Properties

Label 2888.2.a.v.1.5
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-6,0,-2,0,-2,0,2,0,12,0,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.10564000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 14x^{5} + 24x^{4} - 28x^{3} - 21x^{2} + 16x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.650108\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.349892 q^{3} -2.14090 q^{5} -3.07223 q^{7} -2.87758 q^{9} +3.54580 q^{11} +4.22215 q^{13} +0.749083 q^{15} +5.61700 q^{17} +1.07495 q^{21} -2.09445 q^{23} -0.416553 q^{25} +2.05652 q^{27} -6.63658 q^{29} +10.2277 q^{31} -1.24065 q^{33} +6.57734 q^{35} +1.96752 q^{37} -1.47730 q^{39} -4.26670 q^{41} -8.29763 q^{43} +6.16060 q^{45} +7.96820 q^{47} +2.43860 q^{49} -1.96534 q^{51} -1.96367 q^{53} -7.59119 q^{55} -2.80294 q^{59} -8.86636 q^{61} +8.84058 q^{63} -9.03920 q^{65} -3.36917 q^{67} +0.732832 q^{69} -10.5187 q^{71} +12.1063 q^{73} +0.145749 q^{75} -10.8935 q^{77} -15.0842 q^{79} +7.91317 q^{81} +10.3147 q^{83} -12.0254 q^{85} +2.32209 q^{87} +6.56315 q^{89} -12.9714 q^{91} -3.57859 q^{93} -15.4547 q^{97} -10.2033 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} - 2 q^{5} - 2 q^{7} + 2 q^{9} + 12 q^{11} - 6 q^{13} - 10 q^{17} + 4 q^{21} - 12 q^{23} + 2 q^{25} - 12 q^{27} - 18 q^{29} - 14 q^{31} - 40 q^{33} + 18 q^{35} - 16 q^{37} + 28 q^{39} - 12 q^{41}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.349892 −0.202010 −0.101005 0.994886i \(-0.532206\pi\)
−0.101005 + 0.994886i \(0.532206\pi\)
\(4\) 0 0
\(5\) −2.14090 −0.957439 −0.478719 0.877968i \(-0.658899\pi\)
−0.478719 + 0.877968i \(0.658899\pi\)
\(6\) 0 0
\(7\) −3.07223 −1.16119 −0.580597 0.814191i \(-0.697181\pi\)
−0.580597 + 0.814191i \(0.697181\pi\)
\(8\) 0 0
\(9\) −2.87758 −0.959192
\(10\) 0 0
\(11\) 3.54580 1.06910 0.534549 0.845138i \(-0.320482\pi\)
0.534549 + 0.845138i \(0.320482\pi\)
\(12\) 0 0
\(13\) 4.22215 1.17101 0.585507 0.810667i \(-0.300895\pi\)
0.585507 + 0.810667i \(0.300895\pi\)
\(14\) 0 0
\(15\) 0.749083 0.193412
\(16\) 0 0
\(17\) 5.61700 1.36232 0.681161 0.732133i \(-0.261475\pi\)
0.681161 + 0.732133i \(0.261475\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 1.07495 0.234573
\(22\) 0 0
\(23\) −2.09445 −0.436724 −0.218362 0.975868i \(-0.570071\pi\)
−0.218362 + 0.975868i \(0.570071\pi\)
\(24\) 0 0
\(25\) −0.416553 −0.0833106
\(26\) 0 0
\(27\) 2.05652 0.395777
\(28\) 0 0
\(29\) −6.63658 −1.23238 −0.616191 0.787597i \(-0.711325\pi\)
−0.616191 + 0.787597i \(0.711325\pi\)
\(30\) 0 0
\(31\) 10.2277 1.83695 0.918474 0.395482i \(-0.129422\pi\)
0.918474 + 0.395482i \(0.129422\pi\)
\(32\) 0 0
\(33\) −1.24065 −0.215969
\(34\) 0 0
\(35\) 6.57734 1.11177
\(36\) 0 0
\(37\) 1.96752 0.323458 0.161729 0.986835i \(-0.448293\pi\)
0.161729 + 0.986835i \(0.448293\pi\)
\(38\) 0 0
\(39\) −1.47730 −0.236557
\(40\) 0 0
\(41\) −4.26670 −0.666346 −0.333173 0.942866i \(-0.608119\pi\)
−0.333173 + 0.942866i \(0.608119\pi\)
\(42\) 0 0
\(43\) −8.29763 −1.26538 −0.632688 0.774407i \(-0.718049\pi\)
−0.632688 + 0.774407i \(0.718049\pi\)
\(44\) 0 0
\(45\) 6.16060 0.918368
\(46\) 0 0
\(47\) 7.96820 1.16228 0.581141 0.813803i \(-0.302607\pi\)
0.581141 + 0.813803i \(0.302607\pi\)
\(48\) 0 0
\(49\) 2.43860 0.348372
\(50\) 0 0
\(51\) −1.96534 −0.275203
\(52\) 0 0
\(53\) −1.96367 −0.269730 −0.134865 0.990864i \(-0.543060\pi\)
−0.134865 + 0.990864i \(0.543060\pi\)
\(54\) 0 0
\(55\) −7.59119 −1.02360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.80294 −0.364912 −0.182456 0.983214i \(-0.558405\pi\)
−0.182456 + 0.983214i \(0.558405\pi\)
\(60\) 0 0
\(61\) −8.86636 −1.13522 −0.567611 0.823297i \(-0.692132\pi\)
−0.567611 + 0.823297i \(0.692132\pi\)
\(62\) 0 0
\(63\) 8.84058 1.11381
\(64\) 0 0
\(65\) −9.03920 −1.12117
\(66\) 0 0
\(67\) −3.36917 −0.411609 −0.205805 0.978593i \(-0.565981\pi\)
−0.205805 + 0.978593i \(0.565981\pi\)
\(68\) 0 0
\(69\) 0.732832 0.0882227
\(70\) 0 0
\(71\) −10.5187 −1.24834 −0.624171 0.781288i \(-0.714563\pi\)
−0.624171 + 0.781288i \(0.714563\pi\)
\(72\) 0 0
\(73\) 12.1063 1.41694 0.708470 0.705741i \(-0.249386\pi\)
0.708470 + 0.705741i \(0.249386\pi\)
\(74\) 0 0
\(75\) 0.145749 0.0168296
\(76\) 0 0
\(77\) −10.8935 −1.24143
\(78\) 0 0
\(79\) −15.0842 −1.69711 −0.848555 0.529107i \(-0.822527\pi\)
−0.848555 + 0.529107i \(0.822527\pi\)
\(80\) 0 0
\(81\) 7.91317 0.879241
\(82\) 0 0
\(83\) 10.3147 1.13218 0.566092 0.824342i \(-0.308455\pi\)
0.566092 + 0.824342i \(0.308455\pi\)
\(84\) 0 0
\(85\) −12.0254 −1.30434
\(86\) 0 0
\(87\) 2.32209 0.248954
\(88\) 0 0
\(89\) 6.56315 0.695692 0.347846 0.937552i \(-0.386913\pi\)
0.347846 + 0.937552i \(0.386913\pi\)
\(90\) 0 0
\(91\) −12.9714 −1.35978
\(92\) 0 0
\(93\) −3.57859 −0.371082
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −15.4547 −1.56919 −0.784593 0.620012i \(-0.787128\pi\)
−0.784593 + 0.620012i \(0.787128\pi\)
\(98\) 0 0
\(99\) −10.2033 −1.02547
\(100\) 0 0
\(101\) −8.11824 −0.807795 −0.403898 0.914804i \(-0.632345\pi\)
−0.403898 + 0.914804i \(0.632345\pi\)
\(102\) 0 0
\(103\) −8.19991 −0.807961 −0.403980 0.914768i \(-0.632374\pi\)
−0.403980 + 0.914768i \(0.632374\pi\)
\(104\) 0 0
\(105\) −2.30136 −0.224589
\(106\) 0 0
\(107\) −15.0156 −1.45161 −0.725807 0.687898i \(-0.758534\pi\)
−0.725807 + 0.687898i \(0.758534\pi\)
\(108\) 0 0
\(109\) −9.57657 −0.917269 −0.458634 0.888625i \(-0.651661\pi\)
−0.458634 + 0.888625i \(0.651661\pi\)
\(110\) 0 0
\(111\) −0.688419 −0.0653418
\(112\) 0 0
\(113\) −8.24448 −0.775576 −0.387788 0.921749i \(-0.626761\pi\)
−0.387788 + 0.921749i \(0.626761\pi\)
\(114\) 0 0
\(115\) 4.48401 0.418136
\(116\) 0 0
\(117\) −12.1496 −1.12323
\(118\) 0 0
\(119\) −17.2567 −1.58192
\(120\) 0 0
\(121\) 1.57267 0.142970
\(122\) 0 0
\(123\) 1.49288 0.134609
\(124\) 0 0
\(125\) 11.5963 1.03720
\(126\) 0 0
\(127\) −8.03977 −0.713414 −0.356707 0.934216i \(-0.616101\pi\)
−0.356707 + 0.934216i \(0.616101\pi\)
\(128\) 0 0
\(129\) 2.90327 0.255619
\(130\) 0 0
\(131\) 18.5660 1.62212 0.811061 0.584962i \(-0.198891\pi\)
0.811061 + 0.584962i \(0.198891\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.40279 −0.378932
\(136\) 0 0
\(137\) −21.2462 −1.81518 −0.907591 0.419856i \(-0.862081\pi\)
−0.907591 + 0.419856i \(0.862081\pi\)
\(138\) 0 0
\(139\) 13.9946 1.18701 0.593504 0.804831i \(-0.297744\pi\)
0.593504 + 0.804831i \(0.297744\pi\)
\(140\) 0 0
\(141\) −2.78801 −0.234793
\(142\) 0 0
\(143\) 14.9709 1.25193
\(144\) 0 0
\(145\) 14.2083 1.17993
\(146\) 0 0
\(147\) −0.853248 −0.0703747
\(148\) 0 0
\(149\) −23.4095 −1.91778 −0.958891 0.283775i \(-0.908413\pi\)
−0.958891 + 0.283775i \(0.908413\pi\)
\(150\) 0 0
\(151\) 10.8277 0.881143 0.440571 0.897718i \(-0.354776\pi\)
0.440571 + 0.897718i \(0.354776\pi\)
\(152\) 0 0
\(153\) −16.1633 −1.30673
\(154\) 0 0
\(155\) −21.8965 −1.75877
\(156\) 0 0
\(157\) −6.54371 −0.522245 −0.261122 0.965306i \(-0.584093\pi\)
−0.261122 + 0.965306i \(0.584093\pi\)
\(158\) 0 0
\(159\) 0.687071 0.0544883
\(160\) 0 0
\(161\) 6.43465 0.507121
\(162\) 0 0
\(163\) 16.4252 1.28652 0.643259 0.765649i \(-0.277582\pi\)
0.643259 + 0.765649i \(0.277582\pi\)
\(164\) 0 0
\(165\) 2.65610 0.206777
\(166\) 0 0
\(167\) 9.09617 0.703883 0.351941 0.936022i \(-0.385522\pi\)
0.351941 + 0.936022i \(0.385522\pi\)
\(168\) 0 0
\(169\) 4.82657 0.371275
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.52045 −0.647798 −0.323899 0.946092i \(-0.604994\pi\)
−0.323899 + 0.946092i \(0.604994\pi\)
\(174\) 0 0
\(175\) 1.27975 0.0967398
\(176\) 0 0
\(177\) 0.980728 0.0737160
\(178\) 0 0
\(179\) 15.4193 1.15249 0.576245 0.817277i \(-0.304517\pi\)
0.576245 + 0.817277i \(0.304517\pi\)
\(180\) 0 0
\(181\) −20.0713 −1.49189 −0.745945 0.666007i \(-0.768002\pi\)
−0.745945 + 0.666007i \(0.768002\pi\)
\(182\) 0 0
\(183\) 3.10227 0.229326
\(184\) 0 0
\(185\) −4.21226 −0.309691
\(186\) 0 0
\(187\) 19.9167 1.45646
\(188\) 0 0
\(189\) −6.31809 −0.459574
\(190\) 0 0
\(191\) −9.19053 −0.665003 −0.332502 0.943103i \(-0.607893\pi\)
−0.332502 + 0.943103i \(0.607893\pi\)
\(192\) 0 0
\(193\) 16.3507 1.17695 0.588476 0.808515i \(-0.299728\pi\)
0.588476 + 0.808515i \(0.299728\pi\)
\(194\) 0 0
\(195\) 3.16274 0.226489
\(196\) 0 0
\(197\) 3.55555 0.253322 0.126661 0.991946i \(-0.459574\pi\)
0.126661 + 0.991946i \(0.459574\pi\)
\(198\) 0 0
\(199\) −4.82595 −0.342103 −0.171051 0.985262i \(-0.554716\pi\)
−0.171051 + 0.985262i \(0.554716\pi\)
\(200\) 0 0
\(201\) 1.17884 0.0831493
\(202\) 0 0
\(203\) 20.3891 1.43104
\(204\) 0 0
\(205\) 9.13457 0.637986
\(206\) 0 0
\(207\) 6.02695 0.418902
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 22.8868 1.57559 0.787796 0.615936i \(-0.211222\pi\)
0.787796 + 0.615936i \(0.211222\pi\)
\(212\) 0 0
\(213\) 3.68041 0.252178
\(214\) 0 0
\(215\) 17.7644 1.21152
\(216\) 0 0
\(217\) −31.4218 −2.13305
\(218\) 0 0
\(219\) −4.23591 −0.286236
\(220\) 0 0
\(221\) 23.7158 1.59530
\(222\) 0 0
\(223\) −10.6874 −0.715680 −0.357840 0.933783i \(-0.616487\pi\)
−0.357840 + 0.933783i \(0.616487\pi\)
\(224\) 0 0
\(225\) 1.19866 0.0799109
\(226\) 0 0
\(227\) −4.16104 −0.276178 −0.138089 0.990420i \(-0.544096\pi\)
−0.138089 + 0.990420i \(0.544096\pi\)
\(228\) 0 0
\(229\) −4.12875 −0.272836 −0.136418 0.990651i \(-0.543559\pi\)
−0.136418 + 0.990651i \(0.543559\pi\)
\(230\) 0 0
\(231\) 3.81155 0.250782
\(232\) 0 0
\(233\) −14.0742 −0.922034 −0.461017 0.887391i \(-0.652515\pi\)
−0.461017 + 0.887391i \(0.652515\pi\)
\(234\) 0 0
\(235\) −17.0591 −1.11281
\(236\) 0 0
\(237\) 5.27785 0.342833
\(238\) 0 0
\(239\) 6.34933 0.410704 0.205352 0.978688i \(-0.434166\pi\)
0.205352 + 0.978688i \(0.434166\pi\)
\(240\) 0 0
\(241\) 10.2222 0.658468 0.329234 0.944248i \(-0.393209\pi\)
0.329234 + 0.944248i \(0.393209\pi\)
\(242\) 0 0
\(243\) −8.93830 −0.573392
\(244\) 0 0
\(245\) −5.22080 −0.333545
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −3.60902 −0.228712
\(250\) 0 0
\(251\) −1.14573 −0.0723177 −0.0361588 0.999346i \(-0.511512\pi\)
−0.0361588 + 0.999346i \(0.511512\pi\)
\(252\) 0 0
\(253\) −7.42651 −0.466901
\(254\) 0 0
\(255\) 4.20760 0.263490
\(256\) 0 0
\(257\) −6.37094 −0.397409 −0.198704 0.980059i \(-0.563673\pi\)
−0.198704 + 0.980059i \(0.563673\pi\)
\(258\) 0 0
\(259\) −6.04467 −0.375598
\(260\) 0 0
\(261\) 19.0973 1.18209
\(262\) 0 0
\(263\) 10.9941 0.677924 0.338962 0.940800i \(-0.389924\pi\)
0.338962 + 0.940800i \(0.389924\pi\)
\(264\) 0 0
\(265\) 4.20401 0.258250
\(266\) 0 0
\(267\) −2.29639 −0.140537
\(268\) 0 0
\(269\) 8.42908 0.513930 0.256965 0.966421i \(-0.417277\pi\)
0.256965 + 0.966421i \(0.417277\pi\)
\(270\) 0 0
\(271\) −17.4831 −1.06202 −0.531010 0.847365i \(-0.678187\pi\)
−0.531010 + 0.847365i \(0.678187\pi\)
\(272\) 0 0
\(273\) 4.53860 0.274688
\(274\) 0 0
\(275\) −1.47701 −0.0890672
\(276\) 0 0
\(277\) −9.52556 −0.572336 −0.286168 0.958180i \(-0.592381\pi\)
−0.286168 + 0.958180i \(0.592381\pi\)
\(278\) 0 0
\(279\) −29.4310 −1.76199
\(280\) 0 0
\(281\) −3.45522 −0.206121 −0.103061 0.994675i \(-0.532864\pi\)
−0.103061 + 0.994675i \(0.532864\pi\)
\(282\) 0 0
\(283\) −16.2143 −0.963840 −0.481920 0.876215i \(-0.660060\pi\)
−0.481920 + 0.876215i \(0.660060\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.1083 0.773757
\(288\) 0 0
\(289\) 14.5507 0.855924
\(290\) 0 0
\(291\) 5.40747 0.316991
\(292\) 0 0
\(293\) −11.1181 −0.649528 −0.324764 0.945795i \(-0.605285\pi\)
−0.324764 + 0.945795i \(0.605285\pi\)
\(294\) 0 0
\(295\) 6.00082 0.349381
\(296\) 0 0
\(297\) 7.29199 0.423124
\(298\) 0 0
\(299\) −8.84310 −0.511410
\(300\) 0 0
\(301\) 25.4922 1.46935
\(302\) 0 0
\(303\) 2.84051 0.163183
\(304\) 0 0
\(305\) 18.9820 1.08691
\(306\) 0 0
\(307\) −20.3693 −1.16254 −0.581270 0.813711i \(-0.697444\pi\)
−0.581270 + 0.813711i \(0.697444\pi\)
\(308\) 0 0
\(309\) 2.86908 0.163216
\(310\) 0 0
\(311\) −9.03873 −0.512540 −0.256270 0.966605i \(-0.582494\pi\)
−0.256270 + 0.966605i \(0.582494\pi\)
\(312\) 0 0
\(313\) −32.2112 −1.82068 −0.910342 0.413856i \(-0.864182\pi\)
−0.910342 + 0.413856i \(0.864182\pi\)
\(314\) 0 0
\(315\) −18.9268 −1.06640
\(316\) 0 0
\(317\) −4.61826 −0.259387 −0.129694 0.991554i \(-0.541399\pi\)
−0.129694 + 0.991554i \(0.541399\pi\)
\(318\) 0 0
\(319\) −23.5320 −1.31754
\(320\) 0 0
\(321\) 5.25384 0.293241
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.75875 −0.0975580
\(326\) 0 0
\(327\) 3.35076 0.185298
\(328\) 0 0
\(329\) −24.4802 −1.34963
\(330\) 0 0
\(331\) 33.3148 1.83115 0.915574 0.402150i \(-0.131737\pi\)
0.915574 + 0.402150i \(0.131737\pi\)
\(332\) 0 0
\(333\) −5.66168 −0.310258
\(334\) 0 0
\(335\) 7.21305 0.394091
\(336\) 0 0
\(337\) 3.25551 0.177339 0.0886695 0.996061i \(-0.471738\pi\)
0.0886695 + 0.996061i \(0.471738\pi\)
\(338\) 0 0
\(339\) 2.88468 0.156674
\(340\) 0 0
\(341\) 36.2653 1.96388
\(342\) 0 0
\(343\) 14.0137 0.756667
\(344\) 0 0
\(345\) −1.56892 −0.0844678
\(346\) 0 0
\(347\) 32.4310 1.74099 0.870494 0.492180i \(-0.163800\pi\)
0.870494 + 0.492180i \(0.163800\pi\)
\(348\) 0 0
\(349\) 3.00973 0.161107 0.0805535 0.996750i \(-0.474331\pi\)
0.0805535 + 0.996750i \(0.474331\pi\)
\(350\) 0 0
\(351\) 8.68292 0.463460
\(352\) 0 0
\(353\) −13.5373 −0.720518 −0.360259 0.932852i \(-0.617312\pi\)
−0.360259 + 0.932852i \(0.617312\pi\)
\(354\) 0 0
\(355\) 22.5195 1.19521
\(356\) 0 0
\(357\) 6.03799 0.319564
\(358\) 0 0
\(359\) 8.20813 0.433209 0.216604 0.976259i \(-0.430502\pi\)
0.216604 + 0.976259i \(0.430502\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −0.550265 −0.0288814
\(364\) 0 0
\(365\) −25.9184 −1.35663
\(366\) 0 0
\(367\) −18.3151 −0.956040 −0.478020 0.878349i \(-0.658645\pi\)
−0.478020 + 0.878349i \(0.658645\pi\)
\(368\) 0 0
\(369\) 12.2777 0.639154
\(370\) 0 0
\(371\) 6.03284 0.313209
\(372\) 0 0
\(373\) −29.9920 −1.55293 −0.776464 0.630162i \(-0.782989\pi\)
−0.776464 + 0.630162i \(0.782989\pi\)
\(374\) 0 0
\(375\) −4.05745 −0.209526
\(376\) 0 0
\(377\) −28.0207 −1.44314
\(378\) 0 0
\(379\) −30.6549 −1.57464 −0.787318 0.616547i \(-0.788531\pi\)
−0.787318 + 0.616547i \(0.788531\pi\)
\(380\) 0 0
\(381\) 2.81305 0.144117
\(382\) 0 0
\(383\) 0.451735 0.0230826 0.0115413 0.999933i \(-0.496326\pi\)
0.0115413 + 0.999933i \(0.496326\pi\)
\(384\) 0 0
\(385\) 23.3219 1.18859
\(386\) 0 0
\(387\) 23.8771 1.21374
\(388\) 0 0
\(389\) −5.75718 −0.291901 −0.145950 0.989292i \(-0.546624\pi\)
−0.145950 + 0.989292i \(0.546624\pi\)
\(390\) 0 0
\(391\) −11.7646 −0.594959
\(392\) 0 0
\(393\) −6.49610 −0.327685
\(394\) 0 0
\(395\) 32.2938 1.62488
\(396\) 0 0
\(397\) 3.92068 0.196773 0.0983866 0.995148i \(-0.468632\pi\)
0.0983866 + 0.995148i \(0.468632\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.39669 −0.469248 −0.234624 0.972086i \(-0.575386\pi\)
−0.234624 + 0.972086i \(0.575386\pi\)
\(402\) 0 0
\(403\) 43.1829 2.15109
\(404\) 0 0
\(405\) −16.9413 −0.841820
\(406\) 0 0
\(407\) 6.97642 0.345808
\(408\) 0 0
\(409\) 3.54816 0.175445 0.0877226 0.996145i \(-0.472041\pi\)
0.0877226 + 0.996145i \(0.472041\pi\)
\(410\) 0 0
\(411\) 7.43386 0.366685
\(412\) 0 0
\(413\) 8.61129 0.423734
\(414\) 0 0
\(415\) −22.0827 −1.08400
\(416\) 0 0
\(417\) −4.89661 −0.239788
\(418\) 0 0
\(419\) 18.3274 0.895352 0.447676 0.894196i \(-0.352252\pi\)
0.447676 + 0.894196i \(0.352252\pi\)
\(420\) 0 0
\(421\) 20.4648 0.997393 0.498696 0.866777i \(-0.333812\pi\)
0.498696 + 0.866777i \(0.333812\pi\)
\(422\) 0 0
\(423\) −22.9291 −1.11485
\(424\) 0 0
\(425\) −2.33978 −0.113496
\(426\) 0 0
\(427\) 27.2395 1.31821
\(428\) 0 0
\(429\) −5.23819 −0.252902
\(430\) 0 0
\(431\) −31.9095 −1.53703 −0.768514 0.639833i \(-0.779004\pi\)
−0.768514 + 0.639833i \(0.779004\pi\)
\(432\) 0 0
\(433\) −15.9015 −0.764179 −0.382090 0.924125i \(-0.624795\pi\)
−0.382090 + 0.924125i \(0.624795\pi\)
\(434\) 0 0
\(435\) −4.97135 −0.238358
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −31.0847 −1.48359 −0.741796 0.670626i \(-0.766026\pi\)
−0.741796 + 0.670626i \(0.766026\pi\)
\(440\) 0 0
\(441\) −7.01727 −0.334156
\(442\) 0 0
\(443\) 9.13099 0.433826 0.216913 0.976191i \(-0.430401\pi\)
0.216913 + 0.976191i \(0.430401\pi\)
\(444\) 0 0
\(445\) −14.0510 −0.666083
\(446\) 0 0
\(447\) 8.19080 0.387411
\(448\) 0 0
\(449\) −13.5099 −0.637572 −0.318786 0.947827i \(-0.603275\pi\)
−0.318786 + 0.947827i \(0.603275\pi\)
\(450\) 0 0
\(451\) −15.1288 −0.712389
\(452\) 0 0
\(453\) −3.78851 −0.178000
\(454\) 0 0
\(455\) 27.7705 1.30190
\(456\) 0 0
\(457\) −3.54487 −0.165822 −0.0829109 0.996557i \(-0.526422\pi\)
−0.0829109 + 0.996557i \(0.526422\pi\)
\(458\) 0 0
\(459\) 11.5515 0.539176
\(460\) 0 0
\(461\) 24.9909 1.16394 0.581970 0.813210i \(-0.302282\pi\)
0.581970 + 0.813210i \(0.302282\pi\)
\(462\) 0 0
\(463\) −30.5328 −1.41898 −0.709491 0.704715i \(-0.751075\pi\)
−0.709491 + 0.704715i \(0.751075\pi\)
\(464\) 0 0
\(465\) 7.66139 0.355288
\(466\) 0 0
\(467\) 17.6026 0.814553 0.407277 0.913305i \(-0.366478\pi\)
0.407277 + 0.913305i \(0.366478\pi\)
\(468\) 0 0
\(469\) 10.3509 0.477959
\(470\) 0 0
\(471\) 2.28959 0.105499
\(472\) 0 0
\(473\) −29.4217 −1.35281
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5.65060 0.258723
\(478\) 0 0
\(479\) 11.9555 0.546263 0.273131 0.961977i \(-0.411941\pi\)
0.273131 + 0.961977i \(0.411941\pi\)
\(480\) 0 0
\(481\) 8.30716 0.378774
\(482\) 0 0
\(483\) −2.25143 −0.102444
\(484\) 0 0
\(485\) 33.0869 1.50240
\(486\) 0 0
\(487\) −28.7030 −1.30066 −0.650329 0.759653i \(-0.725369\pi\)
−0.650329 + 0.759653i \(0.725369\pi\)
\(488\) 0 0
\(489\) −5.74703 −0.259890
\(490\) 0 0
\(491\) −4.75714 −0.214687 −0.107343 0.994222i \(-0.534234\pi\)
−0.107343 + 0.994222i \(0.534234\pi\)
\(492\) 0 0
\(493\) −37.2777 −1.67890
\(494\) 0 0
\(495\) 21.8442 0.981825
\(496\) 0 0
\(497\) 32.3159 1.44957
\(498\) 0 0
\(499\) 23.5224 1.05301 0.526504 0.850172i \(-0.323502\pi\)
0.526504 + 0.850172i \(0.323502\pi\)
\(500\) 0 0
\(501\) −3.18268 −0.142192
\(502\) 0 0
\(503\) 33.2244 1.48140 0.740701 0.671834i \(-0.234493\pi\)
0.740701 + 0.671834i \(0.234493\pi\)
\(504\) 0 0
\(505\) 17.3803 0.773414
\(506\) 0 0
\(507\) −1.68878 −0.0750012
\(508\) 0 0
\(509\) −0.925365 −0.0410161 −0.0205080 0.999790i \(-0.506528\pi\)
−0.0205080 + 0.999790i \(0.506528\pi\)
\(510\) 0 0
\(511\) −37.1935 −1.64534
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.5552 0.773573
\(516\) 0 0
\(517\) 28.2536 1.24259
\(518\) 0 0
\(519\) 2.98124 0.130862
\(520\) 0 0
\(521\) 41.6324 1.82395 0.911975 0.410246i \(-0.134557\pi\)
0.911975 + 0.410246i \(0.134557\pi\)
\(522\) 0 0
\(523\) 1.13390 0.0495819 0.0247909 0.999693i \(-0.492108\pi\)
0.0247909 + 0.999693i \(0.492108\pi\)
\(524\) 0 0
\(525\) −0.447773 −0.0195424
\(526\) 0 0
\(527\) 57.4490 2.50252
\(528\) 0 0
\(529\) −18.6133 −0.809272
\(530\) 0 0
\(531\) 8.06569 0.350021
\(532\) 0 0
\(533\) −18.0146 −0.780301
\(534\) 0 0
\(535\) 32.1469 1.38983
\(536\) 0 0
\(537\) −5.39508 −0.232815
\(538\) 0 0
\(539\) 8.64679 0.372444
\(540\) 0 0
\(541\) −1.53659 −0.0660633 −0.0330316 0.999454i \(-0.510516\pi\)
−0.0330316 + 0.999454i \(0.510516\pi\)
\(542\) 0 0
\(543\) 7.02280 0.301377
\(544\) 0 0
\(545\) 20.5025 0.878229
\(546\) 0 0
\(547\) 12.0804 0.516522 0.258261 0.966075i \(-0.416851\pi\)
0.258261 + 0.966075i \(0.416851\pi\)
\(548\) 0 0
\(549\) 25.5136 1.08890
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 46.3423 1.97067
\(554\) 0 0
\(555\) 1.47383 0.0625608
\(556\) 0 0
\(557\) −5.38581 −0.228204 −0.114102 0.993469i \(-0.536399\pi\)
−0.114102 + 0.993469i \(0.536399\pi\)
\(558\) 0 0
\(559\) −35.0339 −1.48177
\(560\) 0 0
\(561\) −6.96871 −0.294219
\(562\) 0 0
\(563\) −25.1177 −1.05858 −0.529292 0.848440i \(-0.677542\pi\)
−0.529292 + 0.848440i \(0.677542\pi\)
\(564\) 0 0
\(565\) 17.6506 0.742566
\(566\) 0 0
\(567\) −24.3111 −1.02097
\(568\) 0 0
\(569\) −17.7370 −0.743574 −0.371787 0.928318i \(-0.621255\pi\)
−0.371787 + 0.928318i \(0.621255\pi\)
\(570\) 0 0
\(571\) −23.2223 −0.971823 −0.485911 0.874008i \(-0.661512\pi\)
−0.485911 + 0.874008i \(0.661512\pi\)
\(572\) 0 0
\(573\) 3.21569 0.134337
\(574\) 0 0
\(575\) 0.872452 0.0363837
\(576\) 0 0
\(577\) 4.97051 0.206925 0.103463 0.994633i \(-0.467008\pi\)
0.103463 + 0.994633i \(0.467008\pi\)
\(578\) 0 0
\(579\) −5.72099 −0.237756
\(580\) 0 0
\(581\) −31.6891 −1.31468
\(582\) 0 0
\(583\) −6.96277 −0.288368
\(584\) 0 0
\(585\) 26.0110 1.07542
\(586\) 0 0
\(587\) 31.7934 1.31225 0.656127 0.754650i \(-0.272194\pi\)
0.656127 + 0.754650i \(0.272194\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −1.24406 −0.0511737
\(592\) 0 0
\(593\) 13.9335 0.572181 0.286090 0.958203i \(-0.407644\pi\)
0.286090 + 0.958203i \(0.407644\pi\)
\(594\) 0 0
\(595\) 36.9449 1.51459
\(596\) 0 0
\(597\) 1.68856 0.0691082
\(598\) 0 0
\(599\) 16.8899 0.690102 0.345051 0.938584i \(-0.387862\pi\)
0.345051 + 0.938584i \(0.387862\pi\)
\(600\) 0 0
\(601\) −42.8150 −1.74646 −0.873229 0.487309i \(-0.837978\pi\)
−0.873229 + 0.487309i \(0.837978\pi\)
\(602\) 0 0
\(603\) 9.69504 0.394812
\(604\) 0 0
\(605\) −3.36693 −0.136885
\(606\) 0 0
\(607\) −24.9220 −1.01155 −0.505777 0.862664i \(-0.668794\pi\)
−0.505777 + 0.862664i \(0.668794\pi\)
\(608\) 0 0
\(609\) −7.13399 −0.289084
\(610\) 0 0
\(611\) 33.6430 1.36105
\(612\) 0 0
\(613\) 26.9437 1.08824 0.544122 0.839006i \(-0.316863\pi\)
0.544122 + 0.839006i \(0.316863\pi\)
\(614\) 0 0
\(615\) −3.19611 −0.128880
\(616\) 0 0
\(617\) 0.292467 0.0117743 0.00588713 0.999983i \(-0.498126\pi\)
0.00588713 + 0.999983i \(0.498126\pi\)
\(618\) 0 0
\(619\) −20.9181 −0.840768 −0.420384 0.907346i \(-0.638105\pi\)
−0.420384 + 0.907346i \(0.638105\pi\)
\(620\) 0 0
\(621\) −4.30728 −0.172845
\(622\) 0 0
\(623\) −20.1635 −0.807834
\(624\) 0 0
\(625\) −22.7437 −0.909749
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.0516 0.440654
\(630\) 0 0
\(631\) −25.7263 −1.02415 −0.512073 0.858942i \(-0.671122\pi\)
−0.512073 + 0.858942i \(0.671122\pi\)
\(632\) 0 0
\(633\) −8.00790 −0.318286
\(634\) 0 0
\(635\) 17.2123 0.683050
\(636\) 0 0
\(637\) 10.2962 0.407949
\(638\) 0 0
\(639\) 30.2684 1.19740
\(640\) 0 0
\(641\) 47.4055 1.87240 0.936202 0.351462i \(-0.114316\pi\)
0.936202 + 0.351462i \(0.114316\pi\)
\(642\) 0 0
\(643\) −14.1097 −0.556434 −0.278217 0.960518i \(-0.589743\pi\)
−0.278217 + 0.960518i \(0.589743\pi\)
\(644\) 0 0
\(645\) −6.21561 −0.244740
\(646\) 0 0
\(647\) 19.8064 0.778670 0.389335 0.921096i \(-0.372705\pi\)
0.389335 + 0.921096i \(0.372705\pi\)
\(648\) 0 0
\(649\) −9.93867 −0.390127
\(650\) 0 0
\(651\) 10.9942 0.430898
\(652\) 0 0
\(653\) −11.5621 −0.452459 −0.226229 0.974074i \(-0.572640\pi\)
−0.226229 + 0.974074i \(0.572640\pi\)
\(654\) 0 0
\(655\) −39.7480 −1.55308
\(656\) 0 0
\(657\) −34.8369 −1.35912
\(658\) 0 0
\(659\) −35.0211 −1.36423 −0.682114 0.731246i \(-0.738939\pi\)
−0.682114 + 0.731246i \(0.738939\pi\)
\(660\) 0 0
\(661\) 7.97145 0.310053 0.155027 0.987910i \(-0.450454\pi\)
0.155027 + 0.987910i \(0.450454\pi\)
\(662\) 0 0
\(663\) −8.29798 −0.322267
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 13.9000 0.538211
\(668\) 0 0
\(669\) 3.73943 0.144575
\(670\) 0 0
\(671\) −31.4383 −1.21366
\(672\) 0 0
\(673\) −22.2567 −0.857933 −0.428966 0.903320i \(-0.641122\pi\)
−0.428966 + 0.903320i \(0.641122\pi\)
\(674\) 0 0
\(675\) −0.856648 −0.0329724
\(676\) 0 0
\(677\) 28.5944 1.09897 0.549485 0.835503i \(-0.314824\pi\)
0.549485 + 0.835503i \(0.314824\pi\)
\(678\) 0 0
\(679\) 47.4804 1.82213
\(680\) 0 0
\(681\) 1.45591 0.0557907
\(682\) 0 0
\(683\) 23.4345 0.896695 0.448348 0.893859i \(-0.352013\pi\)
0.448348 + 0.893859i \(0.352013\pi\)
\(684\) 0 0
\(685\) 45.4859 1.73793
\(686\) 0 0
\(687\) 1.44462 0.0551155
\(688\) 0 0
\(689\) −8.29090 −0.315858
\(690\) 0 0
\(691\) −2.94419 −0.112002 −0.0560012 0.998431i \(-0.517835\pi\)
−0.0560012 + 0.998431i \(0.517835\pi\)
\(692\) 0 0
\(693\) 31.3469 1.19077
\(694\) 0 0
\(695\) −29.9611 −1.13649
\(696\) 0 0
\(697\) −23.9660 −0.907779
\(698\) 0 0
\(699\) 4.92446 0.186260
\(700\) 0 0
\(701\) 23.9790 0.905673 0.452837 0.891594i \(-0.350412\pi\)
0.452837 + 0.891594i \(0.350412\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 5.96884 0.224800
\(706\) 0 0
\(707\) 24.9411 0.938007
\(708\) 0 0
\(709\) 26.6834 1.00212 0.501059 0.865413i \(-0.332944\pi\)
0.501059 + 0.865413i \(0.332944\pi\)
\(710\) 0 0
\(711\) 43.4061 1.62785
\(712\) 0 0
\(713\) −21.4214 −0.802239
\(714\) 0 0
\(715\) −32.0512 −1.19865
\(716\) 0 0
\(717\) −2.22158 −0.0829664
\(718\) 0 0
\(719\) 6.72151 0.250670 0.125335 0.992114i \(-0.459999\pi\)
0.125335 + 0.992114i \(0.459999\pi\)
\(720\) 0 0
\(721\) 25.1920 0.938199
\(722\) 0 0
\(723\) −3.57666 −0.133017
\(724\) 0 0
\(725\) 2.76449 0.102671
\(726\) 0 0
\(727\) −31.8528 −1.18136 −0.590678 0.806908i \(-0.701140\pi\)
−0.590678 + 0.806908i \(0.701140\pi\)
\(728\) 0 0
\(729\) −20.6121 −0.763410
\(730\) 0 0
\(731\) −46.6078 −1.72385
\(732\) 0 0
\(733\) 20.8542 0.770269 0.385134 0.922861i \(-0.374155\pi\)
0.385134 + 0.922861i \(0.374155\pi\)
\(734\) 0 0
\(735\) 1.82672 0.0673795
\(736\) 0 0
\(737\) −11.9464 −0.440051
\(738\) 0 0
\(739\) −0.646032 −0.0237647 −0.0118823 0.999929i \(-0.503782\pi\)
−0.0118823 + 0.999929i \(0.503782\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.65441 −0.317500 −0.158750 0.987319i \(-0.550746\pi\)
−0.158750 + 0.987319i \(0.550746\pi\)
\(744\) 0 0
\(745\) 50.1174 1.83616
\(746\) 0 0
\(747\) −29.6813 −1.08598
\(748\) 0 0
\(749\) 46.1314 1.68561
\(750\) 0 0
\(751\) 38.0353 1.38793 0.693965 0.720009i \(-0.255862\pi\)
0.693965 + 0.720009i \(0.255862\pi\)
\(752\) 0 0
\(753\) 0.400881 0.0146089
\(754\) 0 0
\(755\) −23.1809 −0.843640
\(756\) 0 0
\(757\) −9.00152 −0.327166 −0.163583 0.986530i \(-0.552305\pi\)
−0.163583 + 0.986530i \(0.552305\pi\)
\(758\) 0 0
\(759\) 2.59847 0.0943187
\(760\) 0 0
\(761\) −19.8538 −0.719699 −0.359850 0.933010i \(-0.617172\pi\)
−0.359850 + 0.933010i \(0.617172\pi\)
\(762\) 0 0
\(763\) 29.4214 1.06513
\(764\) 0 0
\(765\) 34.6041 1.25111
\(766\) 0 0
\(767\) −11.8345 −0.427318
\(768\) 0 0
\(769\) 19.6718 0.709382 0.354691 0.934984i \(-0.384586\pi\)
0.354691 + 0.934984i \(0.384586\pi\)
\(770\) 0 0
\(771\) 2.22914 0.0802806
\(772\) 0 0
\(773\) −17.5264 −0.630379 −0.315190 0.949029i \(-0.602068\pi\)
−0.315190 + 0.949029i \(0.602068\pi\)
\(774\) 0 0
\(775\) −4.26038 −0.153037
\(776\) 0 0
\(777\) 2.11498 0.0758745
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −37.2972 −1.33460
\(782\) 0 0
\(783\) −13.6482 −0.487748
\(784\) 0 0
\(785\) 14.0094 0.500018
\(786\) 0 0
\(787\) −24.0861 −0.858577 −0.429288 0.903168i \(-0.641236\pi\)
−0.429288 + 0.903168i \(0.641236\pi\)
\(788\) 0 0
\(789\) −3.84674 −0.136947
\(790\) 0 0
\(791\) 25.3290 0.900594
\(792\) 0 0
\(793\) −37.4351 −1.32936
\(794\) 0 0
\(795\) −1.47095 −0.0521692
\(796\) 0 0
\(797\) −32.7151 −1.15883 −0.579415 0.815033i \(-0.696719\pi\)
−0.579415 + 0.815033i \(0.696719\pi\)
\(798\) 0 0
\(799\) 44.7574 1.58340
\(800\) 0 0
\(801\) −18.8860 −0.667303
\(802\) 0 0
\(803\) 42.9266 1.51485
\(804\) 0 0
\(805\) −13.7759 −0.485538
\(806\) 0 0
\(807\) −2.94927 −0.103819
\(808\) 0 0
\(809\) −11.4405 −0.402226 −0.201113 0.979568i \(-0.564456\pi\)
−0.201113 + 0.979568i \(0.564456\pi\)
\(810\) 0 0
\(811\) 30.3777 1.06671 0.533353 0.845893i \(-0.320932\pi\)
0.533353 + 0.845893i \(0.320932\pi\)
\(812\) 0 0
\(813\) 6.11718 0.214539
\(814\) 0 0
\(815\) −35.1646 −1.23176
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 37.3263 1.30429
\(820\) 0 0
\(821\) 53.2688 1.85910 0.929548 0.368702i \(-0.120198\pi\)
0.929548 + 0.368702i \(0.120198\pi\)
\(822\) 0 0
\(823\) −25.6211 −0.893096 −0.446548 0.894760i \(-0.647347\pi\)
−0.446548 + 0.894760i \(0.647347\pi\)
\(824\) 0 0
\(825\) 0.516795 0.0179925
\(826\) 0 0
\(827\) −48.4058 −1.68323 −0.841617 0.540075i \(-0.818396\pi\)
−0.841617 + 0.540075i \(0.818396\pi\)
\(828\) 0 0
\(829\) −31.3193 −1.08776 −0.543882 0.839162i \(-0.683046\pi\)
−0.543882 + 0.839162i \(0.683046\pi\)
\(830\) 0 0
\(831\) 3.33292 0.115618
\(832\) 0 0
\(833\) 13.6976 0.474595
\(834\) 0 0
\(835\) −19.4740 −0.673925
\(836\) 0 0
\(837\) 21.0334 0.727021
\(838\) 0 0
\(839\) −9.41029 −0.324879 −0.162440 0.986718i \(-0.551936\pi\)
−0.162440 + 0.986718i \(0.551936\pi\)
\(840\) 0 0
\(841\) 15.0442 0.518767
\(842\) 0 0
\(843\) 1.20895 0.0416386
\(844\) 0 0
\(845\) −10.3332 −0.355473
\(846\) 0 0
\(847\) −4.83161 −0.166016
\(848\) 0 0
\(849\) 5.67325 0.194705
\(850\) 0 0
\(851\) −4.12088 −0.141262
\(852\) 0 0
\(853\) −32.7849 −1.12253 −0.561267 0.827635i \(-0.689686\pi\)
−0.561267 + 0.827635i \(0.689686\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.92426 0.0998910 0.0499455 0.998752i \(-0.484095\pi\)
0.0499455 + 0.998752i \(0.484095\pi\)
\(858\) 0 0
\(859\) 33.9214 1.15738 0.578692 0.815546i \(-0.303563\pi\)
0.578692 + 0.815546i \(0.303563\pi\)
\(860\) 0 0
\(861\) −4.58648 −0.156307
\(862\) 0 0
\(863\) −27.6833 −0.942349 −0.471175 0.882040i \(-0.656170\pi\)
−0.471175 + 0.882040i \(0.656170\pi\)
\(864\) 0 0
\(865\) 18.2414 0.620227
\(866\) 0 0
\(867\) −5.09117 −0.172905
\(868\) 0 0
\(869\) −53.4857 −1.81438
\(870\) 0 0
\(871\) −14.2251 −0.482001
\(872\) 0 0
\(873\) 44.4720 1.50515
\(874\) 0 0
\(875\) −35.6265 −1.20440
\(876\) 0 0
\(877\) 43.3391 1.46346 0.731729 0.681596i \(-0.238714\pi\)
0.731729 + 0.681596i \(0.238714\pi\)
\(878\) 0 0
\(879\) 3.89015 0.131211
\(880\) 0 0
\(881\) 30.0478 1.01234 0.506169 0.862435i \(-0.331061\pi\)
0.506169 + 0.862435i \(0.331061\pi\)
\(882\) 0 0
\(883\) 0.506518 0.0170457 0.00852284 0.999964i \(-0.497287\pi\)
0.00852284 + 0.999964i \(0.497287\pi\)
\(884\) 0 0
\(885\) −2.09964 −0.0705786
\(886\) 0 0
\(887\) 4.92764 0.165454 0.0827269 0.996572i \(-0.473637\pi\)
0.0827269 + 0.996572i \(0.473637\pi\)
\(888\) 0 0
\(889\) 24.7000 0.828412
\(890\) 0 0
\(891\) 28.0585 0.939995
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −33.0111 −1.10344
\(896\) 0 0
\(897\) 3.09413 0.103310
\(898\) 0 0
\(899\) −67.8769 −2.26382
\(900\) 0 0
\(901\) −11.0299 −0.367460
\(902\) 0 0
\(903\) −8.91953 −0.296823
\(904\) 0 0
\(905\) 42.9707 1.42839
\(906\) 0 0
\(907\) −53.8523 −1.78814 −0.894068 0.447931i \(-0.852161\pi\)
−0.894068 + 0.447931i \(0.852161\pi\)
\(908\) 0 0
\(909\) 23.3609 0.774830
\(910\) 0 0
\(911\) 10.9372 0.362366 0.181183 0.983449i \(-0.442007\pi\)
0.181183 + 0.983449i \(0.442007\pi\)
\(912\) 0 0
\(913\) 36.5737 1.21041
\(914\) 0 0
\(915\) −6.64164 −0.219566
\(916\) 0 0
\(917\) −57.0391 −1.88360
\(918\) 0 0
\(919\) −20.2410 −0.667690 −0.333845 0.942628i \(-0.608346\pi\)
−0.333845 + 0.942628i \(0.608346\pi\)
\(920\) 0 0
\(921\) 7.12707 0.234845
\(922\) 0 0
\(923\) −44.4116 −1.46183
\(924\) 0 0
\(925\) −0.819576 −0.0269475
\(926\) 0 0
\(927\) 23.5958 0.774989
\(928\) 0 0
\(929\) −2.35458 −0.0772511 −0.0386256 0.999254i \(-0.512298\pi\)
−0.0386256 + 0.999254i \(0.512298\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 3.16258 0.103538
\(934\) 0 0
\(935\) −42.6397 −1.39447
\(936\) 0 0
\(937\) −17.5300 −0.572682 −0.286341 0.958128i \(-0.592439\pi\)
−0.286341 + 0.958128i \(0.592439\pi\)
\(938\) 0 0
\(939\) 11.2704 0.367797
\(940\) 0 0
\(941\) 33.9869 1.10794 0.553970 0.832537i \(-0.313112\pi\)
0.553970 + 0.832537i \(0.313112\pi\)
\(942\) 0 0
\(943\) 8.93640 0.291009
\(944\) 0 0
\(945\) 13.5264 0.440014
\(946\) 0 0
\(947\) 24.4863 0.795698 0.397849 0.917451i \(-0.369757\pi\)
0.397849 + 0.917451i \(0.369757\pi\)
\(948\) 0 0
\(949\) 51.1148 1.65926
\(950\) 0 0
\(951\) 1.61589 0.0523989
\(952\) 0 0
\(953\) −0.147011 −0.00476217 −0.00238108 0.999997i \(-0.500758\pi\)
−0.00238108 + 0.999997i \(0.500758\pi\)
\(954\) 0 0
\(955\) 19.6760 0.636700
\(956\) 0 0
\(957\) 8.23365 0.266156
\(958\) 0 0
\(959\) 65.2731 2.10778
\(960\) 0 0
\(961\) 73.6057 2.37438
\(962\) 0 0
\(963\) 43.2086 1.39238
\(964\) 0 0
\(965\) −35.0053 −1.12686
\(966\) 0 0
\(967\) −29.7502 −0.956703 −0.478352 0.878168i \(-0.658766\pi\)
−0.478352 + 0.878168i \(0.658766\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10.3461 0.332022 0.166011 0.986124i \(-0.446911\pi\)
0.166011 + 0.986124i \(0.446911\pi\)
\(972\) 0 0
\(973\) −42.9947 −1.37835
\(974\) 0 0
\(975\) 0.615373 0.0197077
\(976\) 0 0
\(977\) 51.6163 1.65135 0.825676 0.564145i \(-0.190794\pi\)
0.825676 + 0.564145i \(0.190794\pi\)
\(978\) 0 0
\(979\) 23.2716 0.743763
\(980\) 0 0
\(981\) 27.5573 0.879837
\(982\) 0 0
\(983\) 35.0087 1.11661 0.558303 0.829637i \(-0.311453\pi\)
0.558303 + 0.829637i \(0.311453\pi\)
\(984\) 0 0
\(985\) −7.61207 −0.242541
\(986\) 0 0
\(987\) 8.56541 0.272640
\(988\) 0 0
\(989\) 17.3790 0.552620
\(990\) 0 0
\(991\) 29.7904 0.946322 0.473161 0.880976i \(-0.343113\pi\)
0.473161 + 0.880976i \(0.343113\pi\)
\(992\) 0 0
\(993\) −11.6566 −0.369910
\(994\) 0 0
\(995\) 10.3319 0.327543
\(996\) 0 0
\(997\) 13.5185 0.428135 0.214067 0.976819i \(-0.431329\pi\)
0.214067 + 0.976819i \(0.431329\pi\)
\(998\) 0 0
\(999\) 4.04623 0.128017
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.v.1.5 8
4.3 odd 2 5776.2.a.cc.1.4 8
19.18 odd 2 2888.2.a.w.1.4 yes 8
76.75 even 2 5776.2.a.ca.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.v.1.5 8 1.1 even 1 trivial
2888.2.a.w.1.4 yes 8 19.18 odd 2
5776.2.a.ca.1.5 8 76.75 even 2
5776.2.a.cc.1.4 8 4.3 odd 2