Properties

Label 2888.2.a.v.1.6
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-6,0,-2,0,-2,0,2,0,12,0,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.10564000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 14x^{5} + 24x^{4} - 28x^{3} - 21x^{2} + 16x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.49959\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.499591 q^{3} +0.989826 q^{5} -0.882762 q^{7} -2.75041 q^{9} -3.21879 q^{11} +2.64190 q^{13} +0.494508 q^{15} -0.693022 q^{17} -0.441020 q^{21} +6.37666 q^{23} -4.02024 q^{25} -2.87285 q^{27} -1.07344 q^{29} +0.593973 q^{31} -1.60808 q^{33} -0.873781 q^{35} -2.48479 q^{37} +1.31987 q^{39} -10.5308 q^{41} +4.20046 q^{43} -2.72243 q^{45} +7.98700 q^{47} -6.22073 q^{49} -0.346227 q^{51} -5.46222 q^{53} -3.18604 q^{55} -11.6719 q^{59} +5.07612 q^{61} +2.42796 q^{63} +2.61502 q^{65} -11.4597 q^{67} +3.18572 q^{69} -3.26616 q^{71} -13.7627 q^{73} -2.00848 q^{75} +2.84142 q^{77} -10.9339 q^{79} +6.81598 q^{81} -6.12042 q^{83} -0.685972 q^{85} -0.536283 q^{87} -3.65717 q^{89} -2.33217 q^{91} +0.296743 q^{93} +3.69133 q^{97} +8.85298 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} - 2 q^{5} - 2 q^{7} + 2 q^{9} + 12 q^{11} - 6 q^{13} - 10 q^{17} + 4 q^{21} - 12 q^{23} + 2 q^{25} - 12 q^{27} - 18 q^{29} - 14 q^{31} - 40 q^{33} + 18 q^{35} - 16 q^{37} + 28 q^{39} - 12 q^{41}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.499591 0.288439 0.144219 0.989546i \(-0.453933\pi\)
0.144219 + 0.989546i \(0.453933\pi\)
\(4\) 0 0
\(5\) 0.989826 0.442664 0.221332 0.975199i \(-0.428960\pi\)
0.221332 + 0.975199i \(0.428960\pi\)
\(6\) 0 0
\(7\) −0.882762 −0.333653 −0.166826 0.985986i \(-0.553352\pi\)
−0.166826 + 0.985986i \(0.553352\pi\)
\(8\) 0 0
\(9\) −2.75041 −0.916803
\(10\) 0 0
\(11\) −3.21879 −0.970501 −0.485251 0.874375i \(-0.661272\pi\)
−0.485251 + 0.874375i \(0.661272\pi\)
\(12\) 0 0
\(13\) 2.64190 0.732731 0.366366 0.930471i \(-0.380602\pi\)
0.366366 + 0.930471i \(0.380602\pi\)
\(14\) 0 0
\(15\) 0.494508 0.127681
\(16\) 0 0
\(17\) −0.693022 −0.168083 −0.0840413 0.996462i \(-0.526783\pi\)
−0.0840413 + 0.996462i \(0.526783\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −0.441020 −0.0962384
\(22\) 0 0
\(23\) 6.37666 1.32963 0.664813 0.747010i \(-0.268511\pi\)
0.664813 + 0.747010i \(0.268511\pi\)
\(24\) 0 0
\(25\) −4.02024 −0.804049
\(26\) 0 0
\(27\) −2.87285 −0.552880
\(28\) 0 0
\(29\) −1.07344 −0.199334 −0.0996668 0.995021i \(-0.531778\pi\)
−0.0996668 + 0.995021i \(0.531778\pi\)
\(30\) 0 0
\(31\) 0.593973 0.106681 0.0533403 0.998576i \(-0.483013\pi\)
0.0533403 + 0.998576i \(0.483013\pi\)
\(32\) 0 0
\(33\) −1.60808 −0.279930
\(34\) 0 0
\(35\) −0.873781 −0.147696
\(36\) 0 0
\(37\) −2.48479 −0.408497 −0.204248 0.978919i \(-0.565475\pi\)
−0.204248 + 0.978919i \(0.565475\pi\)
\(38\) 0 0
\(39\) 1.31987 0.211348
\(40\) 0 0
\(41\) −10.5308 −1.64464 −0.822319 0.569026i \(-0.807320\pi\)
−0.822319 + 0.569026i \(0.807320\pi\)
\(42\) 0 0
\(43\) 4.20046 0.640564 0.320282 0.947322i \(-0.396222\pi\)
0.320282 + 0.947322i \(0.396222\pi\)
\(44\) 0 0
\(45\) −2.72243 −0.405836
\(46\) 0 0
\(47\) 7.98700 1.16502 0.582512 0.812822i \(-0.302070\pi\)
0.582512 + 0.812822i \(0.302070\pi\)
\(48\) 0 0
\(49\) −6.22073 −0.888676
\(50\) 0 0
\(51\) −0.346227 −0.0484815
\(52\) 0 0
\(53\) −5.46222 −0.750293 −0.375146 0.926966i \(-0.622408\pi\)
−0.375146 + 0.926966i \(0.622408\pi\)
\(54\) 0 0
\(55\) −3.18604 −0.429606
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.6719 −1.51955 −0.759776 0.650185i \(-0.774691\pi\)
−0.759776 + 0.650185i \(0.774691\pi\)
\(60\) 0 0
\(61\) 5.07612 0.649930 0.324965 0.945726i \(-0.394647\pi\)
0.324965 + 0.945726i \(0.394647\pi\)
\(62\) 0 0
\(63\) 2.42796 0.305894
\(64\) 0 0
\(65\) 2.61502 0.324354
\(66\) 0 0
\(67\) −11.4597 −1.40002 −0.700011 0.714132i \(-0.746822\pi\)
−0.700011 + 0.714132i \(0.746822\pi\)
\(68\) 0 0
\(69\) 3.18572 0.383516
\(70\) 0 0
\(71\) −3.26616 −0.387622 −0.193811 0.981039i \(-0.562085\pi\)
−0.193811 + 0.981039i \(0.562085\pi\)
\(72\) 0 0
\(73\) −13.7627 −1.61080 −0.805402 0.592729i \(-0.798051\pi\)
−0.805402 + 0.592729i \(0.798051\pi\)
\(74\) 0 0
\(75\) −2.00848 −0.231919
\(76\) 0 0
\(77\) 2.84142 0.323810
\(78\) 0 0
\(79\) −10.9339 −1.23016 −0.615081 0.788464i \(-0.710877\pi\)
−0.615081 + 0.788464i \(0.710877\pi\)
\(80\) 0 0
\(81\) 6.81598 0.757331
\(82\) 0 0
\(83\) −6.12042 −0.671803 −0.335902 0.941897i \(-0.609041\pi\)
−0.335902 + 0.941897i \(0.609041\pi\)
\(84\) 0 0
\(85\) −0.685972 −0.0744041
\(86\) 0 0
\(87\) −0.536283 −0.0574956
\(88\) 0 0
\(89\) −3.65717 −0.387659 −0.193830 0.981035i \(-0.562091\pi\)
−0.193830 + 0.981035i \(0.562091\pi\)
\(90\) 0 0
\(91\) −2.33217 −0.244478
\(92\) 0 0
\(93\) 0.296743 0.0307708
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.69133 0.374798 0.187399 0.982284i \(-0.439994\pi\)
0.187399 + 0.982284i \(0.439994\pi\)
\(98\) 0 0
\(99\) 8.85298 0.889758
\(100\) 0 0
\(101\) −13.0529 −1.29881 −0.649405 0.760443i \(-0.724982\pi\)
−0.649405 + 0.760443i \(0.724982\pi\)
\(102\) 0 0
\(103\) −14.2597 −1.40505 −0.702524 0.711660i \(-0.747944\pi\)
−0.702524 + 0.711660i \(0.747944\pi\)
\(104\) 0 0
\(105\) −0.436533 −0.0426012
\(106\) 0 0
\(107\) 18.6351 1.80152 0.900762 0.434314i \(-0.143009\pi\)
0.900762 + 0.434314i \(0.143009\pi\)
\(108\) 0 0
\(109\) −17.9340 −1.71777 −0.858884 0.512169i \(-0.828842\pi\)
−0.858884 + 0.512169i \(0.828842\pi\)
\(110\) 0 0
\(111\) −1.24138 −0.117826
\(112\) 0 0
\(113\) 9.79875 0.921789 0.460894 0.887455i \(-0.347529\pi\)
0.460894 + 0.887455i \(0.347529\pi\)
\(114\) 0 0
\(115\) 6.31179 0.588577
\(116\) 0 0
\(117\) −7.26631 −0.671770
\(118\) 0 0
\(119\) 0.611773 0.0560812
\(120\) 0 0
\(121\) −0.639402 −0.0581274
\(122\) 0 0
\(123\) −5.26110 −0.474378
\(124\) 0 0
\(125\) −8.92848 −0.798587
\(126\) 0 0
\(127\) 21.6864 1.92436 0.962180 0.272416i \(-0.0878227\pi\)
0.962180 + 0.272416i \(0.0878227\pi\)
\(128\) 0 0
\(129\) 2.09851 0.184764
\(130\) 0 0
\(131\) 0.601785 0.0525782 0.0262891 0.999654i \(-0.491631\pi\)
0.0262891 + 0.999654i \(0.491631\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.84362 −0.244740
\(136\) 0 0
\(137\) 10.6068 0.906199 0.453099 0.891460i \(-0.350318\pi\)
0.453099 + 0.891460i \(0.350318\pi\)
\(138\) 0 0
\(139\) 10.3834 0.880706 0.440353 0.897825i \(-0.354853\pi\)
0.440353 + 0.897825i \(0.354853\pi\)
\(140\) 0 0
\(141\) 3.99023 0.336038
\(142\) 0 0
\(143\) −8.50372 −0.711117
\(144\) 0 0
\(145\) −1.06252 −0.0882378
\(146\) 0 0
\(147\) −3.10782 −0.256329
\(148\) 0 0
\(149\) −13.4673 −1.10328 −0.551641 0.834082i \(-0.685998\pi\)
−0.551641 + 0.834082i \(0.685998\pi\)
\(150\) 0 0
\(151\) 2.28923 0.186295 0.0931475 0.995652i \(-0.470307\pi\)
0.0931475 + 0.995652i \(0.470307\pi\)
\(152\) 0 0
\(153\) 1.90609 0.154099
\(154\) 0 0
\(155\) 0.587930 0.0472237
\(156\) 0 0
\(157\) 23.7201 1.89307 0.946536 0.322597i \(-0.104556\pi\)
0.946536 + 0.322597i \(0.104556\pi\)
\(158\) 0 0
\(159\) −2.72887 −0.216414
\(160\) 0 0
\(161\) −5.62907 −0.443633
\(162\) 0 0
\(163\) −11.8315 −0.926715 −0.463357 0.886172i \(-0.653355\pi\)
−0.463357 + 0.886172i \(0.653355\pi\)
\(164\) 0 0
\(165\) −1.59172 −0.123915
\(166\) 0 0
\(167\) 0.867993 0.0671673 0.0335837 0.999436i \(-0.489308\pi\)
0.0335837 + 0.999436i \(0.489308\pi\)
\(168\) 0 0
\(169\) −6.02036 −0.463105
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.24610 0.474882 0.237441 0.971402i \(-0.423691\pi\)
0.237441 + 0.971402i \(0.423691\pi\)
\(174\) 0 0
\(175\) 3.54892 0.268273
\(176\) 0 0
\(177\) −5.83117 −0.438298
\(178\) 0 0
\(179\) −10.5079 −0.785399 −0.392699 0.919667i \(-0.628459\pi\)
−0.392699 + 0.919667i \(0.628459\pi\)
\(180\) 0 0
\(181\) 11.5138 0.855813 0.427906 0.903823i \(-0.359251\pi\)
0.427906 + 0.903823i \(0.359251\pi\)
\(182\) 0 0
\(183\) 2.53598 0.187465
\(184\) 0 0
\(185\) −2.45951 −0.180827
\(186\) 0 0
\(187\) 2.23069 0.163124
\(188\) 0 0
\(189\) 2.53604 0.184470
\(190\) 0 0
\(191\) 23.8188 1.72347 0.861735 0.507358i \(-0.169378\pi\)
0.861735 + 0.507358i \(0.169378\pi\)
\(192\) 0 0
\(193\) −14.2038 −1.02241 −0.511205 0.859459i \(-0.670801\pi\)
−0.511205 + 0.859459i \(0.670801\pi\)
\(194\) 0 0
\(195\) 1.30644 0.0935562
\(196\) 0 0
\(197\) 3.57729 0.254871 0.127436 0.991847i \(-0.459325\pi\)
0.127436 + 0.991847i \(0.459325\pi\)
\(198\) 0 0
\(199\) 21.2865 1.50896 0.754478 0.656325i \(-0.227890\pi\)
0.754478 + 0.656325i \(0.227890\pi\)
\(200\) 0 0
\(201\) −5.72515 −0.403821
\(202\) 0 0
\(203\) 0.947596 0.0665082
\(204\) 0 0
\(205\) −10.4237 −0.728022
\(206\) 0 0
\(207\) −17.5384 −1.21900
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −14.2207 −0.978995 −0.489497 0.872005i \(-0.662820\pi\)
−0.489497 + 0.872005i \(0.662820\pi\)
\(212\) 0 0
\(213\) −1.63174 −0.111805
\(214\) 0 0
\(215\) 4.15773 0.283555
\(216\) 0 0
\(217\) −0.524336 −0.0355943
\(218\) 0 0
\(219\) −6.87573 −0.464619
\(220\) 0 0
\(221\) −1.83090 −0.123159
\(222\) 0 0
\(223\) −11.7277 −0.785345 −0.392672 0.919678i \(-0.628449\pi\)
−0.392672 + 0.919678i \(0.628449\pi\)
\(224\) 0 0
\(225\) 11.0573 0.737154
\(226\) 0 0
\(227\) −3.97943 −0.264124 −0.132062 0.991241i \(-0.542160\pi\)
−0.132062 + 0.991241i \(0.542160\pi\)
\(228\) 0 0
\(229\) −15.4369 −1.02010 −0.510049 0.860145i \(-0.670373\pi\)
−0.510049 + 0.860145i \(0.670373\pi\)
\(230\) 0 0
\(231\) 1.41955 0.0933995
\(232\) 0 0
\(233\) 8.31830 0.544950 0.272475 0.962163i \(-0.412158\pi\)
0.272475 + 0.962163i \(0.412158\pi\)
\(234\) 0 0
\(235\) 7.90574 0.515714
\(236\) 0 0
\(237\) −5.46248 −0.354826
\(238\) 0 0
\(239\) 8.24432 0.533281 0.266640 0.963796i \(-0.414086\pi\)
0.266640 + 0.963796i \(0.414086\pi\)
\(240\) 0 0
\(241\) −6.88397 −0.443436 −0.221718 0.975111i \(-0.571166\pi\)
−0.221718 + 0.975111i \(0.571166\pi\)
\(242\) 0 0
\(243\) 12.0238 0.771324
\(244\) 0 0
\(245\) −6.15744 −0.393385
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −3.05771 −0.193774
\(250\) 0 0
\(251\) 20.4224 1.28905 0.644524 0.764584i \(-0.277056\pi\)
0.644524 + 0.764584i \(0.277056\pi\)
\(252\) 0 0
\(253\) −20.5251 −1.29040
\(254\) 0 0
\(255\) −0.342705 −0.0214610
\(256\) 0 0
\(257\) 2.21337 0.138066 0.0690330 0.997614i \(-0.478009\pi\)
0.0690330 + 0.997614i \(0.478009\pi\)
\(258\) 0 0
\(259\) 2.19348 0.136296
\(260\) 0 0
\(261\) 2.95241 0.182750
\(262\) 0 0
\(263\) 0.844903 0.0520990 0.0260495 0.999661i \(-0.491707\pi\)
0.0260495 + 0.999661i \(0.491707\pi\)
\(264\) 0 0
\(265\) −5.40664 −0.332128
\(266\) 0 0
\(267\) −1.82709 −0.111816
\(268\) 0 0
\(269\) −26.1998 −1.59743 −0.798714 0.601710i \(-0.794486\pi\)
−0.798714 + 0.601710i \(0.794486\pi\)
\(270\) 0 0
\(271\) −22.2569 −1.35201 −0.676005 0.736897i \(-0.736290\pi\)
−0.676005 + 0.736897i \(0.736290\pi\)
\(272\) 0 0
\(273\) −1.16513 −0.0705169
\(274\) 0 0
\(275\) 12.9403 0.780330
\(276\) 0 0
\(277\) −0.665287 −0.0399732 −0.0199866 0.999800i \(-0.506362\pi\)
−0.0199866 + 0.999800i \(0.506362\pi\)
\(278\) 0 0
\(279\) −1.63367 −0.0978051
\(280\) 0 0
\(281\) −2.82273 −0.168390 −0.0841950 0.996449i \(-0.526832\pi\)
−0.0841950 + 0.996449i \(0.526832\pi\)
\(282\) 0 0
\(283\) 22.3097 1.32617 0.663086 0.748543i \(-0.269246\pi\)
0.663086 + 0.748543i \(0.269246\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.29621 0.548738
\(288\) 0 0
\(289\) −16.5197 −0.971748
\(290\) 0 0
\(291\) 1.84415 0.108106
\(292\) 0 0
\(293\) 4.10021 0.239537 0.119768 0.992802i \(-0.461785\pi\)
0.119768 + 0.992802i \(0.461785\pi\)
\(294\) 0 0
\(295\) −11.5532 −0.672651
\(296\) 0 0
\(297\) 9.24710 0.536571
\(298\) 0 0
\(299\) 16.8465 0.974258
\(300\) 0 0
\(301\) −3.70801 −0.213726
\(302\) 0 0
\(303\) −6.52110 −0.374627
\(304\) 0 0
\(305\) 5.02447 0.287701
\(306\) 0 0
\(307\) 17.7329 1.01207 0.506034 0.862513i \(-0.331111\pi\)
0.506034 + 0.862513i \(0.331111\pi\)
\(308\) 0 0
\(309\) −7.12401 −0.405271
\(310\) 0 0
\(311\) −29.0910 −1.64960 −0.824800 0.565424i \(-0.808712\pi\)
−0.824800 + 0.565424i \(0.808712\pi\)
\(312\) 0 0
\(313\) −5.96065 −0.336916 −0.168458 0.985709i \(-0.553879\pi\)
−0.168458 + 0.985709i \(0.553879\pi\)
\(314\) 0 0
\(315\) 2.40325 0.135408
\(316\) 0 0
\(317\) −16.3720 −0.919543 −0.459771 0.888037i \(-0.652069\pi\)
−0.459771 + 0.888037i \(0.652069\pi\)
\(318\) 0 0
\(319\) 3.45519 0.193454
\(320\) 0 0
\(321\) 9.30993 0.519629
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −10.6211 −0.589152
\(326\) 0 0
\(327\) −8.95968 −0.495471
\(328\) 0 0
\(329\) −7.05062 −0.388713
\(330\) 0 0
\(331\) −24.7478 −1.36026 −0.680132 0.733090i \(-0.738078\pi\)
−0.680132 + 0.733090i \(0.738078\pi\)
\(332\) 0 0
\(333\) 6.83419 0.374511
\(334\) 0 0
\(335\) −11.3431 −0.619739
\(336\) 0 0
\(337\) −4.71127 −0.256639 −0.128320 0.991733i \(-0.540958\pi\)
−0.128320 + 0.991733i \(0.540958\pi\)
\(338\) 0 0
\(339\) 4.89536 0.265880
\(340\) 0 0
\(341\) −1.91187 −0.103534
\(342\) 0 0
\(343\) 11.6708 0.630162
\(344\) 0 0
\(345\) 3.15331 0.169769
\(346\) 0 0
\(347\) 8.66690 0.465263 0.232632 0.972565i \(-0.425266\pi\)
0.232632 + 0.972565i \(0.425266\pi\)
\(348\) 0 0
\(349\) 19.6105 1.04972 0.524862 0.851188i \(-0.324117\pi\)
0.524862 + 0.851188i \(0.324117\pi\)
\(350\) 0 0
\(351\) −7.58979 −0.405113
\(352\) 0 0
\(353\) 15.6438 0.832637 0.416318 0.909219i \(-0.363320\pi\)
0.416318 + 0.909219i \(0.363320\pi\)
\(354\) 0 0
\(355\) −3.23293 −0.171586
\(356\) 0 0
\(357\) 0.305636 0.0161760
\(358\) 0 0
\(359\) −11.6995 −0.617478 −0.308739 0.951147i \(-0.599907\pi\)
−0.308739 + 0.951147i \(0.599907\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −0.319439 −0.0167662
\(364\) 0 0
\(365\) −13.6227 −0.713045
\(366\) 0 0
\(367\) 13.3540 0.697072 0.348536 0.937295i \(-0.386679\pi\)
0.348536 + 0.937295i \(0.386679\pi\)
\(368\) 0 0
\(369\) 28.9641 1.50781
\(370\) 0 0
\(371\) 4.82183 0.250337
\(372\) 0 0
\(373\) −18.2292 −0.943870 −0.471935 0.881633i \(-0.656444\pi\)
−0.471935 + 0.881633i \(0.656444\pi\)
\(374\) 0 0
\(375\) −4.46058 −0.230344
\(376\) 0 0
\(377\) −2.83593 −0.146058
\(378\) 0 0
\(379\) 4.52973 0.232677 0.116338 0.993210i \(-0.462884\pi\)
0.116338 + 0.993210i \(0.462884\pi\)
\(380\) 0 0
\(381\) 10.8343 0.555060
\(382\) 0 0
\(383\) 20.9663 1.07133 0.535664 0.844431i \(-0.320061\pi\)
0.535664 + 0.844431i \(0.320061\pi\)
\(384\) 0 0
\(385\) 2.81252 0.143339
\(386\) 0 0
\(387\) −11.5530 −0.587271
\(388\) 0 0
\(389\) −19.9675 −1.01239 −0.506196 0.862418i \(-0.668949\pi\)
−0.506196 + 0.862418i \(0.668949\pi\)
\(390\) 0 0
\(391\) −4.41917 −0.223487
\(392\) 0 0
\(393\) 0.300646 0.0151656
\(394\) 0 0
\(395\) −10.8227 −0.544548
\(396\) 0 0
\(397\) 23.6948 1.18921 0.594603 0.804019i \(-0.297309\pi\)
0.594603 + 0.804019i \(0.297309\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.8269 0.690484 0.345242 0.938514i \(-0.387797\pi\)
0.345242 + 0.938514i \(0.387797\pi\)
\(402\) 0 0
\(403\) 1.56922 0.0781683
\(404\) 0 0
\(405\) 6.74663 0.335243
\(406\) 0 0
\(407\) 7.99801 0.396447
\(408\) 0 0
\(409\) 17.1305 0.847048 0.423524 0.905885i \(-0.360793\pi\)
0.423524 + 0.905885i \(0.360793\pi\)
\(410\) 0 0
\(411\) 5.29905 0.261383
\(412\) 0 0
\(413\) 10.3035 0.507003
\(414\) 0 0
\(415\) −6.05815 −0.297383
\(416\) 0 0
\(417\) 5.18744 0.254030
\(418\) 0 0
\(419\) −31.1939 −1.52392 −0.761960 0.647624i \(-0.775763\pi\)
−0.761960 + 0.647624i \(0.775763\pi\)
\(420\) 0 0
\(421\) 27.2220 1.32672 0.663360 0.748301i \(-0.269130\pi\)
0.663360 + 0.748301i \(0.269130\pi\)
\(422\) 0 0
\(423\) −21.9675 −1.06810
\(424\) 0 0
\(425\) 2.78612 0.135147
\(426\) 0 0
\(427\) −4.48100 −0.216851
\(428\) 0 0
\(429\) −4.24838 −0.205114
\(430\) 0 0
\(431\) 18.0882 0.871278 0.435639 0.900122i \(-0.356523\pi\)
0.435639 + 0.900122i \(0.356523\pi\)
\(432\) 0 0
\(433\) −11.4672 −0.551077 −0.275538 0.961290i \(-0.588856\pi\)
−0.275538 + 0.961290i \(0.588856\pi\)
\(434\) 0 0
\(435\) −0.530827 −0.0254512
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 12.6861 0.605475 0.302738 0.953074i \(-0.402099\pi\)
0.302738 + 0.953074i \(0.402099\pi\)
\(440\) 0 0
\(441\) 17.1096 0.814741
\(442\) 0 0
\(443\) 22.3815 1.06338 0.531690 0.846939i \(-0.321557\pi\)
0.531690 + 0.846939i \(0.321557\pi\)
\(444\) 0 0
\(445\) −3.61996 −0.171603
\(446\) 0 0
\(447\) −6.72812 −0.318229
\(448\) 0 0
\(449\) −9.61944 −0.453969 −0.226985 0.973898i \(-0.572887\pi\)
−0.226985 + 0.973898i \(0.572887\pi\)
\(450\) 0 0
\(451\) 33.8965 1.59612
\(452\) 0 0
\(453\) 1.14368 0.0537347
\(454\) 0 0
\(455\) −2.30844 −0.108221
\(456\) 0 0
\(457\) −33.8674 −1.58425 −0.792126 0.610358i \(-0.791026\pi\)
−0.792126 + 0.610358i \(0.791026\pi\)
\(458\) 0 0
\(459\) 1.99095 0.0929296
\(460\) 0 0
\(461\) −25.7902 −1.20117 −0.600585 0.799561i \(-0.705066\pi\)
−0.600585 + 0.799561i \(0.705066\pi\)
\(462\) 0 0
\(463\) 23.0244 1.07003 0.535017 0.844841i \(-0.320305\pi\)
0.535017 + 0.844841i \(0.320305\pi\)
\(464\) 0 0
\(465\) 0.293724 0.0136211
\(466\) 0 0
\(467\) 35.7248 1.65315 0.826574 0.562829i \(-0.190287\pi\)
0.826574 + 0.562829i \(0.190287\pi\)
\(468\) 0 0
\(469\) 10.1162 0.467121
\(470\) 0 0
\(471\) 11.8504 0.546036
\(472\) 0 0
\(473\) −13.5204 −0.621668
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.0233 0.687871
\(478\) 0 0
\(479\) −20.7079 −0.946167 −0.473084 0.881018i \(-0.656859\pi\)
−0.473084 + 0.881018i \(0.656859\pi\)
\(480\) 0 0
\(481\) −6.56457 −0.299318
\(482\) 0 0
\(483\) −2.81223 −0.127961
\(484\) 0 0
\(485\) 3.65377 0.165909
\(486\) 0 0
\(487\) −25.5955 −1.15984 −0.579922 0.814672i \(-0.696917\pi\)
−0.579922 + 0.814672i \(0.696917\pi\)
\(488\) 0 0
\(489\) −5.91091 −0.267301
\(490\) 0 0
\(491\) 37.5910 1.69646 0.848229 0.529629i \(-0.177669\pi\)
0.848229 + 0.529629i \(0.177669\pi\)
\(492\) 0 0
\(493\) 0.743921 0.0335045
\(494\) 0 0
\(495\) 8.76292 0.393864
\(496\) 0 0
\(497\) 2.88324 0.129331
\(498\) 0 0
\(499\) 18.5319 0.829601 0.414801 0.909912i \(-0.363851\pi\)
0.414801 + 0.909912i \(0.363851\pi\)
\(500\) 0 0
\(501\) 0.433641 0.0193737
\(502\) 0 0
\(503\) −2.98629 −0.133152 −0.0665760 0.997781i \(-0.521207\pi\)
−0.0665760 + 0.997781i \(0.521207\pi\)
\(504\) 0 0
\(505\) −12.9201 −0.574936
\(506\) 0 0
\(507\) −3.00772 −0.133577
\(508\) 0 0
\(509\) 37.1393 1.64617 0.823085 0.567917i \(-0.192251\pi\)
0.823085 + 0.567917i \(0.192251\pi\)
\(510\) 0 0
\(511\) 12.1492 0.537449
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14.1146 −0.621964
\(516\) 0 0
\(517\) −25.7085 −1.13066
\(518\) 0 0
\(519\) 3.12049 0.136974
\(520\) 0 0
\(521\) 37.3318 1.63554 0.817769 0.575547i \(-0.195211\pi\)
0.817769 + 0.575547i \(0.195211\pi\)
\(522\) 0 0
\(523\) 29.4412 1.28737 0.643687 0.765289i \(-0.277404\pi\)
0.643687 + 0.765289i \(0.277404\pi\)
\(524\) 0 0
\(525\) 1.77301 0.0773803
\(526\) 0 0
\(527\) −0.411636 −0.0179312
\(528\) 0 0
\(529\) 17.6618 0.767904
\(530\) 0 0
\(531\) 32.1025 1.39313
\(532\) 0 0
\(533\) −27.8214 −1.20508
\(534\) 0 0
\(535\) 18.4455 0.797469
\(536\) 0 0
\(537\) −5.24966 −0.226539
\(538\) 0 0
\(539\) 20.0232 0.862461
\(540\) 0 0
\(541\) 30.2923 1.30237 0.651184 0.758920i \(-0.274273\pi\)
0.651184 + 0.758920i \(0.274273\pi\)
\(542\) 0 0
\(543\) 5.75218 0.246850
\(544\) 0 0
\(545\) −17.7516 −0.760394
\(546\) 0 0
\(547\) −8.04224 −0.343861 −0.171931 0.985109i \(-0.555000\pi\)
−0.171931 + 0.985109i \(0.555000\pi\)
\(548\) 0 0
\(549\) −13.9614 −0.595858
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 9.65204 0.410446
\(554\) 0 0
\(555\) −1.22875 −0.0521575
\(556\) 0 0
\(557\) 35.7478 1.51468 0.757342 0.653019i \(-0.226498\pi\)
0.757342 + 0.653019i \(0.226498\pi\)
\(558\) 0 0
\(559\) 11.0972 0.469362
\(560\) 0 0
\(561\) 1.11443 0.0470514
\(562\) 0 0
\(563\) 14.3246 0.603710 0.301855 0.953354i \(-0.402394\pi\)
0.301855 + 0.953354i \(0.402394\pi\)
\(564\) 0 0
\(565\) 9.69906 0.408043
\(566\) 0 0
\(567\) −6.01688 −0.252685
\(568\) 0 0
\(569\) −22.1503 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(570\) 0 0
\(571\) −19.1461 −0.801240 −0.400620 0.916244i \(-0.631205\pi\)
−0.400620 + 0.916244i \(0.631205\pi\)
\(572\) 0 0
\(573\) 11.8997 0.497116
\(574\) 0 0
\(575\) −25.6357 −1.06908
\(576\) 0 0
\(577\) 3.49726 0.145593 0.0727965 0.997347i \(-0.476808\pi\)
0.0727965 + 0.997347i \(0.476808\pi\)
\(578\) 0 0
\(579\) −7.09608 −0.294903
\(580\) 0 0
\(581\) 5.40287 0.224149
\(582\) 0 0
\(583\) 17.5817 0.728160
\(584\) 0 0
\(585\) −7.19238 −0.297368
\(586\) 0 0
\(587\) 7.24141 0.298885 0.149443 0.988770i \(-0.452252\pi\)
0.149443 + 0.988770i \(0.452252\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 1.78718 0.0735148
\(592\) 0 0
\(593\) −32.0408 −1.31576 −0.657880 0.753123i \(-0.728546\pi\)
−0.657880 + 0.753123i \(0.728546\pi\)
\(594\) 0 0
\(595\) 0.605549 0.0248251
\(596\) 0 0
\(597\) 10.6345 0.435242
\(598\) 0 0
\(599\) −17.2861 −0.706292 −0.353146 0.935568i \(-0.614888\pi\)
−0.353146 + 0.935568i \(0.614888\pi\)
\(600\) 0 0
\(601\) −16.9400 −0.690996 −0.345498 0.938419i \(-0.612290\pi\)
−0.345498 + 0.938419i \(0.612290\pi\)
\(602\) 0 0
\(603\) 31.5188 1.28354
\(604\) 0 0
\(605\) −0.632897 −0.0257309
\(606\) 0 0
\(607\) −34.3961 −1.39610 −0.698048 0.716051i \(-0.745948\pi\)
−0.698048 + 0.716051i \(0.745948\pi\)
\(608\) 0 0
\(609\) 0.473410 0.0191835
\(610\) 0 0
\(611\) 21.1009 0.853649
\(612\) 0 0
\(613\) −6.63739 −0.268082 −0.134041 0.990976i \(-0.542795\pi\)
−0.134041 + 0.990976i \(0.542795\pi\)
\(614\) 0 0
\(615\) −5.20758 −0.209990
\(616\) 0 0
\(617\) −10.7821 −0.434073 −0.217036 0.976164i \(-0.569639\pi\)
−0.217036 + 0.976164i \(0.569639\pi\)
\(618\) 0 0
\(619\) −2.15049 −0.0864354 −0.0432177 0.999066i \(-0.513761\pi\)
−0.0432177 + 0.999066i \(0.513761\pi\)
\(620\) 0 0
\(621\) −18.3192 −0.735124
\(622\) 0 0
\(623\) 3.22841 0.129343
\(624\) 0 0
\(625\) 11.2636 0.450543
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.72201 0.0686612
\(630\) 0 0
\(631\) −43.8470 −1.74552 −0.872761 0.488148i \(-0.837673\pi\)
−0.872761 + 0.488148i \(0.837673\pi\)
\(632\) 0 0
\(633\) −7.10454 −0.282380
\(634\) 0 0
\(635\) 21.4658 0.851844
\(636\) 0 0
\(637\) −16.4346 −0.651161
\(638\) 0 0
\(639\) 8.98327 0.355373
\(640\) 0 0
\(641\) 17.8267 0.704112 0.352056 0.935979i \(-0.385483\pi\)
0.352056 + 0.935979i \(0.385483\pi\)
\(642\) 0 0
\(643\) −3.07190 −0.121144 −0.0605720 0.998164i \(-0.519292\pi\)
−0.0605720 + 0.998164i \(0.519292\pi\)
\(644\) 0 0
\(645\) 2.07716 0.0817882
\(646\) 0 0
\(647\) −4.63532 −0.182233 −0.0911166 0.995840i \(-0.529044\pi\)
−0.0911166 + 0.995840i \(0.529044\pi\)
\(648\) 0 0
\(649\) 37.5694 1.47473
\(650\) 0 0
\(651\) −0.261954 −0.0102668
\(652\) 0 0
\(653\) 0.443870 0.0173700 0.00868498 0.999962i \(-0.497235\pi\)
0.00868498 + 0.999962i \(0.497235\pi\)
\(654\) 0 0
\(655\) 0.595663 0.0232745
\(656\) 0 0
\(657\) 37.8531 1.47679
\(658\) 0 0
\(659\) −48.4021 −1.88548 −0.942739 0.333531i \(-0.891760\pi\)
−0.942739 + 0.333531i \(0.891760\pi\)
\(660\) 0 0
\(661\) −13.8761 −0.539717 −0.269858 0.962900i \(-0.586977\pi\)
−0.269858 + 0.962900i \(0.586977\pi\)
\(662\) 0 0
\(663\) −0.914698 −0.0355239
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.84499 −0.265039
\(668\) 0 0
\(669\) −5.85905 −0.226524
\(670\) 0 0
\(671\) −16.3389 −0.630758
\(672\) 0 0
\(673\) −34.6291 −1.33485 −0.667426 0.744676i \(-0.732604\pi\)
−0.667426 + 0.744676i \(0.732604\pi\)
\(674\) 0 0
\(675\) 11.5496 0.444543
\(676\) 0 0
\(677\) −13.6416 −0.524290 −0.262145 0.965028i \(-0.584430\pi\)
−0.262145 + 0.965028i \(0.584430\pi\)
\(678\) 0 0
\(679\) −3.25856 −0.125052
\(680\) 0 0
\(681\) −1.98809 −0.0761837
\(682\) 0 0
\(683\) −1.11613 −0.0427076 −0.0213538 0.999772i \(-0.506798\pi\)
−0.0213538 + 0.999772i \(0.506798\pi\)
\(684\) 0 0
\(685\) 10.4989 0.401141
\(686\) 0 0
\(687\) −7.71212 −0.294236
\(688\) 0 0
\(689\) −14.4306 −0.549763
\(690\) 0 0
\(691\) 42.7501 1.62629 0.813145 0.582061i \(-0.197754\pi\)
0.813145 + 0.582061i \(0.197754\pi\)
\(692\) 0 0
\(693\) −7.81508 −0.296870
\(694\) 0 0
\(695\) 10.2777 0.389857
\(696\) 0 0
\(697\) 7.29810 0.276435
\(698\) 0 0
\(699\) 4.15575 0.157185
\(700\) 0 0
\(701\) −4.44462 −0.167871 −0.0839355 0.996471i \(-0.526749\pi\)
−0.0839355 + 0.996471i \(0.526749\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 3.94963 0.148752
\(706\) 0 0
\(707\) 11.5226 0.433351
\(708\) 0 0
\(709\) −17.3695 −0.652324 −0.326162 0.945314i \(-0.605755\pi\)
−0.326162 + 0.945314i \(0.605755\pi\)
\(710\) 0 0
\(711\) 30.0727 1.12782
\(712\) 0 0
\(713\) 3.78756 0.141845
\(714\) 0 0
\(715\) −8.41721 −0.314786
\(716\) 0 0
\(717\) 4.11879 0.153819
\(718\) 0 0
\(719\) 17.8951 0.667375 0.333688 0.942684i \(-0.391707\pi\)
0.333688 + 0.942684i \(0.391707\pi\)
\(720\) 0 0
\(721\) 12.5879 0.468798
\(722\) 0 0
\(723\) −3.43917 −0.127904
\(724\) 0 0
\(725\) 4.31551 0.160274
\(726\) 0 0
\(727\) −49.5634 −1.83820 −0.919102 0.394020i \(-0.871084\pi\)
−0.919102 + 0.394020i \(0.871084\pi\)
\(728\) 0 0
\(729\) −14.4410 −0.534851
\(730\) 0 0
\(731\) −2.91101 −0.107668
\(732\) 0 0
\(733\) 20.3740 0.752533 0.376266 0.926512i \(-0.377208\pi\)
0.376266 + 0.926512i \(0.377208\pi\)
\(734\) 0 0
\(735\) −3.07620 −0.113467
\(736\) 0 0
\(737\) 36.8863 1.35872
\(738\) 0 0
\(739\) 45.5912 1.67710 0.838550 0.544824i \(-0.183404\pi\)
0.838550 + 0.544824i \(0.183404\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 52.0700 1.91026 0.955132 0.296181i \(-0.0957132\pi\)
0.955132 + 0.296181i \(0.0957132\pi\)
\(744\) 0 0
\(745\) −13.3303 −0.488383
\(746\) 0 0
\(747\) 16.8337 0.615911
\(748\) 0 0
\(749\) −16.4504 −0.601083
\(750\) 0 0
\(751\) 22.8502 0.833817 0.416909 0.908948i \(-0.363114\pi\)
0.416909 + 0.908948i \(0.363114\pi\)
\(752\) 0 0
\(753\) 10.2028 0.371811
\(754\) 0 0
\(755\) 2.26594 0.0824661
\(756\) 0 0
\(757\) 19.2563 0.699883 0.349941 0.936772i \(-0.386202\pi\)
0.349941 + 0.936772i \(0.386202\pi\)
\(758\) 0 0
\(759\) −10.2542 −0.372202
\(760\) 0 0
\(761\) 5.88049 0.213167 0.106584 0.994304i \(-0.466009\pi\)
0.106584 + 0.994304i \(0.466009\pi\)
\(762\) 0 0
\(763\) 15.8315 0.573138
\(764\) 0 0
\(765\) 1.88670 0.0682139
\(766\) 0 0
\(767\) −30.8360 −1.11342
\(768\) 0 0
\(769\) 13.5518 0.488689 0.244344 0.969689i \(-0.421427\pi\)
0.244344 + 0.969689i \(0.421427\pi\)
\(770\) 0 0
\(771\) 1.10578 0.0398236
\(772\) 0 0
\(773\) 20.6977 0.744445 0.372223 0.928144i \(-0.378596\pi\)
0.372223 + 0.928144i \(0.378596\pi\)
\(774\) 0 0
\(775\) −2.38792 −0.0857764
\(776\) 0 0
\(777\) 1.09584 0.0393131
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 10.5131 0.376187
\(782\) 0 0
\(783\) 3.08385 0.110208
\(784\) 0 0
\(785\) 23.4788 0.837995
\(786\) 0 0
\(787\) −41.2692 −1.47109 −0.735544 0.677477i \(-0.763073\pi\)
−0.735544 + 0.677477i \(0.763073\pi\)
\(788\) 0 0
\(789\) 0.422106 0.0150274
\(790\) 0 0
\(791\) −8.64996 −0.307557
\(792\) 0 0
\(793\) 13.4106 0.476224
\(794\) 0 0
\(795\) −2.70111 −0.0957985
\(796\) 0 0
\(797\) 21.0532 0.745743 0.372871 0.927883i \(-0.378373\pi\)
0.372871 + 0.927883i \(0.378373\pi\)
\(798\) 0 0
\(799\) −5.53517 −0.195820
\(800\) 0 0
\(801\) 10.0587 0.355407
\(802\) 0 0
\(803\) 44.2993 1.56329
\(804\) 0 0
\(805\) −5.57180 −0.196380
\(806\) 0 0
\(807\) −13.0892 −0.460761
\(808\) 0 0
\(809\) 22.4072 0.787794 0.393897 0.919155i \(-0.371127\pi\)
0.393897 + 0.919155i \(0.371127\pi\)
\(810\) 0 0
\(811\) −32.5040 −1.14137 −0.570686 0.821169i \(-0.693322\pi\)
−0.570686 + 0.821169i \(0.693322\pi\)
\(812\) 0 0
\(813\) −11.1193 −0.389972
\(814\) 0 0
\(815\) −11.7111 −0.410223
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 6.41442 0.224138
\(820\) 0 0
\(821\) 18.2949 0.638495 0.319247 0.947671i \(-0.396570\pi\)
0.319247 + 0.947671i \(0.396570\pi\)
\(822\) 0 0
\(823\) −23.1058 −0.805418 −0.402709 0.915328i \(-0.631931\pi\)
−0.402709 + 0.915328i \(0.631931\pi\)
\(824\) 0 0
\(825\) 6.46486 0.225078
\(826\) 0 0
\(827\) 27.9119 0.970591 0.485295 0.874350i \(-0.338712\pi\)
0.485295 + 0.874350i \(0.338712\pi\)
\(828\) 0 0
\(829\) −32.7123 −1.13615 −0.568073 0.822978i \(-0.692311\pi\)
−0.568073 + 0.822978i \(0.692311\pi\)
\(830\) 0 0
\(831\) −0.332371 −0.0115298
\(832\) 0 0
\(833\) 4.31110 0.149371
\(834\) 0 0
\(835\) 0.859162 0.0297325
\(836\) 0 0
\(837\) −1.70640 −0.0589817
\(838\) 0 0
\(839\) −8.04961 −0.277903 −0.138952 0.990299i \(-0.544373\pi\)
−0.138952 + 0.990299i \(0.544373\pi\)
\(840\) 0 0
\(841\) −27.8477 −0.960266
\(842\) 0 0
\(843\) −1.41021 −0.0485702
\(844\) 0 0
\(845\) −5.95911 −0.205000
\(846\) 0 0
\(847\) 0.564439 0.0193944
\(848\) 0 0
\(849\) 11.1457 0.382519
\(850\) 0 0
\(851\) −15.8447 −0.543148
\(852\) 0 0
\(853\) 35.5288 1.21648 0.608242 0.793751i \(-0.291875\pi\)
0.608242 + 0.793751i \(0.291875\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.9326 −0.783363 −0.391681 0.920101i \(-0.628106\pi\)
−0.391681 + 0.920101i \(0.628106\pi\)
\(858\) 0 0
\(859\) −25.5996 −0.873449 −0.436724 0.899595i \(-0.643861\pi\)
−0.436724 + 0.899595i \(0.643861\pi\)
\(860\) 0 0
\(861\) 4.64430 0.158277
\(862\) 0 0
\(863\) 48.1804 1.64008 0.820040 0.572306i \(-0.193951\pi\)
0.820040 + 0.572306i \(0.193951\pi\)
\(864\) 0 0
\(865\) 6.18255 0.210213
\(866\) 0 0
\(867\) −8.25310 −0.280290
\(868\) 0 0
\(869\) 35.1939 1.19387
\(870\) 0 0
\(871\) −30.2753 −1.02584
\(872\) 0 0
\(873\) −10.1527 −0.343615
\(874\) 0 0
\(875\) 7.88172 0.266451
\(876\) 0 0
\(877\) 0.616156 0.0208061 0.0104031 0.999946i \(-0.496689\pi\)
0.0104031 + 0.999946i \(0.496689\pi\)
\(878\) 0 0
\(879\) 2.04842 0.0690916
\(880\) 0 0
\(881\) 13.7345 0.462728 0.231364 0.972867i \(-0.425681\pi\)
0.231364 + 0.972867i \(0.425681\pi\)
\(882\) 0 0
\(883\) −2.41478 −0.0812637 −0.0406318 0.999174i \(-0.512937\pi\)
−0.0406318 + 0.999174i \(0.512937\pi\)
\(884\) 0 0
\(885\) −5.77185 −0.194019
\(886\) 0 0
\(887\) 19.9979 0.671462 0.335731 0.941958i \(-0.391017\pi\)
0.335731 + 0.941958i \(0.391017\pi\)
\(888\) 0 0
\(889\) −19.1439 −0.642067
\(890\) 0 0
\(891\) −21.9392 −0.734990
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −10.4010 −0.347668
\(896\) 0 0
\(897\) 8.41636 0.281014
\(898\) 0 0
\(899\) −0.637597 −0.0212650
\(900\) 0 0
\(901\) 3.78544 0.126111
\(902\) 0 0
\(903\) −1.85249 −0.0616469
\(904\) 0 0
\(905\) 11.3966 0.378837
\(906\) 0 0
\(907\) −33.9885 −1.12857 −0.564285 0.825580i \(-0.690848\pi\)
−0.564285 + 0.825580i \(0.690848\pi\)
\(908\) 0 0
\(909\) 35.9008 1.19075
\(910\) 0 0
\(911\) 32.5945 1.07990 0.539951 0.841696i \(-0.318443\pi\)
0.539951 + 0.841696i \(0.318443\pi\)
\(912\) 0 0
\(913\) 19.7003 0.651986
\(914\) 0 0
\(915\) 2.51018 0.0829840
\(916\) 0 0
\(917\) −0.531233 −0.0175429
\(918\) 0 0
\(919\) 0.337746 0.0111412 0.00557061 0.999984i \(-0.498227\pi\)
0.00557061 + 0.999984i \(0.498227\pi\)
\(920\) 0 0
\(921\) 8.85918 0.291920
\(922\) 0 0
\(923\) −8.62886 −0.284023
\(924\) 0 0
\(925\) 9.98946 0.328451
\(926\) 0 0
\(927\) 39.2200 1.28815
\(928\) 0 0
\(929\) −34.9377 −1.14627 −0.573134 0.819462i \(-0.694273\pi\)
−0.573134 + 0.819462i \(0.694273\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −14.5336 −0.475809
\(934\) 0 0
\(935\) 2.20800 0.0722092
\(936\) 0 0
\(937\) 45.2899 1.47956 0.739778 0.672851i \(-0.234931\pi\)
0.739778 + 0.672851i \(0.234931\pi\)
\(938\) 0 0
\(939\) −2.97788 −0.0971796
\(940\) 0 0
\(941\) 35.9536 1.17205 0.586026 0.810292i \(-0.300691\pi\)
0.586026 + 0.810292i \(0.300691\pi\)
\(942\) 0 0
\(943\) −67.1515 −2.18675
\(944\) 0 0
\(945\) 2.51024 0.0816582
\(946\) 0 0
\(947\) 39.0109 1.26768 0.633841 0.773463i \(-0.281477\pi\)
0.633841 + 0.773463i \(0.281477\pi\)
\(948\) 0 0
\(949\) −36.3597 −1.18029
\(950\) 0 0
\(951\) −8.17929 −0.265232
\(952\) 0 0
\(953\) 8.65817 0.280466 0.140233 0.990119i \(-0.455215\pi\)
0.140233 + 0.990119i \(0.455215\pi\)
\(954\) 0 0
\(955\) 23.5765 0.762918
\(956\) 0 0
\(957\) 1.72618 0.0557995
\(958\) 0 0
\(959\) −9.36326 −0.302356
\(960\) 0 0
\(961\) −30.6472 −0.988619
\(962\) 0 0
\(963\) −51.2542 −1.65164
\(964\) 0 0
\(965\) −14.0593 −0.452584
\(966\) 0 0
\(967\) −37.8385 −1.21680 −0.608402 0.793629i \(-0.708189\pi\)
−0.608402 + 0.793629i \(0.708189\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11.3566 −0.364449 −0.182225 0.983257i \(-0.558330\pi\)
−0.182225 + 0.983257i \(0.558330\pi\)
\(972\) 0 0
\(973\) −9.16604 −0.293850
\(974\) 0 0
\(975\) −5.30620 −0.169934
\(976\) 0 0
\(977\) −57.5899 −1.84247 −0.921233 0.389012i \(-0.872816\pi\)
−0.921233 + 0.389012i \(0.872816\pi\)
\(978\) 0 0
\(979\) 11.7717 0.376224
\(980\) 0 0
\(981\) 49.3259 1.57486
\(982\) 0 0
\(983\) −42.3774 −1.35163 −0.675814 0.737072i \(-0.736208\pi\)
−0.675814 + 0.737072i \(0.736208\pi\)
\(984\) 0 0
\(985\) 3.54089 0.112822
\(986\) 0 0
\(987\) −3.52242 −0.112120
\(988\) 0 0
\(989\) 26.7849 0.851711
\(990\) 0 0
\(991\) −30.6302 −0.973002 −0.486501 0.873680i \(-0.661727\pi\)
−0.486501 + 0.873680i \(0.661727\pi\)
\(992\) 0 0
\(993\) −12.3638 −0.392353
\(994\) 0 0
\(995\) 21.0699 0.667961
\(996\) 0 0
\(997\) 8.80188 0.278758 0.139379 0.990239i \(-0.455489\pi\)
0.139379 + 0.990239i \(0.455489\pi\)
\(998\) 0 0
\(999\) 7.13843 0.225850
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.v.1.6 8
4.3 odd 2 5776.2.a.cc.1.3 8
19.18 odd 2 2888.2.a.w.1.3 yes 8
76.75 even 2 5776.2.a.ca.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.v.1.6 8 1.1 even 1 trivial
2888.2.a.w.1.3 yes 8 19.18 odd 2
5776.2.a.ca.1.6 8 76.75 even 2
5776.2.a.cc.1.3 8 4.3 odd 2