Properties

Label 289.2.c.d.251.1
Level $289$
Weight $2$
Character 289.251
Analytic conductor $2.308$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,2,Mod(38,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.38"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.c (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30767661842\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.722204136308736.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{8} + 69x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.1
Root \(0.245576 - 0.245576i\) of defining polynomial
Character \(\chi\) \(=\) 289.251
Dual form 289.2.c.d.38.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53209i q^{2} +(-0.952682 - 0.952682i) q^{3} -0.347296 q^{4} +(2.49756 + 2.49756i) q^{5} +(-1.45959 + 1.45959i) q^{6} +(-0.245576 + 0.245576i) q^{7} -2.53209i q^{8} -1.18479i q^{9} +(3.82649 - 3.82649i) q^{10} +(1.24364 - 1.24364i) q^{11} +(0.330863 + 0.330863i) q^{12} +3.29086 q^{13} +(0.376244 + 0.376244i) q^{14} -4.75877i q^{15} -4.57398 q^{16} -1.81521 q^{18} -1.53209i q^{19} +(-0.867395 - 0.867395i) q^{20} +0.467911 q^{21} +(-1.90536 - 1.90536i) q^{22} +(-1.99065 + 1.99065i) q^{23} +(-2.41228 + 2.41228i) q^{24} +7.47565i q^{25} -5.04189i q^{26} +(-3.98678 + 3.98678i) q^{27} +(0.0852875 - 0.0852875i) q^{28} +(-0.837775 - 0.837775i) q^{29} -7.29086 q^{30} +(-5.02475 - 5.02475i) q^{31} +1.94356i q^{32} -2.36959 q^{33} -1.22668 q^{35} +0.411474i q^{36} +(2.77276 + 2.77276i) q^{37} -2.34730 q^{38} +(-3.13514 - 3.13514i) q^{39} +(6.32405 - 6.32405i) q^{40} +(3.47987 - 3.47987i) q^{41} -0.716881i q^{42} +10.9855i q^{43} +(-0.431911 + 0.431911i) q^{44} +(2.95910 - 2.95910i) q^{45} +(3.04986 + 3.04986i) q^{46} +5.12061 q^{47} +(4.35755 + 4.35755i) q^{48} +6.87939i q^{49} +11.4534 q^{50} -1.14290 q^{52} +8.36959i q^{53} +(6.10810 + 6.10810i) q^{54} +6.21213 q^{55} +(0.621819 + 0.621819i) q^{56} +(-1.45959 + 1.45959i) q^{57} +(-1.28355 + 1.28355i) q^{58} -10.8648i q^{59} +1.65270i q^{60} +(-3.11938 + 3.11938i) q^{61} +(-7.69836 + 7.69836i) q^{62} +(0.290956 + 0.290956i) q^{63} -6.17024 q^{64} +(8.21913 + 8.21913i) q^{65} +3.63041i q^{66} +8.07192 q^{67} +3.79292 q^{69} +1.87939i q^{70} +(-7.95422 - 7.95422i) q^{71} -3.00000 q^{72} +(1.20373 + 1.20373i) q^{73} +(4.24811 - 4.24811i) q^{74} +(7.12192 - 7.12192i) q^{75} +0.532089i q^{76} +0.610815i q^{77} +(-4.80332 + 4.80332i) q^{78} +(-8.18951 + 8.18951i) q^{79} +(-11.4238 - 11.4238i) q^{80} +4.04189 q^{81} +(-5.33146 - 5.33146i) q^{82} +2.14796i q^{83} -0.162504 q^{84} +16.8307 q^{86} +1.59627i q^{87} +(-3.14900 - 3.14900i) q^{88} -6.41921 q^{89} +(-4.53360 - 4.53360i) q^{90} +(-0.808155 + 0.808155i) q^{91} +(0.691346 - 0.691346i) q^{92} +9.57398i q^{93} -7.84524i q^{94} +(3.82649 - 3.82649i) q^{95} +(1.85160 - 1.85160i) q^{96} +(2.88767 + 2.88767i) q^{97} +10.5398 q^{98} +(-1.47345 - 1.47345i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{13} - 24 q^{16} - 36 q^{18} + 24 q^{21} - 24 q^{30} + 12 q^{35} - 24 q^{38} + 84 q^{47} + 84 q^{50} - 12 q^{52} - 24 q^{55} + 12 q^{64} - 36 q^{67} + 84 q^{69} - 36 q^{72} + 36 q^{81} - 12 q^{84}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.53209i 1.08335i −0.840588 0.541675i \(-0.817790\pi\)
0.840588 0.541675i \(-0.182210\pi\)
\(3\) −0.952682 0.952682i −0.550031 0.550031i 0.376418 0.926450i \(-0.377156\pi\)
−0.926450 + 0.376418i \(0.877156\pi\)
\(4\) −0.347296 −0.173648
\(5\) 2.49756 + 2.49756i 1.11694 + 1.11694i 0.992187 + 0.124757i \(0.0398152\pi\)
0.124757 + 0.992187i \(0.460185\pi\)
\(6\) −1.45959 + 1.45959i −0.595877 + 0.595877i
\(7\) −0.245576 + 0.245576i −0.0928189 + 0.0928189i −0.751992 0.659173i \(-0.770907\pi\)
0.659173 + 0.751992i \(0.270907\pi\)
\(8\) 2.53209i 0.895229i
\(9\) 1.18479i 0.394931i
\(10\) 3.82649 3.82649i 1.21004 1.21004i
\(11\) 1.24364 1.24364i 0.374971 0.374971i −0.494313 0.869284i \(-0.664580\pi\)
0.869284 + 0.494313i \(0.164580\pi\)
\(12\) 0.330863 + 0.330863i 0.0955120 + 0.0955120i
\(13\) 3.29086 0.912720 0.456360 0.889795i \(-0.349153\pi\)
0.456360 + 0.889795i \(0.349153\pi\)
\(14\) 0.376244 + 0.376244i 0.100555 + 0.100555i
\(15\) 4.75877i 1.22871i
\(16\) −4.57398 −1.14349
\(17\) 0 0
\(18\) −1.81521 −0.427849
\(19\) 1.53209i 0.351485i −0.984436 0.175743i \(-0.943767\pi\)
0.984436 0.175743i \(-0.0562327\pi\)
\(20\) −0.867395 0.867395i −0.193955 0.193955i
\(21\) 0.467911 0.102107
\(22\) −1.90536 1.90536i −0.406225 0.406225i
\(23\) −1.99065 + 1.99065i −0.415080 + 0.415080i −0.883504 0.468424i \(-0.844822\pi\)
0.468424 + 0.883504i \(0.344822\pi\)
\(24\) −2.41228 + 2.41228i −0.492404 + 0.492404i
\(25\) 7.47565i 1.49513i
\(26\) 5.04189i 0.988796i
\(27\) −3.98678 + 3.98678i −0.767256 + 0.767256i
\(28\) 0.0852875 0.0852875i 0.0161178 0.0161178i
\(29\) −0.837775 0.837775i −0.155571 0.155571i 0.625030 0.780601i \(-0.285087\pi\)
−0.780601 + 0.625030i \(0.785087\pi\)
\(30\) −7.29086 −1.33112
\(31\) −5.02475 5.02475i −0.902471 0.902471i 0.0931781 0.995649i \(-0.470297\pi\)
−0.995649 + 0.0931781i \(0.970297\pi\)
\(32\) 1.94356i 0.343577i
\(33\) −2.36959 −0.412492
\(34\) 0 0
\(35\) −1.22668 −0.207347
\(36\) 0.411474i 0.0685790i
\(37\) 2.77276 + 2.77276i 0.455839 + 0.455839i 0.897287 0.441448i \(-0.145535\pi\)
−0.441448 + 0.897287i \(0.645535\pi\)
\(38\) −2.34730 −0.380782
\(39\) −3.13514 3.13514i −0.502025 0.502025i
\(40\) 6.32405 6.32405i 0.999921 0.999921i
\(41\) 3.47987 3.47987i 0.543464 0.543464i −0.381079 0.924543i \(-0.624447\pi\)
0.924543 + 0.381079i \(0.124447\pi\)
\(42\) 0.716881i 0.110617i
\(43\) 10.9855i 1.67527i 0.546234 + 0.837633i \(0.316061\pi\)
−0.546234 + 0.837633i \(0.683939\pi\)
\(44\) −0.431911 + 0.431911i −0.0651131 + 0.0651131i
\(45\) 2.95910 2.95910i 0.441116 0.441116i
\(46\) 3.04986 + 3.04986i 0.449677 + 0.449677i
\(47\) 5.12061 0.746918 0.373459 0.927647i \(-0.378172\pi\)
0.373459 + 0.927647i \(0.378172\pi\)
\(48\) 4.35755 + 4.35755i 0.628958 + 0.628958i
\(49\) 6.87939i 0.982769i
\(50\) 11.4534 1.61975
\(51\) 0 0
\(52\) −1.14290 −0.158492
\(53\) 8.36959i 1.14965i 0.818276 + 0.574825i \(0.194930\pi\)
−0.818276 + 0.574825i \(0.805070\pi\)
\(54\) 6.10810 + 6.10810i 0.831207 + 0.831207i
\(55\) 6.21213 0.837644
\(56\) 0.621819 + 0.621819i 0.0830941 + 0.0830941i
\(57\) −1.45959 + 1.45959i −0.193328 + 0.193328i
\(58\) −1.28355 + 1.28355i −0.168538 + 0.168538i
\(59\) 10.8648i 1.41448i −0.706973 0.707241i \(-0.749940\pi\)
0.706973 0.707241i \(-0.250060\pi\)
\(60\) 1.65270i 0.213363i
\(61\) −3.11938 + 3.11938i −0.399396 + 0.399396i −0.878020 0.478624i \(-0.841136\pi\)
0.478624 + 0.878020i \(0.341136\pi\)
\(62\) −7.69836 + 7.69836i −0.977693 + 0.977693i
\(63\) 0.290956 + 0.290956i 0.0366570 + 0.0366570i
\(64\) −6.17024 −0.771281
\(65\) 8.21913 + 8.21913i 1.01946 + 1.01946i
\(66\) 3.63041i 0.446873i
\(67\) 8.07192 0.986142 0.493071 0.869989i \(-0.335874\pi\)
0.493071 + 0.869989i \(0.335874\pi\)
\(68\) 0 0
\(69\) 3.79292 0.456614
\(70\) 1.87939i 0.224630i
\(71\) −7.95422 7.95422i −0.943993 0.943993i 0.0545201 0.998513i \(-0.482637\pi\)
−0.998513 + 0.0545201i \(0.982637\pi\)
\(72\) −3.00000 −0.353553
\(73\) 1.20373 + 1.20373i 0.140886 + 0.140886i 0.774032 0.633146i \(-0.218237\pi\)
−0.633146 + 0.774032i \(0.718237\pi\)
\(74\) 4.24811 4.24811i 0.493833 0.493833i
\(75\) 7.12192 7.12192i 0.822369 0.822369i
\(76\) 0.532089i 0.0610348i
\(77\) 0.610815i 0.0696088i
\(78\) −4.80332 + 4.80332i −0.543869 + 0.543869i
\(79\) −8.18951 + 8.18951i −0.921392 + 0.921392i −0.997128 0.0757358i \(-0.975869\pi\)
0.0757358 + 0.997128i \(0.475869\pi\)
\(80\) −11.4238 11.4238i −1.27722 1.27722i
\(81\) 4.04189 0.449099
\(82\) −5.33146 5.33146i −0.588762 0.588762i
\(83\) 2.14796i 0.235769i 0.993027 + 0.117884i \(0.0376112\pi\)
−0.993027 + 0.117884i \(0.962389\pi\)
\(84\) −0.162504 −0.0177306
\(85\) 0 0
\(86\) 16.8307 1.81490
\(87\) 1.59627i 0.171138i
\(88\) −3.14900 3.14900i −0.335685 0.335685i
\(89\) −6.41921 −0.680435 −0.340218 0.940347i \(-0.610501\pi\)
−0.340218 + 0.940347i \(0.610501\pi\)
\(90\) −4.53360 4.53360i −0.477883 0.477883i
\(91\) −0.808155 + 0.808155i −0.0847176 + 0.0847176i
\(92\) 0.691346 0.691346i 0.0720778 0.0720778i
\(93\) 9.57398i 0.992775i
\(94\) 7.84524i 0.809174i
\(95\) 3.82649 3.82649i 0.392590 0.392590i
\(96\) 1.85160 1.85160i 0.188978 0.188978i
\(97\) 2.88767 + 2.88767i 0.293198 + 0.293198i 0.838342 0.545144i \(-0.183525\pi\)
−0.545144 + 0.838342i \(0.683525\pi\)
\(98\) 10.5398 1.06468
\(99\) −1.47345 1.47345i −0.148088 0.148088i
\(100\) 2.59627i 0.259627i
\(101\) 5.26857 0.524242 0.262121 0.965035i \(-0.415578\pi\)
0.262121 + 0.965035i \(0.415578\pi\)
\(102\) 0 0
\(103\) −18.4388 −1.81683 −0.908415 0.418069i \(-0.862707\pi\)
−0.908415 + 0.418069i \(0.862707\pi\)
\(104\) 8.33275i 0.817093i
\(105\) 1.16864 + 1.16864i 0.114047 + 0.114047i
\(106\) 12.8229 1.24547
\(107\) 3.79140 + 3.79140i 0.366528 + 0.366528i 0.866209 0.499681i \(-0.166550\pi\)
−0.499681 + 0.866209i \(0.666550\pi\)
\(108\) 1.38459 1.38459i 0.133233 0.133233i
\(109\) −10.9726 + 10.9726i −1.05098 + 1.05098i −0.0523518 + 0.998629i \(0.516672\pi\)
−0.998629 + 0.0523518i \(0.983328\pi\)
\(110\) 9.51754i 0.907462i
\(111\) 5.28312i 0.501451i
\(112\) 1.12326 1.12326i 0.106138 0.106138i
\(113\) 4.96908 4.96908i 0.467452 0.467452i −0.433636 0.901088i \(-0.642770\pi\)
0.901088 + 0.433636i \(0.142770\pi\)
\(114\) 2.23623 + 2.23623i 0.209442 + 0.209442i
\(115\) −9.94356 −0.927242
\(116\) 0.290956 + 0.290956i 0.0270146 + 0.0270146i
\(117\) 3.89899i 0.360461i
\(118\) −16.6459 −1.53238
\(119\) 0 0
\(120\) −12.0496 −1.09998
\(121\) 7.90673i 0.718793i
\(122\) 4.77917 + 4.77917i 0.432686 + 0.432686i
\(123\) −6.63041 −0.597844
\(124\) 1.74508 + 1.74508i 0.156713 + 0.156713i
\(125\) −6.18310 + 6.18310i −0.553033 + 0.553033i
\(126\) 0.445771 0.445771i 0.0397124 0.0397124i
\(127\) 7.74422i 0.687189i 0.939118 + 0.343594i \(0.111645\pi\)
−0.939118 + 0.343594i \(0.888355\pi\)
\(128\) 13.3405i 1.17914i
\(129\) 10.4656 10.4656i 0.921449 0.921449i
\(130\) 12.5924 12.5924i 1.10443 1.10443i
\(131\) 13.1653 + 13.1653i 1.15026 + 1.15026i 0.986501 + 0.163758i \(0.0523615\pi\)
0.163758 + 0.986501i \(0.447639\pi\)
\(132\) 0.822948 0.0716285
\(133\) 0.376244 + 0.376244i 0.0326245 + 0.0326245i
\(134\) 12.3669i 1.06834i
\(135\) −19.9145 −1.71396
\(136\) 0 0
\(137\) 10.0719 0.860502 0.430251 0.902709i \(-0.358425\pi\)
0.430251 + 0.902709i \(0.358425\pi\)
\(138\) 5.81109i 0.494673i
\(139\) 6.04886 + 6.04886i 0.513057 + 0.513057i 0.915462 0.402404i \(-0.131825\pi\)
−0.402404 + 0.915462i \(0.631825\pi\)
\(140\) 0.426022 0.0360054
\(141\) −4.87832 4.87832i −0.410829 0.410829i
\(142\) −12.1866 + 12.1866i −1.02267 + 1.02267i
\(143\) 4.09264 4.09264i 0.342244 0.342244i
\(144\) 5.41921i 0.451601i
\(145\) 4.18479i 0.347528i
\(146\) 1.84422 1.84422i 0.152629 0.152629i
\(147\) 6.55387 6.55387i 0.540554 0.540554i
\(148\) −0.962969 0.962969i −0.0791556 0.0791556i
\(149\) −11.8794 −0.973197 −0.486599 0.873626i \(-0.661763\pi\)
−0.486599 + 0.873626i \(0.661763\pi\)
\(150\) −10.9114 10.9114i −0.890914 0.890914i
\(151\) 6.55943i 0.533799i −0.963724 0.266899i \(-0.914001\pi\)
0.963724 0.266899i \(-0.0859992\pi\)
\(152\) −3.87939 −0.314660
\(153\) 0 0
\(154\) 0.935822 0.0754107
\(155\) 25.0993i 2.01602i
\(156\) 1.08882 + 1.08882i 0.0871757 + 0.0871757i
\(157\) −8.88444 −0.709055 −0.354528 0.935046i \(-0.615358\pi\)
−0.354528 + 0.935046i \(0.615358\pi\)
\(158\) 12.5471 + 12.5471i 0.998191 + 0.998191i
\(159\) 7.97356 7.97356i 0.632344 0.632344i
\(160\) −4.85417 + 4.85417i −0.383756 + 0.383756i
\(161\) 0.977711i 0.0770544i
\(162\) 6.19253i 0.486531i
\(163\) −6.84483 + 6.84483i −0.536128 + 0.536128i −0.922389 0.386261i \(-0.873766\pi\)
0.386261 + 0.922389i \(0.373766\pi\)
\(164\) −1.20854 + 1.20854i −0.0943715 + 0.0943715i
\(165\) −5.91819 5.91819i −0.460730 0.460730i
\(166\) 3.29086 0.255420
\(167\) −1.29931 1.29931i −0.100543 0.100543i 0.655046 0.755589i \(-0.272649\pi\)
−0.755589 + 0.655046i \(0.772649\pi\)
\(168\) 1.18479i 0.0914087i
\(169\) −2.17024 −0.166942
\(170\) 0 0
\(171\) −1.81521 −0.138812
\(172\) 3.81521i 0.290907i
\(173\) −16.0935 16.0935i −1.22357 1.22357i −0.966354 0.257215i \(-0.917195\pi\)
−0.257215 0.966354i \(-0.582805\pi\)
\(174\) 2.44562 0.185402
\(175\) −1.83584 1.83584i −0.138776 0.138776i
\(176\) −5.68838 + 5.68838i −0.428777 + 0.428777i
\(177\) −10.3507 + 10.3507i −0.778009 + 0.778009i
\(178\) 9.83481i 0.737150i
\(179\) 17.5253i 1.30990i −0.755672 0.654951i \(-0.772689\pi\)
0.755672 0.654951i \(-0.227311\pi\)
\(180\) −1.02768 + 1.02768i −0.0765990 + 0.0765990i
\(181\) 3.22590 3.22590i 0.239780 0.239780i −0.576979 0.816759i \(-0.695769\pi\)
0.816759 + 0.576979i \(0.195769\pi\)
\(182\) 1.23816 + 1.23816i 0.0917789 + 0.0917789i
\(183\) 5.94356 0.439361
\(184\) 5.04051 + 5.04051i 0.371591 + 0.371591i
\(185\) 13.8503i 1.01829i
\(186\) 14.6682 1.07552
\(187\) 0 0
\(188\) −1.77837 −0.129701
\(189\) 1.95811i 0.142432i
\(190\) −5.86252 5.86252i −0.425312 0.425312i
\(191\) 9.72462 0.703649 0.351824 0.936066i \(-0.385561\pi\)
0.351824 + 0.936066i \(0.385561\pi\)
\(192\) 5.87828 + 5.87828i 0.424229 + 0.424229i
\(193\) 0.597013 0.597013i 0.0429739 0.0429739i −0.685293 0.728267i \(-0.740326\pi\)
0.728267 + 0.685293i \(0.240326\pi\)
\(194\) 4.42416 4.42416i 0.317636 0.317636i
\(195\) 15.6604i 1.12147i
\(196\) 2.38919i 0.170656i
\(197\) 12.0215 12.0215i 0.856495 0.856495i −0.134429 0.990923i \(-0.542920\pi\)
0.990923 + 0.134429i \(0.0429199\pi\)
\(198\) −2.25746 + 2.25746i −0.160431 + 0.160431i
\(199\) −8.97709 8.97709i −0.636369 0.636369i 0.313289 0.949658i \(-0.398569\pi\)
−0.949658 + 0.313289i \(0.898569\pi\)
\(200\) 18.9290 1.33848
\(201\) −7.68997 7.68997i −0.542409 0.542409i
\(202\) 8.07192i 0.567938i
\(203\) 0.411474 0.0288798
\(204\) 0 0
\(205\) 17.3824 1.21404
\(206\) 28.2499i 1.96826i
\(207\) 2.35851 + 2.35851i 0.163928 + 0.163928i
\(208\) −15.0523 −1.04369
\(209\) −1.90536 1.90536i −0.131797 0.131797i
\(210\) 1.79046 1.79046i 0.123553 0.123553i
\(211\) 16.6385 16.6385i 1.14544 1.14544i 0.158000 0.987439i \(-0.449496\pi\)
0.987439 0.158000i \(-0.0505045\pi\)
\(212\) 2.90673i 0.199635i
\(213\) 15.1557i 1.03845i
\(214\) 5.80876 5.80876i 0.397078 0.397078i
\(215\) −27.4369 + 27.4369i −1.87118 + 1.87118i
\(216\) 10.0949 + 10.0949i 0.686869 + 0.686869i
\(217\) 2.46791 0.167533
\(218\) 16.8109 + 16.8109i 1.13858 + 1.13858i
\(219\) 2.29355i 0.154984i
\(220\) −2.15745 −0.145455
\(221\) 0 0
\(222\) −8.09421 −0.543248
\(223\) 4.97090i 0.332876i −0.986052 0.166438i \(-0.946773\pi\)
0.986052 0.166438i \(-0.0532266\pi\)
\(224\) −0.477292 0.477292i −0.0318904 0.0318904i
\(225\) 8.85710 0.590473
\(226\) −7.61307 7.61307i −0.506414 0.506414i
\(227\) 3.71706 3.71706i 0.246710 0.246710i −0.572909 0.819619i \(-0.694185\pi\)
0.819619 + 0.572909i \(0.194185\pi\)
\(228\) 0.506912 0.506912i 0.0335710 0.0335710i
\(229\) 24.2053i 1.59953i −0.600311 0.799767i \(-0.704957\pi\)
0.600311 0.799767i \(-0.295043\pi\)
\(230\) 15.2344i 1.00453i
\(231\) 0.581912 0.581912i 0.0382870 0.0382870i
\(232\) −2.12132 + 2.12132i −0.139272 + 0.139272i
\(233\) −20.3095 20.3095i −1.33052 1.33052i −0.904906 0.425612i \(-0.860059\pi\)
−0.425612 0.904906i \(-0.639941\pi\)
\(234\) −5.97359 −0.390506
\(235\) 12.7891 + 12.7891i 0.834266 + 0.834266i
\(236\) 3.77332i 0.245622i
\(237\) 15.6040 1.01359
\(238\) 0 0
\(239\) −2.63310 −0.170321 −0.0851606 0.996367i \(-0.527140\pi\)
−0.0851606 + 0.996367i \(0.527140\pi\)
\(240\) 21.7665i 1.40502i
\(241\) 17.9136 + 17.9136i 1.15392 + 1.15392i 0.985760 + 0.168157i \(0.0537817\pi\)
0.168157 + 0.985760i \(0.446218\pi\)
\(242\) 12.1138 0.778705
\(243\) 8.10970 + 8.10970i 0.520237 + 0.520237i
\(244\) 1.08335 1.08335i 0.0693544 0.0693544i
\(245\) −17.1817 + 17.1817i −1.09770 + 1.09770i
\(246\) 10.1584i 0.647675i
\(247\) 5.04189i 0.320808i
\(248\) −12.7231 + 12.7231i −0.807918 + 0.807918i
\(249\) 2.04632 2.04632i 0.129680 0.129680i
\(250\) 9.47306 + 9.47306i 0.599129 + 0.599129i
\(251\) −10.6851 −0.674437 −0.337219 0.941426i \(-0.609486\pi\)
−0.337219 + 0.941426i \(0.609486\pi\)
\(252\) −0.101048 0.101048i −0.00636543 0.00636543i
\(253\) 4.95130i 0.311286i
\(254\) 11.8648 0.744466
\(255\) 0 0
\(256\) 8.09833 0.506145
\(257\) 3.73648i 0.233075i 0.993186 + 0.116538i \(0.0371796\pi\)
−0.993186 + 0.116538i \(0.962820\pi\)
\(258\) −16.0343 16.0343i −0.998252 0.998252i
\(259\) −1.36184 −0.0846209
\(260\) −2.85447 2.85447i −0.177027 0.177027i
\(261\) −0.992589 + 0.992589i −0.0614397 + 0.0614397i
\(262\) 20.1704 20.1704i 1.24613 1.24613i
\(263\) 10.2094i 0.629541i 0.949168 + 0.314771i \(0.101928\pi\)
−0.949168 + 0.314771i \(0.898072\pi\)
\(264\) 6.00000i 0.369274i
\(265\) −20.9036 + 20.9036i −1.28410 + 1.28410i
\(266\) 0.576439 0.576439i 0.0353437 0.0353437i
\(267\) 6.11547 + 6.11547i 0.374261 + 0.374261i
\(268\) −2.80335 −0.171242
\(269\) −8.30085 8.30085i −0.506112 0.506112i 0.407219 0.913331i \(-0.366499\pi\)
−0.913331 + 0.407219i \(0.866499\pi\)
\(270\) 30.5107i 1.85682i
\(271\) 17.0000 1.03268 0.516338 0.856385i \(-0.327295\pi\)
0.516338 + 0.856385i \(0.327295\pi\)
\(272\) 0 0
\(273\) 1.53983 0.0931947
\(274\) 15.4311i 0.932225i
\(275\) 9.29701 + 9.29701i 0.560631 + 0.560631i
\(276\) −1.31727 −0.0792901
\(277\) −17.2132 17.2132i −1.03424 1.03424i −0.999393 0.0348500i \(-0.988905\pi\)
−0.0348500 0.999393i \(-0.511095\pi\)
\(278\) 9.26739 9.26739i 0.555821 0.555821i
\(279\) −5.95328 + 5.95328i −0.356414 + 0.356414i
\(280\) 3.10607i 0.185623i
\(281\) 5.79385i 0.345632i −0.984954 0.172816i \(-0.944713\pi\)
0.984954 0.172816i \(-0.0552866\pi\)
\(282\) −7.47402 + 7.47402i −0.445071 + 0.445071i
\(283\) 10.8328 10.8328i 0.643946 0.643946i −0.307577 0.951523i \(-0.599518\pi\)
0.951523 + 0.307577i \(0.0995183\pi\)
\(284\) 2.76247 + 2.76247i 0.163923 + 0.163923i
\(285\) −7.29086 −0.431873
\(286\) −6.27029 6.27029i −0.370770 0.370770i
\(287\) 1.70914i 0.100887i
\(288\) 2.30272 0.135689
\(289\) 0 0
\(290\) −6.41147 −0.376495
\(291\) 5.50206i 0.322536i
\(292\) −0.418052 0.418052i −0.0244646 0.0244646i
\(293\) −2.98040 −0.174117 −0.0870584 0.996203i \(-0.527747\pi\)
−0.0870584 + 0.996203i \(0.527747\pi\)
\(294\) −10.0411 10.0411i −0.585609 0.585609i
\(295\) 27.1356 27.1356i 1.57990 1.57990i
\(296\) 7.02087 7.02087i 0.408080 0.408080i
\(297\) 9.91622i 0.575398i
\(298\) 18.2003i 1.05431i
\(299\) −6.55096 + 6.55096i −0.378852 + 0.378852i
\(300\) −2.47342 + 2.47342i −0.142803 + 0.142803i
\(301\) −2.69776 2.69776i −0.155496 0.155496i
\(302\) −10.0496 −0.578291
\(303\) −5.01927 5.01927i −0.288350 0.288350i
\(304\) 7.00774i 0.401921i
\(305\) −15.5817 −0.892207
\(306\) 0 0
\(307\) −3.26857 −0.186547 −0.0932736 0.995641i \(-0.529733\pi\)
−0.0932736 + 0.995641i \(0.529733\pi\)
\(308\) 0.212134i 0.0120874i
\(309\) 17.5663 + 17.5663i 0.999314 + 0.999314i
\(310\) −38.4543 −2.18406
\(311\) 2.49756 + 2.49756i 0.141624 + 0.141624i 0.774364 0.632740i \(-0.218070\pi\)
−0.632740 + 0.774364i \(0.718070\pi\)
\(312\) −7.93846 + 7.93846i −0.449427 + 0.449427i
\(313\) 1.04826 1.04826i 0.0592510 0.0592510i −0.676860 0.736111i \(-0.736660\pi\)
0.736111 + 0.676860i \(0.236660\pi\)
\(314\) 13.6117i 0.768155i
\(315\) 1.45336i 0.0818877i
\(316\) 2.84419 2.84419i 0.159998 0.159998i
\(317\) 10.2274 10.2274i 0.574431 0.574431i −0.358933 0.933363i \(-0.616859\pi\)
0.933363 + 0.358933i \(0.116859\pi\)
\(318\) −12.2162 12.2162i −0.685050 0.685050i
\(319\) −2.08378 −0.116669
\(320\) −15.4106 15.4106i −0.861478 0.861478i
\(321\) 7.22399i 0.403204i
\(322\) −1.49794 −0.0834770
\(323\) 0 0
\(324\) −1.40373 −0.0779852
\(325\) 24.6013i 1.36464i
\(326\) 10.4869 + 10.4869i 0.580815 + 0.580815i
\(327\) 20.9067 1.15614
\(328\) −8.81133 8.81133i −0.486524 0.486524i
\(329\) −1.25750 + 1.25750i −0.0693281 + 0.0693281i
\(330\) −9.06719 + 9.06719i −0.499133 + 0.499133i
\(331\) 9.03508i 0.496613i −0.968682 0.248307i \(-0.920126\pi\)
0.968682 0.248307i \(-0.0798740\pi\)
\(332\) 0.745977i 0.0409408i
\(333\) 3.28514 3.28514i 0.180025 0.180025i
\(334\) −1.99065 + 1.99065i −0.108924 + 0.108924i
\(335\) 20.1601 + 20.1601i 1.10147 + 1.10147i
\(336\) −2.14022 −0.116758
\(337\) 12.7038 + 12.7038i 0.692019 + 0.692019i 0.962676 0.270657i \(-0.0872409\pi\)
−0.270657 + 0.962676i \(0.587241\pi\)
\(338\) 3.32501i 0.180857i
\(339\) −9.46791 −0.514226
\(340\) 0 0
\(341\) −12.4979 −0.676801
\(342\) 2.78106i 0.150382i
\(343\) −3.40844 3.40844i −0.184038 0.184038i
\(344\) 27.8161 1.49975
\(345\) 9.47306 + 9.47306i 0.510012 + 0.510012i
\(346\) −24.6567 + 24.6567i −1.32555 + 1.32555i
\(347\) −5.50394 + 5.50394i −0.295467 + 0.295467i −0.839235 0.543768i \(-0.816997\pi\)
0.543768 + 0.839235i \(0.316997\pi\)
\(348\) 0.554378i 0.0297178i
\(349\) 6.65002i 0.355967i −0.984033 0.177984i \(-0.943043\pi\)
0.984033 0.177984i \(-0.0569574\pi\)
\(350\) −2.81267 + 2.81267i −0.150343 + 0.150343i
\(351\) −13.1199 + 13.1199i −0.700290 + 0.700290i
\(352\) 2.41709 + 2.41709i 0.128831 + 0.128831i
\(353\) −4.14559 −0.220648 −0.110324 0.993896i \(-0.535189\pi\)
−0.110324 + 0.993896i \(0.535189\pi\)
\(354\) 15.8583 + 15.8583i 0.842857 + 0.842857i
\(355\) 39.7324i 2.10877i
\(356\) 2.22937 0.118156
\(357\) 0 0
\(358\) −26.8503 −1.41908
\(359\) 17.0770i 0.901288i 0.892704 + 0.450644i \(0.148806\pi\)
−0.892704 + 0.450644i \(0.851194\pi\)
\(360\) −7.49269 7.49269i −0.394900 0.394900i
\(361\) 16.6527 0.876458
\(362\) −4.94237 4.94237i −0.259765 0.259765i
\(363\) 7.53260 7.53260i 0.395359 0.395359i
\(364\) 0.280669 0.280669i 0.0147111 0.0147111i
\(365\) 6.01279i 0.314724i
\(366\) 9.10607i 0.475982i
\(367\) 13.3153 13.3153i 0.695053 0.695053i −0.268286 0.963339i \(-0.586457\pi\)
0.963339 + 0.268286i \(0.0864572\pi\)
\(368\) 9.10520 9.10520i 0.474641 0.474641i
\(369\) −4.12292 4.12292i −0.214631 0.214631i
\(370\) 21.2199 1.10317
\(371\) −2.05537 2.05537i −0.106709 0.106709i
\(372\) 3.32501i 0.172394i
\(373\) −11.7314 −0.607430 −0.303715 0.952763i \(-0.598227\pi\)
−0.303715 + 0.952763i \(0.598227\pi\)
\(374\) 0 0
\(375\) 11.7811 0.608371
\(376\) 12.9659i 0.668663i
\(377\) −2.75700 2.75700i −0.141993 0.141993i
\(378\) −3.00000 −0.154303
\(379\) 5.77366 + 5.77366i 0.296573 + 0.296573i 0.839670 0.543097i \(-0.182748\pi\)
−0.543097 + 0.839670i \(0.682748\pi\)
\(380\) −1.32893 + 1.32893i −0.0681725 + 0.0681725i
\(381\) 7.37778 7.37778i 0.377975 0.377975i
\(382\) 14.8990i 0.762298i
\(383\) 16.2540i 0.830542i 0.909698 + 0.415271i \(0.136313\pi\)
−0.909698 + 0.415271i \(0.863687\pi\)
\(384\) 12.7092 12.7092i 0.648566 0.648566i
\(385\) −1.52555 + 1.52555i −0.0777492 + 0.0777492i
\(386\) −0.914676 0.914676i −0.0465558 0.0465558i
\(387\) 13.0155 0.661614
\(388\) −1.00288 1.00288i −0.0509133 0.0509133i
\(389\) 5.80747i 0.294450i 0.989103 + 0.147225i \(0.0470342\pi\)
−0.989103 + 0.147225i \(0.952966\pi\)
\(390\) −23.9932 −1.21494
\(391\) 0 0
\(392\) 17.4192 0.879803
\(393\) 25.0847i 1.26536i
\(394\) −18.4180 18.4180i −0.927884 0.927884i
\(395\) −40.9077 −2.05829
\(396\) 0.511725 + 0.511725i 0.0257152 + 0.0257152i
\(397\) −7.24902 + 7.24902i −0.363818 + 0.363818i −0.865216 0.501399i \(-0.832819\pi\)
0.501399 + 0.865216i \(0.332819\pi\)
\(398\) −13.7537 + 13.7537i −0.689411 + 0.689411i
\(399\) 0.716881i 0.0358890i
\(400\) 34.1935i 1.70967i
\(401\) 21.6107 21.6107i 1.07919 1.07919i 0.0826034 0.996582i \(-0.473677\pi\)
0.996582 0.0826034i \(-0.0263235\pi\)
\(402\) −11.7817 + 11.7817i −0.587619 + 0.587619i
\(403\) −16.5357 16.5357i −0.823704 0.823704i
\(404\) −1.82976 −0.0910337
\(405\) 10.0949 + 10.0949i 0.501618 + 0.501618i
\(406\) 0.630415i 0.0312870i
\(407\) 6.89662 0.341853
\(408\) 0 0
\(409\) 19.9736 0.987631 0.493815 0.869567i \(-0.335602\pi\)
0.493815 + 0.869567i \(0.335602\pi\)
\(410\) 26.6313i 1.31523i
\(411\) −9.59534 9.59534i −0.473303 0.473303i
\(412\) 6.40373 0.315489
\(413\) 2.66814 + 2.66814i 0.131291 + 0.131291i
\(414\) 3.61345 3.61345i 0.177591 0.177591i
\(415\) −5.36466 + 5.36466i −0.263341 + 0.263341i
\(416\) 6.39599i 0.313589i
\(417\) 11.5253i 0.564395i
\(418\) −2.91919 + 2.91919i −0.142782 + 0.142782i
\(419\) 11.9706 11.9706i 0.584803 0.584803i −0.351416 0.936219i \(-0.614300\pi\)
0.936219 + 0.351416i \(0.114300\pi\)
\(420\) −0.405864 0.405864i −0.0198041 0.0198041i
\(421\) 23.7297 1.15651 0.578257 0.815855i \(-0.303733\pi\)
0.578257 + 0.815855i \(0.303733\pi\)
\(422\) −25.4916 25.4916i −1.24091 1.24091i
\(423\) 6.06687i 0.294981i
\(424\) 21.1925 1.02920
\(425\) 0 0
\(426\) 23.2199 1.12501
\(427\) 1.53209i 0.0741430i
\(428\) −1.31674 1.31674i −0.0636469 0.0636469i
\(429\) −7.79797 −0.376490
\(430\) 42.0357 + 42.0357i 2.02714 + 2.02714i
\(431\) −16.6822 + 16.6822i −0.803552 + 0.803552i −0.983649 0.180097i \(-0.942359\pi\)
0.180097 + 0.983649i \(0.442359\pi\)
\(432\) 18.2354 18.2354i 0.877353 0.877353i
\(433\) 12.6946i 0.610063i −0.952342 0.305032i \(-0.901333\pi\)
0.952342 0.305032i \(-0.0986670\pi\)
\(434\) 3.78106i 0.181497i
\(435\) −3.98678 + 3.98678i −0.191151 + 0.191151i
\(436\) 3.81073 3.81073i 0.182501 0.182501i
\(437\) 3.04986 + 3.04986i 0.145894 + 0.145894i
\(438\) −3.51392 −0.167902
\(439\) −16.5962 16.5962i −0.792094 0.792094i 0.189740 0.981834i \(-0.439235\pi\)
−0.981834 + 0.189740i \(0.939235\pi\)
\(440\) 15.7297i 0.749883i
\(441\) 8.15064 0.388126
\(442\) 0 0
\(443\) −19.4124 −0.922311 −0.461156 0.887319i \(-0.652565\pi\)
−0.461156 + 0.887319i \(0.652565\pi\)
\(444\) 1.83481i 0.0870761i
\(445\) −16.0324 16.0324i −0.760009 0.760009i
\(446\) −7.61587 −0.360622
\(447\) 11.3173 + 11.3173i 0.535289 + 0.535289i
\(448\) 1.51526 1.51526i 0.0715894 0.0715894i
\(449\) 12.4637 12.4637i 0.588197 0.588197i −0.348946 0.937143i \(-0.613460\pi\)
0.937143 + 0.348946i \(0.113460\pi\)
\(450\) 13.5699i 0.639689i
\(451\) 8.65539i 0.407566i
\(452\) −1.72574 + 1.72574i −0.0811721 + 0.0811721i
\(453\) −6.24905 + 6.24905i −0.293606 + 0.293606i
\(454\) −5.69486 5.69486i −0.267273 0.267273i
\(455\) −4.03684 −0.189250
\(456\) 3.69582 + 3.69582i 0.173073 + 0.173073i
\(457\) 37.1215i 1.73647i 0.496151 + 0.868236i \(0.334746\pi\)
−0.496151 + 0.868236i \(0.665254\pi\)
\(458\) −37.0847 −1.73285
\(459\) 0 0
\(460\) 3.45336 0.161014
\(461\) 29.4074i 1.36964i −0.728714 0.684819i \(-0.759881\pi\)
0.728714 0.684819i \(-0.240119\pi\)
\(462\) −0.891541 0.891541i −0.0414783 0.0414783i
\(463\) 9.72462 0.451942 0.225971 0.974134i \(-0.427445\pi\)
0.225971 + 0.974134i \(0.427445\pi\)
\(464\) 3.83196 + 3.83196i 0.177894 + 0.177894i
\(465\) −23.9116 + 23.9116i −1.10887 + 1.10887i
\(466\) −31.1159 + 31.1159i −1.44142 + 1.44142i
\(467\) 4.62267i 0.213912i −0.994264 0.106956i \(-0.965890\pi\)
0.994264 0.106956i \(-0.0341104\pi\)
\(468\) 1.35410i 0.0625935i
\(469\) −1.98227 + 1.98227i −0.0915326 + 0.0915326i
\(470\) 19.5940 19.5940i 0.903803 0.903803i
\(471\) 8.46405 + 8.46405i 0.390003 + 0.390003i
\(472\) −27.5107 −1.26628
\(473\) 13.6619 + 13.6619i 0.628176 + 0.628176i
\(474\) 23.9067i 1.09807i
\(475\) 11.4534 0.525516
\(476\) 0 0
\(477\) 9.91622 0.454033
\(478\) 4.03415i 0.184518i
\(479\) −4.83418 4.83418i −0.220879 0.220879i 0.587989 0.808869i \(-0.299920\pi\)
−0.808869 + 0.587989i \(0.799920\pi\)
\(480\) 9.24897 0.422156
\(481\) 9.12476 + 9.12476i 0.416053 + 0.416053i
\(482\) 27.4453 27.4453i 1.25010 1.25010i
\(483\) −0.931448 + 0.931448i −0.0423824 + 0.0423824i
\(484\) 2.74598i 0.124817i
\(485\) 14.4243i 0.654972i
\(486\) 12.4248 12.4248i 0.563599 0.563599i
\(487\) 5.41842 5.41842i 0.245532 0.245532i −0.573602 0.819134i \(-0.694454\pi\)
0.819134 + 0.573602i \(0.194454\pi\)
\(488\) 7.89856 + 7.89856i 0.357551 + 0.357551i
\(489\) 13.0419 0.589775
\(490\) 26.3239 + 26.3239i 1.18919 + 1.18919i
\(491\) 9.02465i 0.407277i −0.979046 0.203638i \(-0.934723\pi\)
0.979046 0.203638i \(-0.0652767\pi\)
\(492\) 2.30272 0.103815
\(493\) 0 0
\(494\) −7.72462 −0.347547
\(495\) 7.36009i 0.330811i
\(496\) 22.9831 + 22.9831i 1.03197 + 1.03197i
\(497\) 3.90673 0.175241
\(498\) −3.13514 3.13514i −0.140489 0.140489i
\(499\) −18.8747 + 18.8747i −0.844947 + 0.844947i −0.989497 0.144550i \(-0.953826\pi\)
0.144550 + 0.989497i \(0.453826\pi\)
\(500\) 2.14737 2.14737i 0.0960332 0.0960332i
\(501\) 2.47565i 0.110604i
\(502\) 16.3705i 0.730652i
\(503\) 9.14052 9.14052i 0.407556 0.407556i −0.473330 0.880885i \(-0.656948\pi\)
0.880885 + 0.473330i \(0.156948\pi\)
\(504\) 0.736727 0.736727i 0.0328164 0.0328164i
\(505\) 13.1586 + 13.1586i 0.585550 + 0.585550i
\(506\) 7.58584 0.337232
\(507\) 2.06755 + 2.06755i 0.0918233 + 0.0918233i
\(508\) 2.68954i 0.119329i
\(509\) −27.8753 −1.23555 −0.617775 0.786355i \(-0.711966\pi\)
−0.617775 + 0.786355i \(0.711966\pi\)
\(510\) 0 0
\(511\) −0.591214 −0.0261538
\(512\) 14.2736i 0.630811i
\(513\) 6.10810 + 6.10810i 0.269679 + 0.269679i
\(514\) 5.72462 0.252502
\(515\) −46.0521 46.0521i −2.02930 2.02930i
\(516\) −3.63468 + 3.63468i −0.160008 + 0.160008i
\(517\) 6.36819 6.36819i 0.280073 0.280073i
\(518\) 2.08647i 0.0916741i
\(519\) 30.6641i 1.34600i
\(520\) 20.8116 20.8116i 0.912648 0.912648i
\(521\) −3.61958 + 3.61958i −0.158577 + 0.158577i −0.781936 0.623359i \(-0.785768\pi\)
0.623359 + 0.781936i \(0.285768\pi\)
\(522\) 1.52074 + 1.52074i 0.0665608 + 0.0665608i
\(523\) −15.3182 −0.669818 −0.334909 0.942250i \(-0.608706\pi\)
−0.334909 + 0.942250i \(0.608706\pi\)
\(524\) −4.57226 4.57226i −0.199740 0.199740i
\(525\) 3.49794i 0.152663i
\(526\) 15.6418 0.682014
\(527\) 0 0
\(528\) 10.8384 0.471682
\(529\) 15.0746i 0.655418i
\(530\) 32.0261 + 32.0261i 1.39113 + 1.39113i
\(531\) −12.8726 −0.558622
\(532\) −0.130668 0.130668i −0.00566518 0.00566518i
\(533\) 11.4518 11.4518i 0.496030 0.496030i
\(534\) 9.36945 9.36945i 0.405456 0.405456i
\(535\) 18.9385i 0.818783i
\(536\) 20.4388i 0.882822i
\(537\) −16.6960 + 16.6960i −0.720487 + 0.720487i
\(538\) −12.7176 + 12.7176i −0.548296 + 0.548296i
\(539\) 8.55547 + 8.55547i 0.368510 + 0.368510i
\(540\) 6.91622 0.297627
\(541\) −26.4787 26.4787i −1.13841 1.13841i −0.988736 0.149673i \(-0.952178\pi\)
−0.149673 0.988736i \(-0.547822\pi\)
\(542\) 26.0455i 1.11875i
\(543\) −6.14653 −0.263773
\(544\) 0 0
\(545\) −54.8093 −2.34777
\(546\) 2.35916i 0.100963i
\(547\) −19.3696 19.3696i −0.828186 0.828186i 0.159080 0.987266i \(-0.449147\pi\)
−0.987266 + 0.159080i \(0.949147\pi\)
\(548\) −3.49794 −0.149425
\(549\) 3.69582 + 3.69582i 0.157734 + 0.157734i
\(550\) 14.2438 14.2438i 0.607360 0.607360i
\(551\) −1.28355 + 1.28355i −0.0546809 + 0.0546809i
\(552\) 9.60401i 0.408774i
\(553\) 4.02229i 0.171045i
\(554\) −26.3722 + 26.3722i −1.12045 + 1.12045i
\(555\) 13.1949 13.1949i 0.560093 0.560093i
\(556\) −2.10075 2.10075i −0.0890915 0.0890915i
\(557\) −9.07604 −0.384564 −0.192282 0.981340i \(-0.561589\pi\)
−0.192282 + 0.981340i \(0.561589\pi\)
\(558\) 9.12096 + 9.12096i 0.386121 + 0.386121i
\(559\) 36.1516i 1.52905i
\(560\) 5.61081 0.237100
\(561\) 0 0
\(562\) −8.87670 −0.374441
\(563\) 38.4894i 1.62213i 0.584953 + 0.811067i \(0.301113\pi\)
−0.584953 + 0.811067i \(0.698887\pi\)
\(564\) 1.69422 + 1.69422i 0.0713396 + 0.0713396i
\(565\) 24.8212 1.04424
\(566\) −16.5969 16.5969i −0.697619 0.697619i
\(567\) −0.992589 + 0.992589i −0.0416848 + 0.0416848i
\(568\) −20.1408 + 20.1408i −0.845089 + 0.845089i
\(569\) 45.1830i 1.89417i 0.320981 + 0.947086i \(0.395988\pi\)
−0.320981 + 0.947086i \(0.604012\pi\)
\(570\) 11.1702i 0.467870i
\(571\) −21.5363 + 21.5363i −0.901268 + 0.901268i −0.995546 0.0942781i \(-0.969946\pi\)
0.0942781 + 0.995546i \(0.469946\pi\)
\(572\) −1.42136 + 1.42136i −0.0594300 + 0.0594300i
\(573\) −9.26448 9.26448i −0.387029 0.387029i
\(574\) 2.61856 0.109296
\(575\) −14.8814 14.8814i −0.620598 0.620598i
\(576\) 7.31046i 0.304602i
\(577\) −9.90167 −0.412212 −0.206106 0.978530i \(-0.566079\pi\)
−0.206106 + 0.978530i \(0.566079\pi\)
\(578\) 0 0
\(579\) −1.13753 −0.0472740
\(580\) 1.45336i 0.0603476i
\(581\) −0.527486 0.527486i −0.0218838 0.0218838i
\(582\) −8.42964 −0.349420
\(583\) 10.4087 + 10.4087i 0.431086 + 0.431086i
\(584\) 3.04796 3.04796i 0.126125 0.126125i
\(585\) 9.73797 9.73797i 0.402615 0.402615i
\(586\) 4.56624i 0.188630i
\(587\) 36.1343i 1.49142i −0.666268 0.745712i \(-0.732110\pi\)
0.666268 0.745712i \(-0.267890\pi\)
\(588\) −2.27613 + 2.27613i −0.0938662 + 0.0938662i
\(589\) −7.69836 + 7.69836i −0.317205 + 0.317205i
\(590\) −41.5742 41.5742i −1.71158 1.71158i
\(591\) −22.9053 −0.942198
\(592\) −12.6825 12.6825i −0.521249 0.521249i
\(593\) 7.41653i 0.304560i 0.988337 + 0.152280i \(0.0486616\pi\)
−0.988337 + 0.152280i \(0.951338\pi\)
\(594\) 15.1925 0.623357
\(595\) 0 0
\(596\) 4.12567 0.168994
\(597\) 17.1046i 0.700046i
\(598\) 10.0366 + 10.0366i 0.410429 + 0.410429i
\(599\) −7.61350 −0.311079 −0.155540 0.987830i \(-0.549712\pi\)
−0.155540 + 0.987830i \(0.549712\pi\)
\(600\) −18.0333 18.0333i −0.736208 0.736208i
\(601\) 23.0327 23.0327i 0.939523 0.939523i −0.0587493 0.998273i \(-0.518711\pi\)
0.998273 + 0.0587493i \(0.0187113\pi\)
\(602\) −4.13321 + 4.13321i −0.168457 + 0.168457i
\(603\) 9.56355i 0.389458i
\(604\) 2.27807i 0.0926932i
\(605\) −19.7476 + 19.7476i −0.802852 + 0.802852i
\(606\) −7.68997 + 7.68997i −0.312384 + 0.312384i
\(607\) −2.13161 2.13161i −0.0865193 0.0865193i 0.662523 0.749042i \(-0.269486\pi\)
−0.749042 + 0.662523i \(0.769486\pi\)
\(608\) 2.97771 0.120762
\(609\) −0.392004 0.392004i −0.0158848 0.0158848i
\(610\) 23.8726i 0.966572i
\(611\) 16.8512 0.681728
\(612\) 0 0
\(613\) 7.26857 0.293575 0.146787 0.989168i \(-0.453107\pi\)
0.146787 + 0.989168i \(0.453107\pi\)
\(614\) 5.00774i 0.202096i
\(615\) −16.5599 16.5599i −0.667759 0.667759i
\(616\) 1.54664 0.0623158
\(617\) −24.2148 24.2148i −0.974850 0.974850i 0.0248416 0.999691i \(-0.492092\pi\)
−0.999691 + 0.0248416i \(0.992092\pi\)
\(618\) 26.9132 26.9132i 1.08261 1.08261i
\(619\) 14.4459 14.4459i 0.580631 0.580631i −0.354445 0.935077i \(-0.615330\pi\)
0.935077 + 0.354445i \(0.115330\pi\)
\(620\) 8.71688i 0.350078i
\(621\) 15.8726i 0.636945i
\(622\) 3.82649 3.82649i 0.153428 0.153428i
\(623\) 1.57640 1.57640i 0.0631572 0.0631572i
\(624\) 14.3401 + 14.3401i 0.574063 + 0.574063i
\(625\) 6.49289 0.259716
\(626\) −1.60602 1.60602i −0.0641896 0.0641896i
\(627\) 3.63041i 0.144985i
\(628\) 3.08553 0.123126
\(629\) 0 0
\(630\) 2.22668 0.0887131
\(631\) 15.5080i 0.617366i −0.951165 0.308683i \(-0.900112\pi\)
0.951165 0.308683i \(-0.0998881\pi\)
\(632\) 20.7366 + 20.7366i 0.824857 + 0.824857i
\(633\) −31.7023 −1.26005
\(634\) −15.6694 15.6694i −0.622310 0.622310i
\(635\) −19.3417 + 19.3417i −0.767552 + 0.767552i
\(636\) −2.76919 + 2.76919i −0.109805 + 0.109805i
\(637\) 22.6391i 0.896993i
\(638\) 3.19253i 0.126394i
\(639\) −9.42410 + 9.42410i −0.372812 + 0.372812i
\(640\) −33.3187 + 33.3187i −1.31704 + 1.31704i
\(641\) 23.0478 + 23.0478i 0.910333 + 0.910333i 0.996298 0.0859648i \(-0.0273973\pi\)
−0.0859648 + 0.996298i \(0.527397\pi\)
\(642\) −11.0678 −0.436811
\(643\) 29.1385 + 29.1385i 1.14911 + 1.14911i 0.986728 + 0.162381i \(0.0519173\pi\)
0.162381 + 0.986728i \(0.448083\pi\)
\(644\) 0.339556i 0.0133804i
\(645\) 52.2772 2.05841
\(646\) 0 0
\(647\) 26.5131 1.04234 0.521169 0.853454i \(-0.325496\pi\)
0.521169 + 0.853454i \(0.325496\pi\)
\(648\) 10.2344i 0.402046i
\(649\) −13.5119 13.5119i −0.530390 0.530390i
\(650\) 37.6914 1.47838
\(651\) −2.35114 2.35114i −0.0921483 0.0921483i
\(652\) 2.37718 2.37718i 0.0930977 0.0930977i
\(653\) 10.0321 10.0321i 0.392585 0.392585i −0.483023 0.875608i \(-0.660461\pi\)
0.875608 + 0.483023i \(0.160461\pi\)
\(654\) 32.0310i 1.25251i
\(655\) 65.7624i 2.56955i
\(656\) −15.9168 + 15.9168i −0.621448 + 0.621448i
\(657\) 1.42617 1.42617i 0.0556403 0.0556403i
\(658\) 1.92660 + 1.92660i 0.0751066 + 0.0751066i
\(659\) 28.3628 1.10486 0.552428 0.833560i \(-0.313701\pi\)
0.552428 + 0.833560i \(0.313701\pi\)
\(660\) 2.05537 + 2.05537i 0.0800050 + 0.0800050i
\(661\) 29.1661i 1.13443i −0.823569 0.567215i \(-0.808021\pi\)
0.823569 0.567215i \(-0.191979\pi\)
\(662\) −13.8425 −0.538006
\(663\) 0 0
\(664\) 5.43882 0.211067
\(665\) 1.87939i 0.0728794i
\(666\) −5.03313 5.03313i −0.195030 0.195030i
\(667\) 3.33544 0.129149
\(668\) 0.451244 + 0.451244i 0.0174592 + 0.0174592i
\(669\) −4.73569 + 4.73569i −0.183092 + 0.183092i
\(670\) 30.8871 30.8871i 1.19327 1.19327i
\(671\) 7.75877i 0.299524i
\(672\) 0.909415i 0.0350814i
\(673\) 20.7662 20.7662i 0.800478 0.800478i −0.182692 0.983170i \(-0.558481\pi\)
0.983170 + 0.182692i \(0.0584812\pi\)
\(674\) 19.4633 19.4633i 0.749699 0.749699i
\(675\) −29.8038 29.8038i −1.14715 1.14715i
\(676\) 0.753718 0.0289892
\(677\) 27.8446 + 27.8446i 1.07016 + 1.07016i 0.997346 + 0.0728104i \(0.0231968\pi\)
0.0728104 + 0.997346i \(0.476803\pi\)
\(678\) 14.5057i 0.557087i
\(679\) −1.41828 −0.0544286
\(680\) 0 0
\(681\) −7.08235 −0.271396
\(682\) 19.1480i 0.733213i
\(683\) 19.2075 + 19.2075i 0.734953 + 0.734953i 0.971596 0.236644i \(-0.0760474\pi\)
−0.236644 + 0.971596i \(0.576047\pi\)
\(684\) 0.630415 0.0241045
\(685\) 25.1553 + 25.1553i 0.961133 + 0.961133i
\(686\) −5.22203 + 5.22203i −0.199378 + 0.199378i
\(687\) −23.0600 + 23.0600i −0.879793 + 0.879793i
\(688\) 50.2472i 1.91566i
\(689\) 27.5431i 1.04931i
\(690\) 14.5136 14.5136i 0.552522 0.552522i
\(691\) −23.9358 + 23.9358i −0.910560 + 0.910560i −0.996316 0.0857565i \(-0.972669\pi\)
0.0857565 + 0.996316i \(0.472669\pi\)
\(692\) 5.58923 + 5.58923i 0.212471 + 0.212471i
\(693\) 0.723689 0.0274907
\(694\) 8.43253 + 8.43253i 0.320094 + 0.320094i
\(695\) 30.2148i 1.14611i
\(696\) 4.04189 0.153207
\(697\) 0 0
\(698\) −10.1884 −0.385637
\(699\) 38.6970i 1.46365i
\(700\) 0.637580 + 0.637580i 0.0240982 + 0.0240982i
\(701\) −20.9540 −0.791421 −0.395711 0.918375i \(-0.629502\pi\)
−0.395711 + 0.918375i \(0.629502\pi\)
\(702\) 20.1009 + 20.1009i 0.758659 + 0.758659i
\(703\) 4.24811 4.24811i 0.160221 0.160221i
\(704\) −7.67355 + 7.67355i −0.289208 + 0.289208i
\(705\) 24.3678i 0.917746i
\(706\) 6.35142i 0.239039i
\(707\) −1.29383 + 1.29383i −0.0486596 + 0.0486596i
\(708\) 3.59477 3.59477i 0.135100 0.135100i
\(709\) 22.1491 + 22.1491i 0.831827 + 0.831827i 0.987767 0.155939i \(-0.0498404\pi\)
−0.155939 + 0.987767i \(0.549840\pi\)
\(710\) −60.8735 −2.28454
\(711\) 9.70287 + 9.70287i 0.363886 + 0.363886i
\(712\) 16.2540i 0.609145i
\(713\) 20.0051 0.749195
\(714\) 0 0
\(715\) 20.4433 0.764535
\(716\) 6.08647i 0.227462i
\(717\) 2.50851 + 2.50851i 0.0936821 + 0.0936821i
\(718\) 26.1634 0.976411
\(719\) 31.4024 + 31.4024i 1.17111 + 1.17111i 0.981945 + 0.189168i \(0.0605789\pi\)
0.189168 + 0.981945i \(0.439421\pi\)
\(720\) −13.5348 + 13.5348i −0.504414 + 0.504414i
\(721\) 4.52812 4.52812i 0.168636 0.168636i
\(722\) 25.5134i 0.949511i
\(723\) 34.1320i 1.26938i
\(724\) −1.12034 + 1.12034i −0.0416373 + 0.0416373i
\(725\) 6.26291 6.26291i 0.232599 0.232599i
\(726\) −11.5406 11.5406i −0.428312 0.428312i
\(727\) 39.5354 1.46629 0.733143 0.680074i \(-0.238053\pi\)
0.733143 + 0.680074i \(0.238053\pi\)
\(728\) 2.04632 + 2.04632i 0.0758417 + 0.0758417i
\(729\) 27.5776i 1.02139i
\(730\) 9.21213 0.340956
\(731\) 0 0
\(732\) −2.06418 −0.0762942
\(733\) 13.8990i 0.513371i −0.966495 0.256685i \(-0.917370\pi\)
0.966495 0.256685i \(-0.0826304\pi\)
\(734\) −20.4002 20.4002i −0.752986 0.752986i
\(735\) 32.7374 1.20754
\(736\) −3.86896 3.86896i −0.142612 0.142612i
\(737\) 10.0385 10.0385i 0.369775 0.369775i
\(738\) −6.31668 + 6.31668i −0.232520 + 0.232520i
\(739\) 11.4037i 0.419493i 0.977756 + 0.209747i \(0.0672639\pi\)
−0.977756 + 0.209747i \(0.932736\pi\)
\(740\) 4.81016i 0.176825i
\(741\) −4.80332 + 4.80332i −0.176454 + 0.176454i
\(742\) −3.14900 + 3.14900i −0.115604 + 0.115604i
\(743\) 10.3386 + 10.3386i 0.379285 + 0.379285i 0.870844 0.491559i \(-0.163573\pi\)
−0.491559 + 0.870844i \(0.663573\pi\)
\(744\) 24.2422 0.888761
\(745\) −29.6695 29.6695i −1.08701 1.08701i
\(746\) 17.9736i 0.658060i
\(747\) 2.54488 0.0931124
\(748\) 0 0
\(749\) −1.86215 −0.0680414
\(750\) 18.0496i 0.659079i
\(751\) 19.8128 + 19.8128i 0.722981 + 0.722981i 0.969211 0.246230i \(-0.0791919\pi\)
−0.246230 + 0.969211i \(0.579192\pi\)
\(752\) −23.4216 −0.854097
\(753\) 10.1795 + 10.1795i 0.370962 + 0.370962i
\(754\) −4.22397 + 4.22397i −0.153828 + 0.153828i
\(755\) 16.3826 16.3826i 0.596224 0.596224i
\(756\) 0.680045i 0.0247330i
\(757\) 15.6186i 0.567666i 0.958874 + 0.283833i \(0.0916061\pi\)
−0.958874 + 0.283833i \(0.908394\pi\)
\(758\) 8.84576 8.84576i 0.321293 0.321293i
\(759\) 4.71702 4.71702i 0.171217 0.171217i
\(760\) −9.68901 9.68901i −0.351457 0.351457i
\(761\) −20.5868 −0.746270 −0.373135 0.927777i \(-0.621717\pi\)
−0.373135 + 0.927777i \(0.621717\pi\)
\(762\) −11.3034 11.3034i −0.409480 0.409480i
\(763\) 5.38919i 0.195102i
\(764\) −3.37733 −0.122187
\(765\) 0 0
\(766\) 24.9026 0.899768
\(767\) 35.7547i 1.29103i
\(768\) −7.71513 7.71513i −0.278396 0.278396i
\(769\) −22.2249 −0.801451 −0.400726 0.916198i \(-0.631242\pi\)
−0.400726 + 0.916198i \(0.631242\pi\)
\(770\) 2.33728 + 2.33728i 0.0842296 + 0.0842296i
\(771\) 3.55968 3.55968i 0.128199 0.128199i
\(772\) −0.207340 + 0.207340i −0.00746234 + 0.00746234i
\(773\) 27.0087i 0.971434i −0.874116 0.485717i \(-0.838558\pi\)
0.874116 0.485717i \(-0.161442\pi\)
\(774\) 19.9409i 0.716760i
\(775\) 37.5633 37.5633i 1.34931 1.34931i
\(776\) 7.31183 7.31183i 0.262479 0.262479i
\(777\) 1.29741 + 1.29741i 0.0465441 + 0.0465441i
\(778\) 8.89756 0.318993
\(779\) −5.33146 5.33146i −0.191020 0.191020i
\(780\) 5.43882i 0.194741i
\(781\) −19.7844 −0.707940
\(782\) 0 0
\(783\) 6.68004 0.238725
\(784\) 31.4662i 1.12379i
\(785\) −22.1895 22.1895i −0.791975 0.791975i
\(786\) −38.4320 −1.37082
\(787\) −14.8358 14.8358i −0.528840 0.528840i 0.391387 0.920226i \(-0.371996\pi\)
−0.920226 + 0.391387i \(0.871996\pi\)
\(788\) −4.17501 + 4.17501i −0.148729 + 0.148729i
\(789\) 9.72636 9.72636i 0.346268 0.346268i
\(790\) 62.6742i 2.22985i
\(791\) 2.44057i 0.0867767i
\(792\) −3.73092 + 3.73092i −0.132572 + 0.132572i
\(793\) −10.2655 + 10.2655i −0.364537 + 0.364537i
\(794\) 11.1061 + 11.1061i 0.394142 + 0.394142i
\(795\) 39.8289 1.41259
\(796\) 3.11771 + 3.11771i 0.110504 + 0.110504i
\(797\) 34.4347i 1.21974i −0.792502 0.609870i \(-0.791222\pi\)
0.792502 0.609870i \(-0.208778\pi\)
\(798\) −1.09833 −0.0388803
\(799\) 0 0
\(800\) −14.5294 −0.513692
\(801\) 7.60544i 0.268725i
\(802\) −33.1095 33.1095i −1.16914 1.16914i
\(803\) 2.99401 0.105656
\(804\) 2.67070 + 2.67070i 0.0941883 + 0.0941883i
\(805\) 2.44190 2.44190i 0.0860655 0.0860655i
\(806\) −25.3342 + 25.3342i −0.892360 + 0.892360i
\(807\) 15.8161i 0.556755i
\(808\) 13.3405i 0.469317i
\(809\) −20.4528 + 20.4528i −0.719081 + 0.719081i −0.968417 0.249336i \(-0.919788\pi\)
0.249336 + 0.968417i \(0.419788\pi\)
\(810\) 15.4662 15.4662i 0.543429 0.543429i
\(811\) −27.3110 27.3110i −0.959019 0.959019i 0.0401733 0.999193i \(-0.487209\pi\)
−0.999193 + 0.0401733i \(0.987209\pi\)
\(812\) −0.142903 −0.00501493
\(813\) −16.1956 16.1956i −0.568005 0.568005i
\(814\) 10.5662i 0.370346i
\(815\) −34.1908 −1.19765
\(816\) 0 0
\(817\) 16.8307 0.588831
\(818\) 30.6013i 1.06995i
\(819\) 0.957496 + 0.957496i 0.0334576 + 0.0334576i
\(820\) −6.03684 −0.210815
\(821\) −3.81554 3.81554i −0.133163 0.133163i 0.637383 0.770547i \(-0.280017\pi\)
−0.770547 + 0.637383i \(0.780017\pi\)
\(822\) −14.7009 + 14.7009i −0.512753 + 0.512753i
\(823\) −21.6995 + 21.6995i −0.756398 + 0.756398i −0.975665 0.219267i \(-0.929634\pi\)
0.219267 + 0.975665i \(0.429634\pi\)
\(824\) 46.6887i 1.62648i
\(825\) 17.7142i 0.616729i
\(826\) 4.08783 4.08783i 0.142234 0.142234i
\(827\) 25.1292 25.1292i 0.873828 0.873828i −0.119059 0.992887i \(-0.537988\pi\)
0.992887 + 0.119059i \(0.0379877\pi\)
\(828\) −0.819102 0.819102i −0.0284658 0.0284658i
\(829\) −3.17200 −0.110168 −0.0550840 0.998482i \(-0.517543\pi\)
−0.0550840 + 0.998482i \(0.517543\pi\)
\(830\) 8.21913 + 8.21913i 0.285290 + 0.285290i
\(831\) 32.7975i 1.13773i
\(832\) −20.3054 −0.703963
\(833\) 0 0
\(834\) −17.6578 −0.611438
\(835\) 6.49020i 0.224603i
\(836\) 0.661726 + 0.661726i 0.0228863 + 0.0228863i
\(837\) 40.0651 1.38485
\(838\) −18.3401 18.3401i −0.633547 0.633547i
\(839\) −26.0323 + 26.0323i −0.898734 + 0.898734i −0.995324 0.0965900i \(-0.969206\pi\)
0.0965900 + 0.995324i \(0.469206\pi\)
\(840\) 2.95910 2.95910i 0.102098 0.102098i
\(841\) 27.5963i 0.951595i
\(842\) 36.3560i 1.25291i
\(843\) −5.51970 + 5.51970i −0.190109 + 0.190109i
\(844\) −5.77848 + 5.77848i −0.198903 + 0.198903i
\(845\) −5.42032 5.42032i −0.186465 0.186465i
\(846\) −9.29498 −0.319568
\(847\) −1.94170 1.94170i −0.0667176 0.0667176i
\(848\) 38.2823i 1.31462i
\(849\) −20.6405 −0.708381
\(850\) 0 0
\(851\) −11.0392 −0.378419
\(852\) 5.26352i 0.180325i
\(853\) 14.1882 + 14.1882i 0.485794 + 0.485794i 0.906976 0.421182i \(-0.138385\pi\)
−0.421182 + 0.906976i \(0.638385\pi\)
\(854\) −2.34730 −0.0803228
\(855\) −4.53360 4.53360i −0.155046 0.155046i
\(856\) 9.60015 9.60015i 0.328126 0.328126i
\(857\) −14.0926 + 14.0926i −0.481394 + 0.481394i −0.905577 0.424183i \(-0.860561\pi\)
0.424183 + 0.905577i \(0.360561\pi\)
\(858\) 11.9472i 0.407870i
\(859\) 23.3527i 0.796783i −0.917215 0.398391i \(-0.869569\pi\)
0.917215 0.398391i \(-0.130431\pi\)
\(860\) 9.52872 9.52872i 0.324927 0.324927i
\(861\) 1.62827 1.62827i 0.0554912 0.0554912i
\(862\) 25.5586 + 25.5586i 0.870528 + 0.870528i
\(863\) −44.3878 −1.51098 −0.755488 0.655162i \(-0.772600\pi\)
−0.755488 + 0.655162i \(0.772600\pi\)
\(864\) −7.74855 7.74855i −0.263611 0.263611i
\(865\) 80.3893i 2.73332i
\(866\) −19.4492 −0.660912
\(867\) 0 0
\(868\) −0.857097 −0.0290918
\(869\) 20.3696i 0.690991i
\(870\) 6.10810 + 6.10810i 0.207084 + 0.207084i
\(871\) 26.5635 0.900072
\(872\) 27.7835 + 27.7835i 0.940868 + 0.940868i
\(873\) 3.42129 3.42129i 0.115793 0.115793i
\(874\) 4.67265 4.67265i 0.158055 0.158055i
\(875\) 3.03684i 0.102664i
\(876\) 0.796541i 0.0269126i
\(877\) 6.46982 6.46982i 0.218470 0.218470i −0.589383 0.807854i \(-0.700629\pi\)
0.807854 + 0.589383i \(0.200629\pi\)
\(878\) −25.4269 + 25.4269i −0.858116 + 0.858116i
\(879\) 2.83937 + 2.83937i 0.0957697 + 0.0957697i
\(880\) −28.4142 −0.957841
\(881\) −4.78566 4.78566i −0.161233 0.161233i 0.621880 0.783113i \(-0.286369\pi\)
−0.783113 + 0.621880i \(0.786369\pi\)
\(882\) 12.4875i 0.420476i
\(883\) −47.9760 −1.61452 −0.807260 0.590196i \(-0.799050\pi\)
−0.807260 + 0.590196i \(0.799050\pi\)
\(884\) 0 0
\(885\) −51.7033 −1.73799
\(886\) 29.7415i 0.999186i
\(887\) 29.4851 + 29.4851i 0.990012 + 0.990012i 0.999951 0.00993817i \(-0.00316347\pi\)
−0.00993817 + 0.999951i \(0.503163\pi\)
\(888\) −13.3773 −0.448914
\(889\) −1.90179 1.90179i −0.0637841 0.0637841i
\(890\) −24.5631 + 24.5631i −0.823356 + 0.823356i
\(891\) 5.02665 5.02665i 0.168399 0.168399i
\(892\) 1.72638i 0.0578034i
\(893\) 7.84524i 0.262531i
\(894\) 17.3391 17.3391i 0.579906 0.579906i
\(895\) 43.7705 43.7705i 1.46309 1.46309i
\(896\) −3.27610 3.27610i −0.109447 0.109447i
\(897\) 12.4820 0.416761
\(898\) −19.0955 19.0955i −0.637224 0.637224i
\(899\) 8.41921i 0.280797i
\(900\) −3.07604 −0.102535
\(901\) 0 0
\(902\) −13.2608 −0.441537
\(903\) 5.14022i 0.171056i
\(904\) −12.5822 12.5822i −0.418476 0.418476i
\(905\) 16.1138 0.535641
\(906\) 9.57411 + 9.57411i 0.318078 + 0.318078i
\(907\) −23.2886 + 23.2886i −0.773284 + 0.773284i −0.978679 0.205395i \(-0.934152\pi\)
0.205395 + 0.978679i \(0.434152\pi\)
\(908\) −1.29092 + 1.29092i −0.0428407 + 0.0428407i
\(909\) 6.24216i 0.207039i
\(910\) 6.18479i 0.205024i
\(911\) 13.0762 13.0762i 0.433234 0.433234i −0.456493 0.889727i \(-0.650895\pi\)
0.889727 + 0.456493i \(0.150895\pi\)
\(912\) 6.67615 6.67615i 0.221069 0.221069i
\(913\) 2.67128 + 2.67128i 0.0884065 + 0.0884065i
\(914\) 56.8735 1.88121
\(915\) 14.8444 + 14.8444i 0.490742 + 0.490742i
\(916\) 8.40642i 0.277756i
\(917\) −6.46616 −0.213531
\(918\) 0 0
\(919\) −13.3909 −0.441726 −0.220863 0.975305i \(-0.570887\pi\)
−0.220863 + 0.975305i \(0.570887\pi\)
\(920\) 25.1780i 0.830094i
\(921\) 3.11391 + 3.11391i 0.102607 + 0.102607i
\(922\) −45.0547 −1.48380
\(923\) −26.1762 26.1762i −0.861601 0.861601i
\(924\) −0.202096 + 0.202096i −0.00664847 + 0.00664847i
\(925\) −20.7282 + 20.7282i −0.681539 + 0.681539i
\(926\) 14.8990i 0.489611i
\(927\) 21.8462i 0.717522i
\(928\) 1.62827 1.62827i 0.0534505 0.0534505i
\(929\) −3.77564 + 3.77564i −0.123875 + 0.123875i −0.766326 0.642452i \(-0.777917\pi\)
0.642452 + 0.766326i \(0.277917\pi\)
\(930\) 36.6347 + 36.6347i 1.20130 + 1.20130i
\(931\) 10.5398 0.345429
\(932\) 7.05341 + 7.05341i 0.231042 + 0.231042i
\(933\) 4.75877i 0.155795i
\(934\) −7.08235 −0.231741
\(935\) 0 0
\(936\) −9.87258 −0.322695
\(937\) 41.4361i 1.35366i −0.736140 0.676830i \(-0.763353\pi\)
0.736140 0.676830i \(-0.236647\pi\)
\(938\) 3.03701 + 3.03701i 0.0991618 + 0.0991618i
\(939\) −1.99731 −0.0651798
\(940\) −4.44160 4.44160i −0.144869 0.144869i
\(941\) 29.7410 29.7410i 0.969527 0.969527i −0.0300219 0.999549i \(-0.509558\pi\)
0.999549 + 0.0300219i \(0.00955770\pi\)
\(942\) 12.9677 12.9677i 0.422510 0.422510i
\(943\) 13.8544i 0.451162i
\(944\) 49.6955i 1.61745i
\(945\) 4.89051 4.89051i 0.159088 0.159088i
\(946\) 20.9313 20.9313i 0.680535 0.680535i
\(947\) −29.2933 29.2933i −0.951904 0.951904i 0.0469915 0.998895i \(-0.485037\pi\)
−0.998895 + 0.0469915i \(0.985037\pi\)
\(948\) −5.41921 −0.176008
\(949\) 3.96131 + 3.96131i 0.128590 + 0.128590i
\(950\) 17.5476i 0.569318i
\(951\) −19.4870 −0.631910
\(952\) 0 0
\(953\) 27.0719 0.876945 0.438473 0.898744i \(-0.355520\pi\)
0.438473 + 0.898744i \(0.355520\pi\)
\(954\) 15.1925i 0.491876i
\(955\) 24.2879 + 24.2879i 0.785937 + 0.785937i
\(956\) 0.914467 0.0295760
\(957\) 1.98518 + 1.98518i 0.0641717 + 0.0641717i
\(958\) −7.40639 + 7.40639i −0.239290 + 0.239290i
\(959\) −2.47342 + 2.47342i −0.0798708 + 0.0798708i
\(960\) 29.3628i 0.947680i
\(961\) 19.4962i 0.628909i
\(962\) 13.9799 13.9799i 0.450732 0.450732i
\(963\) 4.49202 4.49202i 0.144753 0.144753i
\(964\) −6.22133 6.22133i −0.200376 0.200376i
\(965\) 2.98215 0.0959989
\(966\) 1.42706 + 1.42706i 0.0459150 + 0.0459150i
\(967\) 43.3637i 1.39448i 0.716836 + 0.697241i \(0.245589\pi\)
−0.716836 + 0.697241i \(0.754411\pi\)
\(968\) 20.0205 0.643484
\(969\) 0 0
\(970\) 22.0993 0.709564
\(971\) 1.27126i 0.0407966i 0.999792 + 0.0203983i \(0.00649344\pi\)
−0.999792 + 0.0203983i \(0.993507\pi\)
\(972\) −2.81647 2.81647i −0.0903383 0.0903383i
\(973\) −2.97090 −0.0952428
\(974\) −8.30151 8.30151i −0.265997 0.265997i
\(975\) 23.4372 23.4372i 0.750593 0.750593i
\(976\) 14.2680 14.2680i 0.456707 0.456707i
\(977\) 24.7641i 0.792275i −0.918191 0.396138i \(-0.870350\pi\)
0.918191 0.396138i \(-0.129650\pi\)
\(978\) 19.9813i 0.638933i
\(979\) −7.98318 + 7.98318i −0.255144 + 0.255144i
\(980\) 5.96714 5.96714i 0.190613 0.190613i
\(981\) 13.0002 + 13.0002i 0.415065 + 0.415065i
\(982\) −13.8266 −0.441224
\(983\) −28.0116 28.0116i −0.893432 0.893432i 0.101412 0.994845i \(-0.467664\pi\)
−0.994845 + 0.101412i \(0.967664\pi\)
\(984\) 16.7888i 0.535207i
\(985\) 60.0488 1.91331
\(986\) 0 0
\(987\) 2.39599 0.0762653
\(988\) 1.75103i 0.0557077i
\(989\) −21.8682 21.8682i −0.695369 0.695369i
\(990\) −11.2763 −0.358385
\(991\) 23.5564 + 23.5564i 0.748293 + 0.748293i 0.974159 0.225865i \(-0.0725209\pi\)
−0.225865 + 0.974159i \(0.572521\pi\)
\(992\) 9.76591 9.76591i 0.310068 0.310068i
\(993\) −8.60756 + 8.60756i −0.273153 + 0.273153i
\(994\) 5.98545i 0.189847i
\(995\) 44.8417i 1.42158i
\(996\) −0.710679 + 0.710679i −0.0225187 + 0.0225187i
\(997\) −18.3111 + 18.3111i −0.579918 + 0.579918i −0.934881 0.354962i \(-0.884494\pi\)
0.354962 + 0.934881i \(0.384494\pi\)
\(998\) 28.9177 + 28.9177i 0.915374 + 0.915374i
\(999\) −22.1088 −0.699490
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.2.c.d.251.1 12
17.2 even 8 289.2.a.d.1.3 3
17.3 odd 16 289.2.d.f.134.1 24
17.4 even 4 inner 289.2.c.d.38.5 12
17.5 odd 16 289.2.d.f.155.6 24
17.6 odd 16 289.2.d.f.179.5 24
17.7 odd 16 289.2.d.f.110.1 24
17.8 even 8 289.2.b.d.288.2 6
17.9 even 8 289.2.b.d.288.1 6
17.10 odd 16 289.2.d.f.110.2 24
17.11 odd 16 289.2.d.f.179.6 24
17.12 odd 16 289.2.d.f.155.5 24
17.13 even 4 inner 289.2.c.d.38.6 12
17.14 odd 16 289.2.d.f.134.2 24
17.15 even 8 289.2.a.e.1.3 yes 3
17.16 even 2 inner 289.2.c.d.251.2 12
51.2 odd 8 2601.2.a.x.1.1 3
51.32 odd 8 2601.2.a.w.1.1 3
68.15 odd 8 4624.2.a.bd.1.2 3
68.19 odd 8 4624.2.a.bg.1.2 3
85.19 even 8 7225.2.a.t.1.1 3
85.49 even 8 7225.2.a.s.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
289.2.a.d.1.3 3 17.2 even 8
289.2.a.e.1.3 yes 3 17.15 even 8
289.2.b.d.288.1 6 17.9 even 8
289.2.b.d.288.2 6 17.8 even 8
289.2.c.d.38.5 12 17.4 even 4 inner
289.2.c.d.38.6 12 17.13 even 4 inner
289.2.c.d.251.1 12 1.1 even 1 trivial
289.2.c.d.251.2 12 17.16 even 2 inner
289.2.d.f.110.1 24 17.7 odd 16
289.2.d.f.110.2 24 17.10 odd 16
289.2.d.f.134.1 24 17.3 odd 16
289.2.d.f.134.2 24 17.14 odd 16
289.2.d.f.155.5 24 17.12 odd 16
289.2.d.f.155.6 24 17.5 odd 16
289.2.d.f.179.5 24 17.6 odd 16
289.2.d.f.179.6 24 17.11 odd 16
2601.2.a.w.1.1 3 51.32 odd 8
2601.2.a.x.1.1 3 51.2 odd 8
4624.2.a.bd.1.2 3 68.15 odd 8
4624.2.a.bg.1.2 3 68.19 odd 8
7225.2.a.s.1.1 3 85.49 even 8
7225.2.a.t.1.1 3 85.19 even 8