108697 0.0546459i
\(330\) 318.995 213.146i 0.966653 0.645897i
\(331\) −225.594 544.633i −0.681554 1.64542i −0.761139 0.648588i \(-0.775360\pi\)
0.0795855 0.996828i \(-0.474640\pi\)
\(332\) 92.6796 38.3892i 0.279156 0.115630i
\(333\) −132.249 197.925i −0.397145 0.594369i
\(334\) 62.3801 + 12.4082i 0.186767 + 0.0371502i
\(335\) −122.888 + 183.915i −0.366830 + 0.549000i
\(336\) −136.841 + 136.841i −0.407266 + 0.407266i
\(337\) 321.295 63.9095i 0.953397 0.189642i 0.306202 0.951967i \(-0.400942\pi\)
0.647195 + 0.762324i \(0.275942\pi\)
\(338\) −106.557 + 257.250i −0.315256 + 0.761095i
\(339\) 757.738i 2.23522i
\(340\) 0 0
\(341\) 262.540 0.769911
\(342\) 296.548 + 122.834i 0.867100 + 0.359165i
\(343\) 64.8699 + 326.123i 0.189125 + 0.950796i
\(344\) 21.2167 + 21.2167i 0.0616766 + 0.0616766i
\(345\) −299.952 200.422i −0.869427 0.580932i
\(346\) −66.4757 + 334.196i −0.192126 + 0.965884i
\(347\) −201.268 + 134.483i −0.580024 + 0.387560i −0.810692 0.585473i \(-0.800909\pi\)
0.230668 + 0.973033i \(0.425909\pi\)
\(348\) 16.4350 + 39.6776i 0.0472270 + 0.114016i
\(349\) −464.685 + 192.479i −1.33148 + 0.551515i −0.931076 0.364826i \(-0.881129\pi\)
−0.400399 + 0.916341i \(0.631129\pi\)
\(350\) 140.001 + 209.527i 0.400004 + 0.598649i
\(351\) −21.6302 4.30251i −0.0616244 0.0122579i
\(352\) −53.4190 + 79.9472i −0.151759 + 0.227123i
\(353\) −231.294 + 231.294i −0.655223 + 0.655223i −0.954246 0.299023i \(-0.903339\pi\)
0.299023 + 0.954246i \(0.403339\pi\)
\(354\) 82.2994 16.3704i 0.232484 0.0462440i
\(355\) −101.768 + 245.691i −0.286671 + 0.692086i
\(356\) 35.3886i 0.0994062i
\(357\) 0 0
\(358\) −427.922 −1.19531
\(359\) 490.942 + 203.355i 1.36753 + 0.566448i 0.941117 0.338082i \(-0.109778\pi\)
0.426410 + 0.904530i \(0.359778\pi\)
\(360\) 96.0106 + 482.678i 0.266696 + 1.34077i
\(361\) 174.298 + 174.298i 0.482820 + 0.482820i
\(362\) −200.388 133.895i −0.553557 0.369875i
\(363\) −57.5073 + 289.109i −0.158422 + 0.796443i
\(364\) −10.0934 + 6.74416i −0.0277290 + 0.0185279i
\(365\) 277.402 + 669.707i 0.760005 + 1.83481i
\(366\) 467.767 193.755i 1.27805 0.529386i
\(367\) −183.923 275.260i −0.501152 0.750026i 0.491520 0.870866i \(-0.336441\pi\)
−0.992672 + 0.120840i \(0.961441\pi\)
\(368\) −132.028 26.2621i −0.358773 0.0713644i
\(369\) 138.576 207.394i 0.375545 0.562043i
\(370\) −311.706 + 311.706i −0.842448 + 0.842448i
\(371\) 123.345 24.5348i 0.332466 0.0661316i
\(372\) −51.7613 + 124.963i −0.139143 + 0.335922i
\(373\) 147.856i 0.396396i −0.980162 0.198198i \(-0.936491\pi\)
0.980162 0.198198i \(-0.0635089\pi\)
\(374\) 0 0
\(375\) 309.435 0.825160
\(376\) −35.6772 14.7780i −0.0948863 0.0393032i
\(377\) −7.86825 39.5564i −0.0208707 0.104924i
\(378\) −33.5543 33.5543i −0.0887681 0.0887681i
\(379\) −36.3219 24.2695i −0.0958362 0.0640357i 0.506729 0.862106i \(-0.330855\pi\)
−0.602565 + 0.798070i \(0.705855\pi\)
\(380\) −32.8737 + 165.267i −0.0865098 + 0.434914i
\(381\) 138.199 92.3419i 0.362728 0.242367i
\(382\) 117.748 + 284.269i 0.308241 + 0.744160i
\(383\) −182.570 + 75.6230i −0.476684 + 0.197449i −0.608072 0.793882i \(-0.708057\pi\)
0.131387 + 0.991331i \(0.458057\pi\)
\(384\) 158.002 + 236.467i 0.411464 + 0.615800i
\(385\) 215.540 + 42.8737i 0.559845 + 0.111360i
\(386\) 184.064 275.471i 0.476850 0.713656i
\(387\) 18.1547 18.1547i 0.0469113 0.0469113i
\(388\) 144.134 28.6701i 0.371480 0.0738920i
\(389\) −8.22534 + 19.8577i −0.0211448 + 0.0510481i −0.934099 0.357013i \(-0.883795\pi\)
0.912954 + 0.408061i \(0.133795\pi\)
\(390\) 185.618i 0.475944i
\(391\) 0 0
\(392\) 278.058 0.709332
\(393\) −719.657 298.092i −1.83119 0.758503i
\(394\) 98.8903 + 497.155i 0.250991 + 1.26181i
\(395\) 117.437 + 117.437i 0.297310 + 0.297310i
\(396\) 37.6062 + 25.1276i 0.0949650 + 0.0634536i
\(397\) 6.92123 34.7954i 0.0174338 0.0876457i −0.971089 0.238718i \(-0.923273\pi\)
0.988523 + 0.151073i \(0.0482727\pi\)
\(398\) −134.450 + 89.8366i −0.337814 + 0.225720i
\(399\) 156.205 + 377.112i 0.391491 + 0.945142i
\(400\) 376.578 155.984i 0.941446 0.389960i
\(401\) −83.0937 124.358i −0.207216 0.310121i 0.713275 0.700884i \(-0.247211\pi\)
−0.920491 + 0.390763i \(0.872211\pi\)
\(402\) 200.286 + 39.8393i 0.498224 + 0.0991028i
\(403\) 70.5695 105.615i 0.175110 0.262071i
\(404\) −77.7417 + 77.7417i −0.192430 + 0.192430i
\(405\) −705.632 + 140.359i −1.74230 + 0.346565i
\(406\) 33.2093 80.1744i 0.0817964 0.197474i
\(407\) 223.935i 0.550209i
\(408\) 0 0
\(409\) −398.892 −0.975287 −0.487643 0.873043i \(-0.662143\pi\)
−0.487643 + 0.873043i \(0.662143\pi\)
\(410\) −426.748 176.765i −1.04085 0.431134i
\(411\) −41.7140 209.711i −0.101494 0.510245i
\(412\) −109.378 109.378i −0.265479 0.265479i
\(413\) 39.9656 + 26.7041i 0.0967689 + 0.0646589i
\(414\) −29.2678 + 147.139i −0.0706951 + 0.355408i
\(415\) −730.573 + 488.154i −1.76042 + 1.17627i
\(416\) 17.8024 + 42.9789i 0.0427943 + 0.103315i
\(417\) 196.197 81.2673i 0.470496 0.194886i
\(418\) −167.760 251.070i −0.401339 0.600646i
\(419\) 36.6811 + 7.29632i 0.0875444 + 0.0174137i 0.238668 0.971101i \(-0.423289\pi\)
−0.151124 + 0.988515i \(0.548289\pi\)
\(420\) −62.9020 + 94.1395i −0.149767 + 0.224142i
\(421\) 312.706 312.706i 0.742769 0.742769i −0.230341 0.973110i \(-0.573984\pi\)
0.973110 + 0.230341i \(0.0739841\pi\)
\(422\) −62.6078 + 12.4535i −0.148360 + 0.0295106i
\(423\) −12.6452 + 30.5282i −0.0298941 + 0.0721706i
\(424\) 264.938i 0.624853i
\(425\) 0 0
\(426\) 245.515 0.576327
\(427\) 267.945 + 110.987i 0.627507 + 0.259922i
\(428\) 6.87130 + 34.5444i 0.0160544 + 0.0807111i
\(429\) −66.6757 66.6757i −0.155421 0.155421i
\(430\) −39.5327 26.4149i −0.0919364 0.0614299i
\(431\) 67.6760 340.230i 0.157021 0.789397i −0.819350 0.573294i \(-0.805665\pi\)
0.976371 0.216103i \(-0.0693347\pi\)
\(432\) −63.8199 + 42.6431i −0.147731 + 0.0987109i
\(433\) 20.5680 + 49.6556i 0.0475012 + 0.114678i 0.945849 0.324607i \(-0.105232\pi\)
−0.898348 + 0.439285i \(0.855232\pi\)
\(434\) 252.506 104.591i 0.581810 0.240994i
\(435\) −208.986 312.770i −0.480428 0.719012i
\(436\) −39.7098 7.89876i −0.0910774 0.0181164i
\(437\) −157.745 + 236.082i −0.360972 + 0.540233i
\(438\) 473.217 473.217i 1.08040 1.08040i
\(439\) 238.583 47.4571i 0.543469 0.108103i 0.0842815 0.996442i \(-0.473140\pi\)
0.459188 + 0.888339i \(0.348140\pi\)
\(440\) 177.170 427.727i 0.402660 0.972107i
\(441\) 237.928i 0.539518i
\(442\) 0 0
\(443\) −114.592 −0.258673 −0.129336 0.991601i \(-0.541285\pi\)
−0.129336 + 0.991601i \(0.541285\pi\)
\(444\) −106.588 44.1501i −0.240063 0.0994373i
\(445\) −60.4711 304.009i −0.135890 0.683165i
\(446\) −503.192 503.192i −1.12823 1.12823i
\(447\) −174.151 116.364i −0.389600 0.260322i
\(448\) −56.8453 + 285.780i −0.126887 + 0.637903i
\(449\) 451.653 301.785i 1.00591 0.672127i 0.0605527 0.998165i \(-0.480714\pi\)
0.945357 + 0.326038i \(0.105714\pi\)
\(450\) −173.836 419.677i −0.386302 0.932616i
\(451\) −216.787 + 89.7961i −0.480681 + 0.199104i
\(452\) 91.9050 + 137.546i 0.203330 + 0.304304i
\(453\) −953.854 189.733i −2.10564 0.418838i
\(454\) −123.817 + 185.305i −0.272725 + 0.408162i
\(455\) 75.1835 75.1835i 0.165239 0.165239i
\(456\) 843.384 167.760i 1.84953 0.367894i
\(457\) 85.9222 207.434i 0.188014 0.453905i −0.801563 0.597910i \(-0.795998\pi\)
0.989577 + 0.144005i \(0.0459981\pi\)
\(458\) 217.037i 0.473880i
\(459\) 0 0
\(460\) −78.7565 −0.171210
\(461\) 233.070 + 96.5408i 0.505575 + 0.209416i 0.620867 0.783916i \(-0.286781\pi\)
−0.115292 + 0.993332i \(0.536781\pi\)
\(462\) −39.5819 198.991i −0.0856750 0.430717i
\(463\) 88.6506 + 88.6506i 0.191470 + 0.191470i 0.796331 0.604861i \(-0.206771\pi\)
−0.604861 + 0.796331i \(0.706771\pi\)
\(464\) −116.711 77.9840i −0.251533 0.168069i
\(465\) 231.127 1161.95i 0.497046 2.49882i
\(466\) 88.2815 58.9878i 0.189445 0.126583i
\(467\) −265.152 640.133i −0.567777 1.37074i −0.903424 0.428748i \(-0.858955\pi\)
0.335647 0.941988i \(-0.391045\pi\)
\(468\) 20.2167 8.37404i 0.0431981 0.0178932i
\(469\) 64.9879 + 97.2612i 0.138567 + 0.207380i
\(470\) 60.0158 + 11.9379i 0.127693 + 0.0253998i
\(471\) −604.607 + 904.858i −1.28367 + 1.92114i
\(472\) 71.6013 71.6013i 0.151698 0.151698i
\(473\) −23.6889 + 4.71202i −0.0500823 + 0.00996199i
\(474\) 58.6768 141.658i 0.123791 0.298857i
\(475\) 859.730i 1.80996i
\(476\) 0 0
\(477\) −226.701 −0.475264
\(478\) −466.332 193.161i −0.975591 0.404103i
\(479\) −93.3885 469.496i −0.194965 0.980158i −0.947049 0.321090i \(-0.895951\pi\)
0.752083 0.659068i \(-0.229049\pi\)
\(480\) 306.804 + 306.804i 0.639175 + 0.639175i
\(481\) 90.0847 + 60.1927i 0.187286 + 0.125141i
\(482\) 42.8219 215.280i 0.0888421 0.446639i
\(483\) −158.626 + 105.991i −0.328418 + 0.219442i
\(484\) 24.6268 + 59.4543i 0.0508818 + 0.122840i
\(485\) −1189.21 + 492.586i −2.45197 + 1.01564i
\(486\) 311.039 + 465.503i 0.639998 + 0.957825i
\(487\) 397.869 + 79.1411i 0.816980 + 0.162507i 0.585854 0.810417i \(-0.300759\pi\)
0.231126 + 0.972924i \(0.425759\pi\)
\(488\) 339.443 508.012i 0.695579 1.04101i
\(489\) 111.033 111.033i 0.227062 0.227062i
\(490\) −432.141 + 85.9581i −0.881919 + 0.175425i
\(491\) 23.7416 57.3172i 0.0483535 0.116736i −0.897857 0.440287i \(-0.854877\pi\)
0.946211 + 0.323551i \(0.104877\pi\)
\(492\) 120.889i 0.245710i
\(493\) 0 0
\(494\) −146.094 −0.295736
\(495\) −365.996 151.601i −0.739386 0.306264i
\(496\) −86.2458 433.587i −0.173883 0.874167i
\(497\) 99.4445 + 99.4445i 0.200089 + 0.200089i
\(498\) 674.481 + 450.674i 1.35438 + 0.904967i
\(499\) 100.128 503.379i 0.200658 1.00878i −0.740821 0.671703i \(-0.765563\pi\)
0.941479 0.337073i \(-0.109437\pi\)
\(500\) 56.1690 37.5309i 0.112338 0.0750618i
\(501\) −55.7947 134.700i −0.111367 0.268863i
\(502\) −229.906 + 95.2302i −0.457980 + 0.189702i
\(503\) 183.828 + 275.118i 0.365463 + 0.546954i 0.967940 0.251182i \(-0.0808194\pi\)
−0.602477 + 0.798136i \(0.705819\pi\)
\(504\) 255.258 + 50.7740i 0.506465 + 0.100742i
\(505\) 535.003 800.689i 1.05941 1.58552i
\(506\) 99.7945 99.7945i 0.197222 0.197222i
\(507\) 626.030 124.525i 1.23477 0.245612i
\(508\) 13.8861 33.5240i 0.0273349 0.0659922i
\(509\) 343.247i 0.674355i −0.941441 0.337178i \(-0.890528\pi\)
0.941441 0.337178i \(-0.109472\pi\)
\(510\) 0 0
\(511\) 383.347 0.750190
\(512\) 521.878 + 216.169i 1.01929 + 0.422205i
\(513\) 31.5841 + 158.784i 0.0615674 + 0.309520i
\(514\) −490.601 490.601i −0.954476 0.954476i
\(515\) 1126.52 + 752.715i 2.18741 + 1.46158i
\(516\) 2.42760 12.2044i 0.00470466 0.0236519i
\(517\) 25.8464 17.2700i 0.0499930 0.0334043i
\(518\) 89.2118 + 215.376i 0.172224 + 0.415784i
\(519\) 721.645 298.915i 1.39045 0.575944i
\(520\) −124.444 186.243i −0.239315 0.358160i
\(521\) 312.376 + 62.1355i 0.599570 + 0.119262i 0.485539 0.874215i \(-0.338623\pi\)
0.114032 + 0.993477i \(0.463623\pi\)
\(522\) −86.9092 + 130.069i −0.166493 + 0.249174i
\(523\) −167.575 + 167.575i −0.320410 + 0.320410i −0.848924 0.528514i \(-0.822749\pi\)
0.528514 + 0.848924i \(0.322749\pi\)
\(524\) −166.788 + 33.1762i −0.318298 + 0.0633133i
\(525\) 221.062 533.691i 0.421071 1.01655i
\(526\) 514.556i 0.978244i
\(527\) 0 0
\(528\) −328.176 −0.621545
\(529\) 366.128 + 151.655i 0.692114 + 0.286683i
\(530\) 81.9022 + 411.750i 0.154532 + 0.776887i
\(531\) −61.2676 61.2676i −0.115381 0.115381i
\(532\) 74.0938 + 49.5079i 0.139274 + 0.0930600i
\(533\) −22.1481 + 111.346i −0.0415537 + 0.208904i
\(534\) −237.938 + 158.985i −0.445577 + 0.297725i
\(535\) −118.057 285.015i −0.220667 0.532738i
\(536\) 227.670 94.3039i 0.424757 0.175940i
\(537\) 544.985 + 815.628i 1.01487 + 1.51886i
\(538\) 176.421 + 35.0922i 0.327919 + 0.0652272i
\(539\) −124.352 + 186.106i −0.230708 + 0.345279i
\(540\) −31.7532 + 31.7532i −0.0588023 + 0.0588023i
\(541\) 259.826 51.6826i 0.480270 0.0955316i 0.0509824 0.998700i \(-0.483765\pi\)
0.429287 + 0.903168i \(0.358765\pi\)
\(542\) 257.435 621.502i 0.474972 1.14668i
\(543\) 552.466i 1.01743i
\(544\) 0 0
\(545\) 354.627 0.650692
\(546\) −90.6899 37.5650i −0.166099 0.0688003i
\(547\) −70.3869 353.859i −0.128678 0.646909i −0.990253 0.139278i \(-0.955522\pi\)
0.861575 0.507630i \(-0.169478\pi\)
\(548\) −33.0075 33.0075i −0.0602326 0.0602326i
\(549\) −434.694 290.453i −0.791792 0.529058i
\(550\) −83.3688 + 419.123i −0.151580 + 0.762043i
\(551\) −246.170 + 164.486i −0.446770 + 0.298522i
\(552\) 153.803 + 371.313i 0.278629 + 0.672669i
\(553\) 81.1445 33.6111i 0.146735 0.0607797i
\(554\) 65.9245 + 98.6630i 0.118997 + 0.178092i
\(555\) 991.094 + 197.141i 1.78576 + 0.355209i
\(556\) 25.7570 38.5481i 0.0463256 0.0693312i
\(557\) −367.145 + 367.145i −0.659147 + 0.659147i −0.955178 0.296031i \(-0.904337\pi\)
0.296031 + 0.955178i \(0.404337\pi\)
\(558\) −483.210 + 96.1164i −0.865968 + 0.172252i
\(559\) −4.47192 + 10.7962i −0.00799986 + 0.0193134i
\(560\) 370.051i 0.660806i
\(561\) 0 0
\(562\) 665.645 1.18442
\(563\) −406.232 168.267i −0.721549 0.298875i −0.00847487 0.999964i \(-0.502698\pi\)
−0.713074 + 0.701089i \(0.752698\pi\)
\(564\) 3.12435 + 15.7072i 0.00553963 + 0.0278496i
\(565\) −1024.55 1024.55i −1.81336 1.81336i
\(566\) 435.699 + 291.125i 0.769786 + 0.514355i
\(567\) −74.2271 + 373.165i −0.130912 + 0.658139i
\(568\) 246.342 164.601i 0.433701 0.289790i
\(569\) 183.595 + 443.238i 0.322663 + 0.778977i 0.999098 + 0.0424747i \(0.0135242\pi\)
−0.676435 + 0.736503i \(0.736476\pi\)
\(570\) −1258.87 + 521.443i −2.20855 + 0.914812i
\(571\) 302.327 + 452.464i 0.529469 + 0.792406i 0.995737 0.0922371i \(-0.0294018\pi\)
−0.466268 + 0.884643i \(0.654402\pi\)
\(572\) −20.1901 4.01605i −0.0352973 0.00702107i
\(573\) 391.863 586.464i 0.683879 1.02350i
\(574\) −172.728 + 172.728i −0.300920 + 0.300920i
\(575\) 394.103 78.3920i 0.685397 0.136334i
\(576\) 201.004 485.266i 0.348965 0.842476i
\(577\) 304.419i 0.527589i 0.964579 + 0.263795i \(0.0849741\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(578\) 0 0
\(579\) −759.470 −1.31169
\(580\) −75.8709 31.4267i −0.130812 0.0541840i
\(581\) 90.6517 + 455.737i 0.156027 + 0.784400i
\(582\) 840.297 + 840.297i 1.44381 + 1.44381i
\(583\) 177.324 + 118.484i 0.304158 + 0.203232i
\(584\) 157.552 792.068i 0.269781 1.35628i
\(585\) −159.364 + 106.484i −0.272417 + 0.182023i
\(586\) 95.3950 + 230.304i 0.162790 + 0.393010i
\(587\) 589.834 244.317i 1.00483 0.416213i 0.181263 0.983435i \(-0.441982\pi\)
0.823565 + 0.567221i \(0.191982\pi\)
\(588\) −64.0652 95.8804i −0.108954 0.163062i
\(589\) −914.531 181.911i −1.55268 0.308848i
\(590\) −89.1437 + 133.413i −0.151091 + 0.226124i
\(591\) 821.644 821.644i 1.39026 1.39026i
\(592\) 369.831 73.5639i 0.624714 0.124263i
\(593\) −246.104 + 594.149i −0.415016 + 1.00194i 0.568755 + 0.822507i \(0.307425\pi\)
−0.983771 + 0.179430i \(0.942575\pi\)
\(594\) 80.4708i 0.135473i
\(595\) 0 0
\(596\) −45.7258 −0.0767211
\(597\) 342.460 + 141.852i 0.573636 + 0.237608i
\(598\) −13.3211 66.9697i −0.0222761 0.111990i
\(599\) 354.327 + 354.327i 0.591530 + 0.591530i 0.938045 0.346514i \(-0.112635\pi\)
−0.346514 + 0.938045i \(0.612635\pi\)
\(600\) −1011.85 676.099i −1.68642 1.12683i
\(601\) −111.153 + 558.804i −0.184947 + 0.929791i 0.771131 + 0.636677i \(0.219691\pi\)
−0.956078 + 0.293114i \(0.905309\pi\)
\(602\) −20.9064 + 13.9692i −0.0347282 + 0.0232046i
\(603\) −80.6936 194.812i −0.133820 0.323071i
\(604\) −196.157 + 81.2510i −0.324764 + 0.134521i
\(605\) −313.152 468.666i −0.517607 0.774654i
\(606\) −871.961 173.444i −1.43888 0.286211i
\(607\) 100.769 150.811i 0.166011 0.248454i −0.739131 0.673561i \(-0.764764\pi\)
0.905143 + 0.425108i \(0.139764\pi\)
\(608\) 241.474 241.474i 0.397162 0.397162i
\(609\) −195.108 + 38.8094i −0.320375 + 0.0637265i
\(610\) −370.495 + 894.455i −0.607370 + 1.46632i
\(611\) 15.0396i 0.0246147i
\(612\) 0 0
\(613\) −155.196 −0.253174 −0.126587 0.991956i \(-0.540402\pi\)
−0.126587 + 0.991956i \(0.540402\pi\)
\(614\) −423.470 175.407i −0.689691 0.285679i
\(615\) 206.573 + 1038.51i 0.335890 + 1.68863i
\(616\) −173.125 173.125i −0.281047 0.281047i
\(617\) −388.627 259.673i −0.629866 0.420863i 0.199243 0.979950i \(-0.436152\pi\)
−0.829109 + 0.559087i \(0.811152\pi\)
\(618\) 244.024 1226.79i 0.394861 1.98510i
\(619\) −319.014 + 213.158i −0.515370 + 0.344359i −0.785901 0.618352i \(-0.787801\pi\)
0.270531 + 0.962711i \(0.412801\pi\)
\(620\) −98.9771 238.952i −0.159640 0.385406i
\(621\) −69.9071 + 28.9565i −0.112572 + 0.0466288i
\(622\) −553.288 828.054i −0.889531 1.33128i
\(623\) −160.771 31.9794i −0.258060 0.0513313i
\(624\) −88.2122 + 132.019i −0.141366 + 0.211569i
\(625\) 198.226 198.226i 0.317161 0.317161i
\(626\) 789.123 156.966i 1.26058 0.250745i
\(627\) −264.892 + 639.506i −0.422475 + 1.01995i
\(628\) 237.583i 0.378316i
\(629\) 0 0
\(630\) −412.403 −0.654608
\(631\) 308.547 + 127.804i 0.488980 + 0.202542i 0.613531 0.789671i \(-0.289749\pi\)
−0.124550 + 0.992213i \(0.539749\pi\)
\(632\) −36.0974 181.474i −0.0571162 0.287142i
\(633\) 103.471 + 103.471i 0.163462 + 0.163462i
\(634\) −487.236 325.560i −0.768511 0.513502i
\(635\) −62.0048 + 311.719i −0.0976453 + 0.490896i
\(636\) −91.3563 + 61.0423i −0.143642 + 0.0959785i
\(637\) 41.4415 + 100.049i 0.0650573 + 0.157062i
\(638\) 135.960 56.3163i 0.213103 0.0882701i
\(639\) −140.845 210.789i −0.220414 0.329873i
\(640\) −533.369 106.094i −0.833389 0.165771i
\(641\) −533.705 + 798.746i −0.832613 + 1.24609i 0.134289 + 0.990942i \(0.457125\pi\)
−0.966901 + 0.255151i \(0.917875\pi\)
\(642\) −201.392 + 201.392i −0.313695 + 0.313695i
\(643\) −1027.11 + 204.305i −1.59737 + 0.317737i −0.911917 0.410376i \(-0.865398\pi\)
−0.685457 + 0.728113i \(0.740398\pi\)
\(644\) −15.9385 + 38.4791i −0.0247493 + 0.0597501i
\(645\) 108.991i 0.168978i
\(646\) 0 0
\(647\) 328.253 0.507346 0.253673 0.967290i \(-0.418361\pi\)
0.253673 + 0.967290i \(0.418361\pi\)
\(648\) 740.523 + 306.735i 1.14278 + 0.473356i
\(649\) 15.9019 + 79.9443i 0.0245022 + 0.123181i
\(650\) 146.196 + 146.196i 0.224917 + 0.224917i
\(651\) −520.934 348.077i −0.800206 0.534681i
\(652\) 6.68782 33.6220i 0.0102574 0.0515674i
\(653\) 41.4569 27.7006i 0.0634869 0.0424206i −0.523422 0.852074i \(-0.675345\pi\)
0.586909 + 0.809653i \(0.300345\pi\)
\(654\) −125.290 302.477i −0.191575 0.462504i
\(655\) 1376.11 570.005i 2.10094 0.870237i
\(656\) 219.515 + 328.527i 0.334626 + 0.500804i
\(657\) −677.754 134.814i −1.03159 0.205196i
\(658\) 17.9785 26.9067i 0.0273229 0.0408917i
\(659\) 61.2456 61.2456i 0.0929371 0.0929371i −0.659110 0.752047i \(-0.729067\pi\)
0.752047 + 0.659110i \(0.229067\pi\)
\(660\) −188.310 + 37.4572i −0.285318 + 0.0567533i
\(661\) 314.044 758.170i 0.475105 1.14700i −0.486774 0.873528i \(-0.661827\pi\)
0.961879 0.273476i \(-0.0881734\pi\)
\(662\) 1040.69i 1.57205i
\(663\) 0 0
\(664\) 978.896 1.47424
\(665\) −721.107 298.692i −1.08437 0.449161i
\(666\) −81.9831 412.157i −0.123098 0.618854i
\(667\) −97.8470 97.8470i −0.146697 0.146697i
\(668\) −26.4655 17.6837i −0.0396190 0.0264726i
\(669\) −318.248 + 1599.94i −0.475707 + 2.39154i
\(670\) −324.677 + 216.942i −0.484593 + 0.323795i
\(671\) 188.211 + 454.381i 0.280493 + 0.677170i
\(672\) 211.989 87.8088i 0.315460 0.130668i
\(673\) −305.467 457.164i −0.453889 0.679293i 0.531990 0.846751i \(-0.321444\pi\)
−0.985879 + 0.167457i \(0.946444\pi\)
\(674\) 567.203 + 112.824i 0.841548 + 0.167394i
\(675\) 127.289 190.502i 0.188576 0.282225i
\(676\) 98.5342 98.5342i 0.145761 0.145761i
\(677\) −531.400 + 105.702i −0.784933 + 0.156133i −0.571257 0.820772i \(-0.693544\pi\)
−0.213677 + 0.976904i \(0.568544\pi\)
\(678\) −511.910 + 1235.86i −0.755030 + 1.82280i
\(679\) 680.714i 1.00252i
\(680\) 0 0
\(681\) 510.884 0.750197
\(682\) 428.199 + 177.366i 0.627857 + 0.260067i
\(683\) −77.2580 388.402i −0.113116 0.568671i −0.995223 0.0976233i \(-0.968876\pi\)
0.882108 0.471048i \(-0.156124\pi\)
\(684\) −113.587 113.587i −0.166062 0.166062i
\(685\) 339.956 + 227.151i 0.496285 + 0.331607i
\(686\) −114.519 + 575.727i −0.166938 + 0.839252i
\(687\) 413.677 276.410i 0.602150 0.402344i
\(688\) 15.5639 + 37.5745i 0.0226219 + 0.0546142i
\(689\) 95.3279 39.4861i 0.138357 0.0573093i
\(690\) −353.818 529.526i −0.512779 0.767429i
\(691\) 915.708 + 182.146i 1.32519 + 0.263597i 0.806434 0.591324i \(-0.201395\pi\)
0.518758 + 0.854921i \(0.326395\pi\)
\(692\) 94.7388 141.787i 0.136906 0.204894i
\(693\) −148.139 + 148.139i −0.213764 + 0.213764i
\(694\) −419.120 + 83.3681i −0.603919 + 0.120127i
\(695\) −155.398 + 375.164i −0.223594 + 0.539804i
\(696\) 419.081i 0.602128i
\(697\) 0 0
\(698\) −887.929 −1.27210
\(699\) −224.864 93.1416i −0.321693 0.133250i
\(700\) −24.6032 123.689i −0.0351474 0.176698i
\(701\) −411.177 411.177i −0.586558 0.586558i 0.350140 0.936697i \(-0.386134\pi\)
−0.936697 + 0.350140i \(0.886134\pi\)
\(702\) −32.3718 21.6302i −0.0461137 0.0308122i
\(703\) 155.163 780.055i 0.220715 1.10961i
\(704\) −410.846 + 274.519i −0.583588 + 0.389941i
\(705\) −53.6800 129.595i −0.0761418 0.183823i
\(706\) −533.494 + 220.980i −0.755657 + 0.313003i
\(707\) −282.930 423.435i −0.400184 0.598918i
\(708\) −41.1868 8.19257i −0.0581735 0.0115714i
\(709\) 646.261 967.198i 0.911511 1.36417i −0.0197449 0.999805i \(-0.506285\pi\)
0.931255 0.364367i \(-0.118715\pi\)
\(710\) −331.966 + 331.966i −0.467557 + 0.467557i
\(711\) −155.283 + 30.8877i −0.218401 + 0.0434426i
\(712\) −132.151 + 319.041i −0.185605 + 0.448091i
\(713\) 435.811i 0.611235i
\(714\) 0 0
\(715\) 180.307 0.252177
\(716\) 197.853 + 81.9532i 0.276330 + 0.114460i
\(717\) 225.734 + 1134.84i 0.314831 + 1.58276i
\(718\) 663.338 + 663.338i 0.923869 + 0.923869i
\(719\) 12.3456 + 8.24905i 0.0171705 + 0.0114729i 0.564126 0.825689i \(-0.309213\pi\)
−0.546955 + 0.837162i \(0.684213\pi\)
\(720\) −130.138 + 654.247i −0.180747 + 0.908677i
\(721\) 595.745 398.064i 0.826276 0.552100i
\(722\) 166.526 + 402.030i 0.230646 + 0.556828i
\(723\) −464.864 + 192.553i −0.642966 + 0.266325i
\(724\) 67.0078 + 100.284i 0.0925522 + 0.138514i
\(725\) 410.944 + 81.7419i 0.566820 + 0.112747i
\(726\) −289.109 + 432.682i −0.398222 + 0.595981i
\(727\) −880.136 + 880.136i −1.21064 + 1.21064i −0.239825 + 0.970816i \(0.577090\pi\)
−0.970816 + 0.239825i \(0.922910\pi\)
\(728\) −116.180 + 23.1096i −0.159588 + 0.0317440i
\(729\) 170.915 412.626i 0.234452 0.566017i
\(730\) 1279.69i 1.75300i
\(731\) 0 0
\(732\) −253.382 −0.346150
\(733\) −503.915 208.728i −0.687469 0.284759i 0.0114762 0.999934i \(-0.496347\pi\)
−0.698945 + 0.715175i \(0.746347\pi\)
\(734\) −114.016 573.199i −0.155336 0.780925i
\(735\) 714.195 + 714.195i 0.971694 + 0.971694i
\(736\) 132.711 + 88.6744i 0.180313 + 0.120482i
\(737\) −38.6993 + 194.555i −0.0525092 + 0.263982i
\(738\) 366.126 244.638i 0.496106 0.331488i
\(739\) 63.1371 + 152.427i 0.0854359 + 0.206261i 0.960823 0.277161i \(-0.0893937\pi\)
−0.875387 + 0.483422i \(0.839394\pi\)
\(740\) 203.815 84.4231i 0.275426 0.114085i
\(741\) 186.059 + 278.457i 0.251092 + 0.375786i
\(742\) 217.749 + 43.3130i 0.293462 + 0.0583733i
\(743\) 1.28081 1.91687i 0.00172384 0.00257991i −0.830607 0.556860i \(-0.812006\pi\)
0.832331 + 0.554280i \(0.187006\pi\)
\(744\) −933.294 + 933.294i −1.25443 + 1.25443i
\(745\) 392.811 78.1349i 0.527263 0.104879i
\(746\) 99.8879 241.151i 0.133898 0.323258i
\(747\) 837.618i 1.12131i
\(748\) 0 0
\(749\) −163.145 −0.217817
\(750\) 504.684 + 209.047i 0.672912 + 0.278729i
\(751\) 281.416 + 1414.78i 0.374722 + 1.88386i 0.460695 + 0.887559i \(0.347600\pi\)
−0.0859723 + 0.996298i \(0.527400\pi\)
\(752\) −37.0123 37.0123i −0.0492184 0.0492184i
\(753\) 474.310 + 316.924i 0.629894 + 0.420881i
\(754\) 13.8904 69.8315i 0.0184222 0.0926148i
\(755\) 1546.26 1033.18i 2.04803 1.36845i
\(756\) 9.08793 + 21.9402i 0.0120211 + 0.0290214i
\(757\) 278.634 115.414i 0.368077 0.152463i −0.190975 0.981595i \(-0.561165\pi\)
0.559052 + 0.829132i \(0.311165\pi\)
\(758\) −42.8446 64.1215i −0.0565233 0.0845931i
\(759\) −317.305 63.1158i −0.418056 0.0831566i
\(760\) −913.524 + 1367.18i −1.20200 + 1.79893i
\(761\) −811.549 + 811.549i −1.06642 + 1.06642i −0.0687929 + 0.997631i \(0.521915\pi\)
−0.997631 + 0.0687929i \(0.978085\pi\)
\(762\) 287.786 57.2441i 0.377671 0.0751235i
\(763\) 71.7685 173.265i 0.0940610 0.227083i
\(764\) 153.984i 0.201550i
\(765\) 0 0
\(766\) −348.859 −0.455429
\(767\) 36.4344 + 15.0916i 0.0475025 + 0.0196762i
\(768\) −126.907 638.005i −0.165244 0.830736i
\(769\) 870.130 + 870.130i 1.13151 + 1.13151i 0.989927 + 0.141582i \(0.0452189\pi\)
0.141582 + 0.989927i \(0.454781\pi\)
\(770\) 322.579 + 215.540i 0.418934 + 0.279923i
\(771\) −310.284 + 1559.90i −0.402444 + 2.02322i
\(772\) −137.860 + 92.1150i −0.178575 + 0.119320i
\(773\) −541.282 1306.77i −0.700235 1.69052i −0.723066 0.690779i \(-0.757268\pi\)
0.0228308 0.999739i \(-0.492732\pi\)
\(774\) 41.8749 17.3451i 0.0541019 0.0224098i
\(775\) 733.134 + 1097.21i 0.945979 + 1.41576i
\(776\) 1406.49 + 279.767i 1.81248 + 0.360525i
\(777\) 296.895 444.334i 0.382104 0.571859i
\(778\) −26.8308 + 26.8308i −0.0344869 + 0.0344869i
\(779\) 817.375 162.586i 1.04926 0.208711i
\(780\) −35.5486 + 85.8218i −0.0455751 + 0.110028i
\(781\) 238.490i 0.305365i
\(782\) 0 0
\(783\) −78.9004 −0.100767
\(784\) 348.205 + 144.231i 0.444139 + 0.183969i
\(785\) −405.975 2040.97i −0.517165 2.59997i
\(786\) −972.366 972.366i −1.23711 1.23711i
\(787\) −1282.76 857.112i −1.62994 1.08909i −0.925104 0.379713i \(-0.876023\pi\)
−0.704831 0.709375i \(-0.748977\pi\)
\(788\) 49.4897 248.802i 0.0628042 0.315738i
\(789\) 980.754 655.319i 1.24303 0.830569i
\(790\) 112.201 + 270.877i 0.142026 + 0.342882i
\(791\) −707.924 + 293.232i −0.894973 + 0.370710i
\(792\) 245.199 + 366.967i 0.309595 + 0.463342i
\(793\) 233.379 + 46.4220i 0.294299 + 0.0585397i
\(794\) 34.7954 52.0749i 0.0438229 0.0655856i
\(795\) 680.496 680.496i 0.855970 0.855970i
\(796\) 79.3688 15.7874i 0.0997095 0.0198335i
\(797\) 430.853 1040.17i 0.540593 1.30511i −0.383712 0.923453i \(-0.625355\pi\)
0.924305 0.381654i \(-0.124645\pi\)
\(798\) 720.593i 0.902998i
\(799\) 0 0
\(800\) −483.288 −0.604110
\(801\) 272.996 + 113.079i 0.340819 + 0.141172i
\(802\) −51.5110 258.963i −0.0642281 0.322897i
\(803\) 459.675 + 459.675i 0.572448 + 0.572448i
\(804\) −84.9737 56.7776i −0.105689 0.0706189i
\(805\) 71.1694 357.793i 0.0884092 0.444463i
\(806\) 186.449 124.581i 0.231326 0.154567i
\(807\) −157.796 380.953i −0.195534 0.472061i
\(808\) −991.179 + 410.560i −1.22671 + 0.508119i
\(809\) −182.579 273.249i −0.225685 0.337761i 0.701296 0.712870i \(-0.252605\pi\)
−0.926981 + 0.375109i \(0.877605\pi\)
\(810\) −1245.70 247.785i −1.53790 0.305907i
\(811\) −162.131 + 242.645i −0.199914 + 0.299193i −0.917859 0.396908i \(-0.870083\pi\)
0.717944 + 0.696101i \(0.245083\pi\)
\(812\) −30.7091 + 30.7091i −0.0378191 + 0.0378191i
\(813\) −1512.45 + 300.846i −1.86034 + 0.370044i
\(814\) −151.285 + 365.235i −0.185854 + 0.448692i
\(815\) 300.260i 0.368417i
\(816\) 0 0
\(817\) 85.7829 0.104997
\(818\) −650.588 269.482i −0.795340 0.329441i
\(819\) 19.7743 + 99.4124i 0.0241445 + 0.121383i
\(820\) 163.457 + 163.457i 0.199337 + 0.199337i
\(821\) 898.276 + 600.209i 1.09412 + 0.731070i 0.965443 0.260616i \(-0.0839256\pi\)
0.128681 + 0.991686i \(0.458926\pi\)
\(822\) 73.6406 370.216i 0.0895871 0.450385i
\(823\) −75.4620 + 50.4221i −0.0916914 + 0.0612662i −0.600571 0.799572i \(-0.705060\pi\)
0.508879 + 0.860838i \(0.330060\pi\)
\(824\) −577.631 1394.52i −0.701008 1.69238i
\(825\) 905.033 374.877i 1.09701 0.454396i
\(826\) 47.1426 + 70.5539i 0.0570733 + 0.0854163i
\(827\) −476.748 94.8310i −0.576479 0.114669i −0.101764 0.994809i \(-0.532449\pi\)
−0.474715 + 0.880140i \(0.657449\pi\)
\(828\) 41.7114 62.4255i 0.0503760 0.0753931i
\(829\) 743.445 743.445i 0.896797 0.896797i −0.0983544 0.995151i \(-0.531358\pi\)
0.995151 + 0.0983544i \(0.0313579\pi\)
\(830\) −1521.34 + 302.613i −1.83294 + 0.364594i
\(831\) 104.095 251.307i 0.125264 0.302415i
\(832\) 239.065i 0.287338i
\(833\) 0 0
\(834\) 374.896 0.449516
\(835\) 257.571 + 106.690i 0.308469 + 0.127772i
\(836\) 29.4812 + 148.212i 0.0352646 + 0.177287i
\(837\) −175.711 175.711i −0.209930 0.209930i
\(838\) 54.8971 + 36.6811i 0.0655097 + 0.0437722i
\(839\) 89.4817 449.855i 0.106653 0.536180i −0.890108 0.455751i \(-0.849371\pi\)
0.996760 0.0804292i \(-0.0256291\pi\)
\(840\) −918.627 + 613.807i −1.09360 + 0.730723i
\(841\) 266.619 + 643.676i 0.317027 + 0.765370i
\(842\) 721.276 298.762i 0.856622 0.354824i
\(843\) −847.739 1268.73i −1.00562 1.50502i
\(844\) 31.3321 + 6.23235i 0.0371234 + 0.00738430i
\(845\) −678.093 + 1014.84i −0.802477 + 1.20099i
\(846\) −41.2482 + 41.2482i −0.0487568 + 0.0487568i
\(847\) −292.357 + 58.1534i −0.345167 + 0.0686581i
\(848\) 137.426 331.775i 0.162059 0.391244i
\(849\) 1201.22i 1.41486i
\(850\) 0 0
\(851\) 371.728 0.436813
\(852\) −113.516 47.0197i −0.133234 0.0551875i
\(853\) −1.46888 7.38457i −0.00172202 0.00865717i 0.979915 0.199417i \(-0.0639048\pi\)
−0.981637 + 0.190760i \(0.938905\pi\)
\(854\) 362.035 + 362.035i 0.423929 + 0.423929i
\(855\) 1169.87 + 781.680i 1.36827 + 0.914246i
\(856\) −67.0512 + 337.089i −0.0783309 + 0.393796i
\(857\) 42.1566 28.1682i 0.0491910 0.0328683i −0.530732 0.847540i \(-0.678083\pi\)
0.579923 + 0.814672i \(0.303083\pi\)
\(858\) −63.7026 153.792i −0.0742455 0.179244i
\(859\) 464.849 192.547i 0.541151 0.224152i −0.0953281 0.995446i \(-0.530390\pi\)
0.636479 + 0.771294i \(0.280390\pi\)
\(860\) 13.2194 + 19.7842i 0.0153713 + 0.0230048i
\(861\) 549.204 + 109.243i 0.637867 + 0.126880i
\(862\) 340.230 509.190i 0.394698 0.590708i
\(863\) −98.9573 + 98.9573i −0.114667 + 0.114667i −0.762112 0.647445i \(-0.775837\pi\)
0.647445 + 0.762112i \(0.275837\pi\)
\(864\) 89.2585 17.7546i 0.103309 0.0205493i
\(865\) −571.580 + 1379.92i −0.660786 + 1.59528i
\(866\) 94.8830i 0.109565i
\(867\) 0 0
\(868\) −136.778 −0.157579
\(869\) 137.605 + 56.9977i 0.158348 + 0.0655900i
\(870\) −129.554 651.310i −0.148912 0.748632i
\(871\) 67.8634 + 67.8634i 0.0779143 + 0.0779143i
\(872\) −328.502 219.498i −0.376722 0.251718i
\(873\) 239.390 1203.50i 0.274216 1.37858i
\(874\) −416.771 + 278.477i −0.476855 + 0.318624i
\(875\) 119.746 + 289.092i 0.136853 + 0.330391i
\(876\) −309.423 + 128.167i −0.353222 + 0.146309i
\(877\) 527.563 + 789.554i 0.601554 + 0.900289i 0.999856 0.0169652i \(-0.00540045\pi\)
−0.398302 + 0.917254i \(0.630400\pi\)
\(878\) 421.187 + 83.7792i 0.479711 + 0.0954205i
\(879\) 317.472 475.131i 0.361174 0.540536i
\(880\) 443.732 443.732i 0.504241 0.504241i
\(881\) 1026.00 204.085i 1.16459 0.231651i 0.425308 0.905049i \(-0.360166\pi\)
0.739280 + 0.673398i \(0.235166\pi\)
\(882\) 160.738 388.057i 0.182243 0.439974i
\(883\) 1264.99i 1.43261i −0.697789 0.716303i \(-0.745833\pi\)
0.697789 0.716303i \(-0.254167\pi\)
\(884\) 0 0
\(885\) 367.818 0.415613
\(886\) −186.898 77.4157i −0.210946 0.0873766i
\(887\) −152.500 766.671i −0.171928 0.864341i −0.966401 0.257041i \(-0.917253\pi\)
0.794472 0.607300i \(-0.207747\pi\)
\(888\) −796.059 796.059i −0.896463 0.896463i
\(889\) 139.752 + 93.3794i 0.157201 + 0.105039i
\(890\) 106.754 536.687i 0.119948 0.603019i
\(891\) −536.472 + 358.459i −0.602101 + 0.402311i
\(892\) 136.286 + 329.023i 0.152787 + 0.368860i
\(893\) −102.000 + 42.2496i −0.114221 + 0.0473120i
\(894\) −205.425 307.441i −0.229782 0.343894i
\(895\) −1839.71 365.941i −2.05554 0.408872i
\(896\) −159.777 + 239.124i −0.178323 + 0.266879i
\(897\) −110.680 + 110.680i −0.123389 + 0.123389i
\(898\) 940.519 187.081i 1.04735 0.208331i
\(899\) 173.904 419.842i 0.193442 0.467010i
\(900\) 227.333i 0.252592i
\(901\) 0 0
\(902\) −414.241 −0.459247
\(903\) 53.2511 + 22.0573i 0.0589713 + 0.0244267i
\(904\) 314.922 + 1583.22i 0.348365 + 1.75135i
\(905\) −746.999 746.999i −0.825413 0.825413i
\(906\) −1427.54 953.854i −1.57566 1.05282i
\(907\) 72.9154 366.570i 0.0803918 0.404157i −0.919546 0.392983i \(-0.871443\pi\)
0.999938 0.0111739i \(-0.00355685\pi\)
\(908\) 92.7363 61.9644i 0.102133 0.0682428i
\(909\) 351.306 + 848.129i 0.386476 + 0.933035i
\(910\) 173.416 71.8311i 0.190567 0.0789352i
\(911\) −67.7280 101.362i −0.0743447 0.111265i 0.792434 0.609958i \(-0.208814\pi\)
−0.866779 + 0.498693i \(0.833814\pi\)
\(912\) 1143.17 + 227.390i 1.25347 + 0.249331i
\(913\) −437.777 + 655.180i −0.479493 + 0.717612i
\(914\) 280.276 280.276i 0.306647 0.306647i
\(915\) 2176.70 432.972i 2.37890 0.473193i
\(916\) 41.5657 100.349i 0.0453774 0.109551i
\(917\) 787.702i 0.858999i
\(918\) 0 0
\(919\) 1592.00 1.73232 0.866158 0.499770i \(-0.166582\pi\)
0.866158 + 0.499770i \(0.166582\pi\)
\(920\) −710.018 294.099i −0.771759 0.319673i
\(921\) 204.986 + 1030.53i 0.222569 + 1.11893i
\(922\) 314.913 + 314.913i 0.341555 + 0.341555i
\(923\) 95.9399 + 64.1050i 0.103944 + 0.0694528i
\(924\) −19.8088 + 99.5855i −0.0214381 + 0.107777i
\(925\) −935.874 + 625.331i −1.01176 + 0.676033i
\(926\) 84.6976 + 204.478i 0.0914661 + 0.220819i
\(927\) −1193.26 + 494.265i −1.28723 + 0.533188i
\(928\) 92.4638 + 138.382i 0.0996377 + 0.149118i
\(929\) −666.010 132.478i −0.716910 0.142602i −0.176861 0.984236i \(-0.556594\pi\)
−0.540049 + 0.841633i \(0.681594\pi\)
\(930\) 1161.95 1738.98i 1.24941 1.86987i
\(931\) 562.118 562.118i 0.603778 0.603778i
\(932\) −52.1145 + 10.3662i −0.0559169 + 0.0111226i
\(933\) −873.641 + 2109.16i −0.936378 + 2.26062i
\(934\) 1223.18i 1.30961i
\(935\) 0 0
\(936\) 213.532 0.228133
\(937\) −271.967 112.652i −0.290253 0.120227i 0.232806 0.972523i \(-0.425209\pi\)
−0.523059 + 0.852296i \(0.675209\pi\)
\(938\) 40.2869 + 202.536i 0.0429498 + 0.215923i
\(939\) −1304.18 1304.18i −1.38890 1.38890i
\(940\) −25.4624 17.0134i −0.0270877 0.0180994i
\(941\) −162.916 + 819.035i −0.173131 + 0.870388i 0.792381 + 0.610027i \(0.208841\pi\)
−0.965511 + 0.260361i \(0.916159\pi\)
\(942\) −1597.41 + 1067.35i −1.69576 + 1.13307i
\(943\) 149.060 + 359.862i 0.158070 + 0.381614i
\(944\) 126.805 52.5243i 0.134327 0.0556402i
\(945\) −115.561 172.950i −0.122287 0.183016i
\(946\) −41.8196 8.31845i −0.0442068 0.00879328i
\(947\) 346.036 517.880i 0.365403 0.546864i −0.602523 0.798102i \(-0.705838\pi\)
0.967925 + 0.251238i \(0.0808376\pi\)
\(948\) −54.2592 + 54.2592i −0.0572355 + 0.0572355i
\(949\) 308.477 61.3599i 0.325055 0.0646575i
\(950\) 580.814 1402.21i 0.611383 1.47601i
\(951\) 1343.30i 1.41252i
\(952\) 0 0
\(953\) −373.214 −0.391620 −0.195810 0.980642i \(-0.562734\pi\)
−0.195810 + 0.980642i \(0.562734\pi\)
\(954\) −369.746 153.154i −0.387575 0.160539i
\(955\) 263.124 + 1322.81i 0.275522 + 1.38514i
\(956\) 178.619 + 178.619i 0.186840 + 0.186840i
\(957\) −280.493 187.419i −0.293096 0.195841i
\(958\) 164.865 828.832i 0.172093 0.865169i
\(959\) 179.781 120.126i 0.187468 0.125262i
\(960\) 853.280 + 2060.00i 0.888833 + 2.14583i
\(961\) 434.426 179.945i 0.452056 0.187248i
\(962\) 106.262 + 159.033i 0.110460 + 0.165315i
\(963\) 288.439 + 57.3741i 0.299522 + 0.0595786i
\(964\) −61.0282 + 91.3352i −0.0633073 + 0.0947460i
\(965\) 1026.89 1026.89i 1.06414 1.06414i
\(966\) −330.322 + 65.7051i −0.341948 + 0.0680177i
\(967\) 392.472 947.512i 0.405866 0.979847i −0.580348 0.814369i \(-0.697083\pi\)
0.986213 0.165478i \(-0.0529167\pi\)
\(968\) 627.966i 0.648725i
\(969\) 0 0
\(970\) −2272.36 −2.34264
\(971\) −909.171 376.591i −0.936325 0.387838i −0.138250 0.990397i \(-0.544148\pi\)
−0.798074 + 0.602559i \(0.794148\pi\)
\(972\) −54.6605 274.797i −0.0562351 0.282713i
\(973\) 151.849 + 151.849i 0.156063 + 0.156063i
\(974\) 595.453 + 397.869i 0.611348 + 0.408490i
\(975\) 92.4629 464.842i 0.0948337 0.476761i
\(976\) 688.586 460.099i 0.705519 0.471413i
\(977\) −217.809 525.837i −0.222936 0.538216i 0.772350 0.635197i \(-0.219081\pi\)
−0.995286 + 0.0969814i \(0.969081\pi\)
\(978\) 256.105 106.082i 0.261866 0.108469i
\(979\) −154.436 231.129i −0.157748 0.236087i
\(980\) 216.265 + 43.0178i 0.220679 + 0.0438957i
\(981\) −187.819 + 281.091i −0.191457 + 0.286535i
\(982\) 77.4444 77.4444i 0.0788639 0.0788639i
\(983\) −1410.25 + 280.516i −1.43464 + 0.285368i −0.850367 0.526190i \(-0.823620\pi\)
−0.584272 + 0.811558i \(0.698620\pi\)
\(984\) 451.436 1089.86i 0.458776 1.10758i
\(985\) 2221.92i 2.25575i
\(986\) 0 0
\(987\) −74.1814 −0.0751585
\(988\) 67.5473 + 27.9790i 0.0683677 + 0.0283188i
\(989\) 7.82186 + 39.3231i 0.00790886 + 0.0397605i
\(990\) −494.517 494.517i −0.499512 0.499512i
\(991\) −69.8125 46.6472i −0.0704465 0.0470709i 0.519848 0.854259i \(-0.325988\pi\)
−0.590295 + 0.807188i \(0.700988\pi\)
\(992\) −102.259 + 514.093i −0.103084 + 0.518239i
\(993\) −1983.58 + 1325.39i −1.99757 + 1.33473i
\(994\) 95.0102 + 229.375i 0.0955837 + 0.230759i
\(995\) −654.847 + 271.246i −0.658137 + 0.272609i
\(996\) −225.540 337.545i −0.226446 0.338900i
\(997\) −738.843 146.965i −0.741066 0.147407i −0.189901 0.981803i \(-0.560817\pi\)
−0.551165 + 0.834396i \(0.685817\pi\)
\(998\) 503.379 753.360i 0.504388 0.754870i
\(999\) 149.874 149.874i 0.150024 0.150024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.h.249.1 8
17.2 even 8 289.3.e.a.214.1 8
17.3 odd 16 289.3.e.f.65.1 8
17.4 even 4 289.3.e.g.40.1 8
17.5 odd 16 17.3.e.b.3.1 8
17.6 odd 16 289.3.e.j.158.1 8
17.7 odd 16 289.3.e.a.131.1 8
17.8 even 8 289.3.e.j.75.1 8
17.9 even 8 289.3.e.n.75.1 8
17.10 odd 16 289.3.e.e.131.1 8
17.11 odd 16 289.3.e.n.158.1 8
17.12 odd 16 289.3.e.g.224.1 8
17.13 even 4 17.3.e.b.6.1 yes 8
17.14 odd 16 inner 289.3.e.h.65.1 8
17.15 even 8 289.3.e.e.214.1 8
17.16 even 2 289.3.e.f.249.1 8
51.5 even 16 153.3.p.a.37.1 8
51.47 odd 4 153.3.p.a.91.1 8
68.39 even 16 272.3.bh.b.241.1 8
68.47 odd 4 272.3.bh.b.193.1 8
85.13 odd 4 425.3.t.b.74.1 8
85.22 even 16 425.3.t.b.224.1 8
85.39 odd 16 425.3.u.a.326.1 8
85.47 odd 4 425.3.t.d.74.1 8
85.64 even 4 425.3.u.a.176.1 8
85.73 even 16 425.3.t.d.224.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.3.1 8 17.5 odd 16
17.3.e.b.6.1 yes 8 17.13 even 4
153.3.p.a.37.1 8 51.5 even 16
153.3.p.a.91.1 8 51.47 odd 4
272.3.bh.b.193.1 8 68.47 odd 4
272.3.bh.b.241.1 8 68.39 even 16
289.3.e.a.131.1 8 17.7 odd 16
289.3.e.a.214.1 8 17.2 even 8
289.3.e.e.131.1 8 17.10 odd 16
289.3.e.e.214.1 8 17.15 even 8
289.3.e.f.65.1 8 17.3 odd 16
289.3.e.f.249.1 8 17.16 even 2
289.3.e.g.40.1 8 17.4 even 4
289.3.e.g.224.1 8 17.12 odd 16
289.3.e.h.65.1 8 17.14 odd 16 inner
289.3.e.h.249.1 8 1.1 even 1 trivial
289.3.e.j.75.1 8 17.8 even 8
289.3.e.j.158.1 8 17.6 odd 16
289.3.e.n.75.1 8 17.9 even 8
289.3.e.n.158.1 8 17.11 odd 16
425.3.t.b.74.1 8 85.13 odd 4
425.3.t.b.224.1 8 85.22 even 16
425.3.t.d.74.1 8 85.47 odd 4
425.3.t.d.224.1 8 85.73 even 16
425.3.u.a.176.1 8 85.64 even 4
425.3.u.a.326.1 8 85.39 odd 16