Properties

Label 289.2.c.c
Level $289$
Weight $2$
Character orbit 289.c
Analytic conductor $2.308$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [289,2,Mod(38,289)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(289, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("289.38");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.c (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30767661842\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_{2}) q^{2} + (\beta_{7} - \beta_1) q^{3} + ( - 2 \beta_{6} - 1) q^{4} - \beta_{7} q^{5} + ( - \beta_{5} + \beta_{4}) q^{6} + ( - \beta_{5} + \beta_{4}) q^{7} + (\beta_{3} + 3 \beta_{2}) q^{8}+ \cdots + ( - \beta_{7} + 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 24 q^{16} - 24 q^{18} + 16 q^{30} + 16 q^{35} + 16 q^{38} - 64 q^{47} - 40 q^{50} + 32 q^{52} + 16 q^{55} + 56 q^{64} - 32 q^{67} - 64 q^{69} + 8 q^{72} + 24 q^{81} - 64 q^{84} + 16 q^{86}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{16}^{3} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{16}^{4} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{16}^{6} + \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{16}^{7} + \zeta_{16}^{5} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{16}^{3} + \zeta_{16} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{16}^{6} + \zeta_{16}^{2} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{16}^{7} + \zeta_{16}^{5} \) Copy content Toggle raw display
\(\zeta_{16}\)\(=\) \( ( \beta_{5} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{2}\)\(=\) \( ( \beta_{6} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{3}\)\(=\) \( ( -\beta_{5} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{4}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{16}^{5}\)\(=\) \( ( \beta_{7} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{6}\)\(=\) \( ( -\beta_{6} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\zeta_{16}^{7}\)\(=\) \( ( -\beta_{7} + \beta_{4} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
38.1
−0.382683 0.923880i
0.382683 + 0.923880i
0.923880 0.382683i
−0.923880 + 0.382683i
0.923880 + 0.382683i
−0.923880 0.382683i
−0.382683 + 0.923880i
0.382683 0.923880i
0.414214i −1.84776 + 1.84776i 1.82843 1.30656 1.30656i 0.765367 + 0.765367i 0.765367 + 0.765367i 1.58579i 3.82843i −0.541196 0.541196i
38.2 0.414214i 1.84776 1.84776i 1.82843 −1.30656 + 1.30656i −0.765367 0.765367i −0.765367 0.765367i 1.58579i 3.82843i 0.541196 + 0.541196i
38.3 2.41421i −0.765367 + 0.765367i −3.82843 −0.541196 + 0.541196i −1.84776 1.84776i −1.84776 1.84776i 4.41421i 1.82843i −1.30656 1.30656i
38.4 2.41421i 0.765367 0.765367i −3.82843 0.541196 0.541196i 1.84776 + 1.84776i 1.84776 + 1.84776i 4.41421i 1.82843i 1.30656 + 1.30656i
251.1 2.41421i −0.765367 0.765367i −3.82843 −0.541196 0.541196i −1.84776 + 1.84776i −1.84776 + 1.84776i 4.41421i 1.82843i −1.30656 + 1.30656i
251.2 2.41421i 0.765367 + 0.765367i −3.82843 0.541196 + 0.541196i 1.84776 1.84776i 1.84776 1.84776i 4.41421i 1.82843i 1.30656 1.30656i
251.3 0.414214i −1.84776 1.84776i 1.82843 1.30656 + 1.30656i 0.765367 0.765367i 0.765367 0.765367i 1.58579i 3.82843i −0.541196 + 0.541196i
251.4 0.414214i 1.84776 + 1.84776i 1.82843 −1.30656 1.30656i −0.765367 + 0.765367i −0.765367 + 0.765367i 1.58579i 3.82843i 0.541196 0.541196i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 38.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner
17.c even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 289.2.c.c 8
17.b even 2 1 inner 289.2.c.c 8
17.c even 4 2 inner 289.2.c.c 8
17.d even 8 2 289.2.a.f 4
17.d even 8 2 289.2.b.b 4
17.e odd 16 2 17.2.d.a 4
17.e odd 16 2 289.2.d.a 4
17.e odd 16 2 289.2.d.b 4
17.e odd 16 2 289.2.d.c 4
51.g odd 8 2 2601.2.a.bb 4
51.i even 16 2 153.2.l.c 4
68.g odd 8 2 4624.2.a.bp 4
68.i even 16 2 272.2.v.d 4
85.m even 8 2 7225.2.a.u 4
85.o even 16 2 425.2.n.a 4
85.p odd 16 2 425.2.m.a 4
85.r even 16 2 425.2.n.b 4
119.p even 16 2 833.2.l.a 4
119.s even 48 4 833.2.v.a 8
119.t odd 48 4 833.2.v.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
17.2.d.a 4 17.e odd 16 2
153.2.l.c 4 51.i even 16 2
272.2.v.d 4 68.i even 16 2
289.2.a.f 4 17.d even 8 2
289.2.b.b 4 17.d even 8 2
289.2.c.c 8 1.a even 1 1 trivial
289.2.c.c 8 17.b even 2 1 inner
289.2.c.c 8 17.c even 4 2 inner
289.2.d.a 4 17.e odd 16 2
289.2.d.b 4 17.e odd 16 2
289.2.d.c 4 17.e odd 16 2
425.2.m.a 4 85.p odd 16 2
425.2.n.a 4 85.o even 16 2
425.2.n.b 4 85.r even 16 2
833.2.l.a 4 119.p even 16 2
833.2.v.a 8 119.s even 48 4
833.2.v.b 8 119.t odd 48 4
2601.2.a.bb 4 51.g odd 8 2
4624.2.a.bp 4 68.g odd 8 2
7225.2.a.u 4 85.m even 8 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 6T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(289, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 6 T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} + 48T^{4} + 64 \) Copy content Toggle raw display
$5$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$7$ \( T^{8} + 48T^{4} + 64 \) Copy content Toggle raw display
$11$ \( T^{8} + 48T^{4} + 64 \) Copy content Toggle raw display
$13$ \( (T^{2} - 2)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{4} + 24 T^{2} + 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 816 T^{4} + 153664 \) Copy content Toggle raw display
$29$ \( T^{8} + 396T^{4} + 4 \) Copy content Toggle raw display
$31$ \( T^{8} + 3888 T^{4} + 419904 \) Copy content Toggle raw display
$37$ \( T^{8} + 7500 T^{4} + 1562500 \) Copy content Toggle raw display
$41$ \( T^{8} + 4428 T^{4} + 9604 \) Copy content Toggle raw display
$43$ \( (T^{4} + 24 T^{2} + 16)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 16 T + 56)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 36)^{4} \) Copy content Toggle raw display
$61$ \( T^{8} + 7500 T^{4} + 1562500 \) Copy content Toggle raw display
$67$ \( (T^{2} + 8 T + 8)^{4} \) Copy content Toggle raw display
$71$ \( T^{8} + 30000 T^{4} + 25000000 \) Copy content Toggle raw display
$73$ \( T^{8} + 28812 T^{4} + 23059204 \) Copy content Toggle raw display
$79$ \( T^{8} + 816 T^{4} + 153664 \) Copy content Toggle raw display
$83$ \( (T^{4} + 136 T^{2} + 16)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 16 T + 62)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} + 13068 T^{4} + 19518724 \) Copy content Toggle raw display
show more
show less