Properties

Label 2888.2.a.v.1.3
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-6,0,-2,0,-2,0,2,0,12,0,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.10564000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 14x^{5} + 24x^{4} - 28x^{3} - 21x^{2} + 16x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.26814\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.26814 q^{3} +2.03239 q^{5} +4.86584 q^{7} +2.14447 q^{9} +0.629774 q^{11} -0.799892 q^{13} -4.60975 q^{15} -4.64783 q^{17} -11.0364 q^{21} -8.96303 q^{23} -0.869391 q^{25} +1.94047 q^{27} -6.31239 q^{29} -9.70568 q^{31} -1.42842 q^{33} +9.88928 q^{35} -8.43373 q^{37} +1.81427 q^{39} -5.66039 q^{41} -3.80014 q^{43} +4.35840 q^{45} +4.01565 q^{47} +16.6764 q^{49} +10.5419 q^{51} +1.25618 q^{53} +1.27995 q^{55} +10.2732 q^{59} -13.5642 q^{61} +10.4346 q^{63} -1.62569 q^{65} -1.26315 q^{67} +20.3294 q^{69} +8.22911 q^{71} -6.77791 q^{73} +1.97190 q^{75} +3.06438 q^{77} -6.88668 q^{79} -10.8347 q^{81} -0.202623 q^{83} -9.44620 q^{85} +14.3174 q^{87} +7.54055 q^{89} -3.89214 q^{91} +22.0139 q^{93} -11.0607 q^{97} +1.35053 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} - 2 q^{5} - 2 q^{7} + 2 q^{9} + 12 q^{11} - 6 q^{13} - 10 q^{17} + 4 q^{21} - 12 q^{23} + 2 q^{25} - 12 q^{27} - 18 q^{29} - 14 q^{31} - 40 q^{33} + 18 q^{35} - 16 q^{37} + 28 q^{39} - 12 q^{41}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.26814 −1.30951 −0.654756 0.755840i \(-0.727229\pi\)
−0.654756 + 0.755840i \(0.727229\pi\)
\(4\) 0 0
\(5\) 2.03239 0.908912 0.454456 0.890769i \(-0.349834\pi\)
0.454456 + 0.890769i \(0.349834\pi\)
\(6\) 0 0
\(7\) 4.86584 1.83911 0.919556 0.392958i \(-0.128548\pi\)
0.919556 + 0.392958i \(0.128548\pi\)
\(8\) 0 0
\(9\) 2.14447 0.714823
\(10\) 0 0
\(11\) 0.629774 0.189884 0.0949420 0.995483i \(-0.469733\pi\)
0.0949420 + 0.995483i \(0.469733\pi\)
\(12\) 0 0
\(13\) −0.799892 −0.221850 −0.110925 0.993829i \(-0.535381\pi\)
−0.110925 + 0.993829i \(0.535381\pi\)
\(14\) 0 0
\(15\) −4.60975 −1.19023
\(16\) 0 0
\(17\) −4.64783 −1.12726 −0.563632 0.826026i \(-0.690596\pi\)
−0.563632 + 0.826026i \(0.690596\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −11.0364 −2.40834
\(22\) 0 0
\(23\) −8.96303 −1.86892 −0.934460 0.356068i \(-0.884117\pi\)
−0.934460 + 0.356068i \(0.884117\pi\)
\(24\) 0 0
\(25\) −0.869391 −0.173878
\(26\) 0 0
\(27\) 1.94047 0.373443
\(28\) 0 0
\(29\) −6.31239 −1.17218 −0.586091 0.810246i \(-0.699334\pi\)
−0.586091 + 0.810246i \(0.699334\pi\)
\(30\) 0 0
\(31\) −9.70568 −1.74319 −0.871596 0.490225i \(-0.836915\pi\)
−0.871596 + 0.490225i \(0.836915\pi\)
\(32\) 0 0
\(33\) −1.42842 −0.248655
\(34\) 0 0
\(35\) 9.88928 1.67159
\(36\) 0 0
\(37\) −8.43373 −1.38650 −0.693249 0.720699i \(-0.743821\pi\)
−0.693249 + 0.720699i \(0.743821\pi\)
\(38\) 0 0
\(39\) 1.81427 0.290516
\(40\) 0 0
\(41\) −5.66039 −0.884004 −0.442002 0.897014i \(-0.645732\pi\)
−0.442002 + 0.897014i \(0.645732\pi\)
\(42\) 0 0
\(43\) −3.80014 −0.579517 −0.289758 0.957100i \(-0.593575\pi\)
−0.289758 + 0.957100i \(0.593575\pi\)
\(44\) 0 0
\(45\) 4.35840 0.649711
\(46\) 0 0
\(47\) 4.01565 0.585743 0.292872 0.956152i \(-0.405389\pi\)
0.292872 + 0.956152i \(0.405389\pi\)
\(48\) 0 0
\(49\) 16.6764 2.38234
\(50\) 0 0
\(51\) 10.5419 1.47617
\(52\) 0 0
\(53\) 1.25618 0.172549 0.0862745 0.996271i \(-0.472504\pi\)
0.0862745 + 0.996271i \(0.472504\pi\)
\(54\) 0 0
\(55\) 1.27995 0.172588
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.2732 1.33746 0.668729 0.743506i \(-0.266838\pi\)
0.668729 + 0.743506i \(0.266838\pi\)
\(60\) 0 0
\(61\) −13.5642 −1.73672 −0.868360 0.495935i \(-0.834825\pi\)
−0.868360 + 0.495935i \(0.834825\pi\)
\(62\) 0 0
\(63\) 10.4346 1.31464
\(64\) 0 0
\(65\) −1.62569 −0.201642
\(66\) 0 0
\(67\) −1.26315 −0.154318 −0.0771590 0.997019i \(-0.524585\pi\)
−0.0771590 + 0.997019i \(0.524585\pi\)
\(68\) 0 0
\(69\) 20.3294 2.44737
\(70\) 0 0
\(71\) 8.22911 0.976616 0.488308 0.872671i \(-0.337614\pi\)
0.488308 + 0.872671i \(0.337614\pi\)
\(72\) 0 0
\(73\) −6.77791 −0.793295 −0.396647 0.917971i \(-0.629826\pi\)
−0.396647 + 0.917971i \(0.629826\pi\)
\(74\) 0 0
\(75\) 1.97190 0.227696
\(76\) 0 0
\(77\) 3.06438 0.349218
\(78\) 0 0
\(79\) −6.88668 −0.774812 −0.387406 0.921909i \(-0.626629\pi\)
−0.387406 + 0.921909i \(0.626629\pi\)
\(80\) 0 0
\(81\) −10.8347 −1.20385
\(82\) 0 0
\(83\) −0.202623 −0.0222407 −0.0111204 0.999938i \(-0.503540\pi\)
−0.0111204 + 0.999938i \(0.503540\pi\)
\(84\) 0 0
\(85\) −9.44620 −1.02458
\(86\) 0 0
\(87\) 14.3174 1.53499
\(88\) 0 0
\(89\) 7.54055 0.799296 0.399648 0.916669i \(-0.369132\pi\)
0.399648 + 0.916669i \(0.369132\pi\)
\(90\) 0 0
\(91\) −3.89214 −0.408008
\(92\) 0 0
\(93\) 22.0139 2.28273
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.0607 −1.12304 −0.561520 0.827463i \(-0.689783\pi\)
−0.561520 + 0.827463i \(0.689783\pi\)
\(98\) 0 0
\(99\) 1.35053 0.135733
\(100\) 0 0
\(101\) −1.65818 −0.164995 −0.0824975 0.996591i \(-0.526290\pi\)
−0.0824975 + 0.996591i \(0.526290\pi\)
\(102\) 0 0
\(103\) −1.85589 −0.182867 −0.0914333 0.995811i \(-0.529145\pi\)
−0.0914333 + 0.995811i \(0.529145\pi\)
\(104\) 0 0
\(105\) −22.4303 −2.18897
\(106\) 0 0
\(107\) 14.8662 1.43717 0.718583 0.695441i \(-0.244791\pi\)
0.718583 + 0.695441i \(0.244791\pi\)
\(108\) 0 0
\(109\) −0.309512 −0.0296459 −0.0148229 0.999890i \(-0.504718\pi\)
−0.0148229 + 0.999890i \(0.504718\pi\)
\(110\) 0 0
\(111\) 19.1289 1.81564
\(112\) 0 0
\(113\) 4.95674 0.466291 0.233146 0.972442i \(-0.425098\pi\)
0.233146 + 0.972442i \(0.425098\pi\)
\(114\) 0 0
\(115\) −18.2164 −1.69868
\(116\) 0 0
\(117\) −1.71534 −0.158584
\(118\) 0 0
\(119\) −22.6156 −2.07316
\(120\) 0 0
\(121\) −10.6034 −0.963944
\(122\) 0 0
\(123\) 12.8386 1.15761
\(124\) 0 0
\(125\) −11.9289 −1.06695
\(126\) 0 0
\(127\) 1.51273 0.134233 0.0671165 0.997745i \(-0.478620\pi\)
0.0671165 + 0.997745i \(0.478620\pi\)
\(128\) 0 0
\(129\) 8.61927 0.758884
\(130\) 0 0
\(131\) 0.887697 0.0775584 0.0387792 0.999248i \(-0.487653\pi\)
0.0387792 + 0.999248i \(0.487653\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.94379 0.339427
\(136\) 0 0
\(137\) 0.826203 0.0705873 0.0352937 0.999377i \(-0.488763\pi\)
0.0352937 + 0.999377i \(0.488763\pi\)
\(138\) 0 0
\(139\) 19.4899 1.65311 0.826555 0.562856i \(-0.190297\pi\)
0.826555 + 0.562856i \(0.190297\pi\)
\(140\) 0 0
\(141\) −9.10807 −0.767038
\(142\) 0 0
\(143\) −0.503751 −0.0421258
\(144\) 0 0
\(145\) −12.8292 −1.06541
\(146\) 0 0
\(147\) −37.8243 −3.11970
\(148\) 0 0
\(149\) 9.48397 0.776957 0.388479 0.921458i \(-0.373001\pi\)
0.388479 + 0.921458i \(0.373001\pi\)
\(150\) 0 0
\(151\) 4.57575 0.372369 0.186185 0.982515i \(-0.440388\pi\)
0.186185 + 0.982515i \(0.440388\pi\)
\(152\) 0 0
\(153\) −9.96712 −0.805794
\(154\) 0 0
\(155\) −19.7257 −1.58441
\(156\) 0 0
\(157\) 4.20692 0.335749 0.167874 0.985808i \(-0.446310\pi\)
0.167874 + 0.985808i \(0.446310\pi\)
\(158\) 0 0
\(159\) −2.84919 −0.225955
\(160\) 0 0
\(161\) −43.6126 −3.43716
\(162\) 0 0
\(163\) −2.14191 −0.167767 −0.0838837 0.996476i \(-0.526732\pi\)
−0.0838837 + 0.996476i \(0.526732\pi\)
\(164\) 0 0
\(165\) −2.90310 −0.226006
\(166\) 0 0
\(167\) −7.92896 −0.613561 −0.306781 0.951780i \(-0.599252\pi\)
−0.306781 + 0.951780i \(0.599252\pi\)
\(168\) 0 0
\(169\) −12.3602 −0.950783
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.562006 −0.0427285 −0.0213643 0.999772i \(-0.506801\pi\)
−0.0213643 + 0.999772i \(0.506801\pi\)
\(174\) 0 0
\(175\) −4.23031 −0.319782
\(176\) 0 0
\(177\) −23.3011 −1.75142
\(178\) 0 0
\(179\) −2.71190 −0.202697 −0.101348 0.994851i \(-0.532316\pi\)
−0.101348 + 0.994851i \(0.532316\pi\)
\(180\) 0 0
\(181\) 21.0287 1.56305 0.781527 0.623872i \(-0.214441\pi\)
0.781527 + 0.623872i \(0.214441\pi\)
\(182\) 0 0
\(183\) 30.7656 2.27426
\(184\) 0 0
\(185\) −17.1406 −1.26020
\(186\) 0 0
\(187\) −2.92708 −0.214049
\(188\) 0 0
\(189\) 9.44199 0.686804
\(190\) 0 0
\(191\) 6.84240 0.495099 0.247550 0.968875i \(-0.420375\pi\)
0.247550 + 0.968875i \(0.420375\pi\)
\(192\) 0 0
\(193\) −15.9865 −1.15073 −0.575365 0.817897i \(-0.695140\pi\)
−0.575365 + 0.817897i \(0.695140\pi\)
\(194\) 0 0
\(195\) 3.68730 0.264053
\(196\) 0 0
\(197\) 19.6602 1.40073 0.700366 0.713784i \(-0.253020\pi\)
0.700366 + 0.713784i \(0.253020\pi\)
\(198\) 0 0
\(199\) 14.2790 1.01221 0.506107 0.862471i \(-0.331084\pi\)
0.506107 + 0.862471i \(0.331084\pi\)
\(200\) 0 0
\(201\) 2.86500 0.202081
\(202\) 0 0
\(203\) −30.7150 −2.15577
\(204\) 0 0
\(205\) −11.5041 −0.803482
\(206\) 0 0
\(207\) −19.2209 −1.33595
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.70444 −0.117339 −0.0586693 0.998277i \(-0.518686\pi\)
−0.0586693 + 0.998277i \(0.518686\pi\)
\(212\) 0 0
\(213\) −18.6648 −1.27889
\(214\) 0 0
\(215\) −7.72338 −0.526730
\(216\) 0 0
\(217\) −47.2262 −3.20593
\(218\) 0 0
\(219\) 15.3733 1.03883
\(220\) 0 0
\(221\) 3.71776 0.250084
\(222\) 0 0
\(223\) −13.8833 −0.929693 −0.464847 0.885391i \(-0.653891\pi\)
−0.464847 + 0.885391i \(0.653891\pi\)
\(224\) 0 0
\(225\) −1.86438 −0.124292
\(226\) 0 0
\(227\) 11.1983 0.743258 0.371629 0.928381i \(-0.378799\pi\)
0.371629 + 0.928381i \(0.378799\pi\)
\(228\) 0 0
\(229\) −22.9335 −1.51549 −0.757744 0.652552i \(-0.773698\pi\)
−0.757744 + 0.652552i \(0.773698\pi\)
\(230\) 0 0
\(231\) −6.95044 −0.457306
\(232\) 0 0
\(233\) 9.37923 0.614454 0.307227 0.951636i \(-0.400599\pi\)
0.307227 + 0.951636i \(0.400599\pi\)
\(234\) 0 0
\(235\) 8.16137 0.532389
\(236\) 0 0
\(237\) 15.6200 1.01463
\(238\) 0 0
\(239\) −15.4897 −1.00195 −0.500973 0.865463i \(-0.667024\pi\)
−0.500973 + 0.865463i \(0.667024\pi\)
\(240\) 0 0
\(241\) 21.1993 1.36557 0.682785 0.730620i \(-0.260769\pi\)
0.682785 + 0.730620i \(0.260769\pi\)
\(242\) 0 0
\(243\) 18.7531 1.20302
\(244\) 0 0
\(245\) 33.8929 2.16534
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.459577 0.0291245
\(250\) 0 0
\(251\) 14.0898 0.889340 0.444670 0.895694i \(-0.353321\pi\)
0.444670 + 0.895694i \(0.353321\pi\)
\(252\) 0 0
\(253\) −5.64468 −0.354878
\(254\) 0 0
\(255\) 21.4253 1.34171
\(256\) 0 0
\(257\) −10.8367 −0.675974 −0.337987 0.941151i \(-0.609746\pi\)
−0.337987 + 0.941151i \(0.609746\pi\)
\(258\) 0 0
\(259\) −41.0372 −2.54992
\(260\) 0 0
\(261\) −13.5367 −0.837902
\(262\) 0 0
\(263\) −10.4251 −0.642839 −0.321419 0.946937i \(-0.604160\pi\)
−0.321419 + 0.946937i \(0.604160\pi\)
\(264\) 0 0
\(265\) 2.55304 0.156832
\(266\) 0 0
\(267\) −17.1030 −1.04669
\(268\) 0 0
\(269\) −0.423672 −0.0258318 −0.0129159 0.999917i \(-0.504111\pi\)
−0.0129159 + 0.999917i \(0.504111\pi\)
\(270\) 0 0
\(271\) −19.2009 −1.16637 −0.583187 0.812338i \(-0.698195\pi\)
−0.583187 + 0.812338i \(0.698195\pi\)
\(272\) 0 0
\(273\) 8.82793 0.534291
\(274\) 0 0
\(275\) −0.547520 −0.0330167
\(276\) 0 0
\(277\) −12.2083 −0.733523 −0.366761 0.930315i \(-0.619533\pi\)
−0.366761 + 0.930315i \(0.619533\pi\)
\(278\) 0 0
\(279\) −20.8135 −1.24607
\(280\) 0 0
\(281\) −15.4949 −0.924346 −0.462173 0.886790i \(-0.652930\pi\)
−0.462173 + 0.886790i \(0.652930\pi\)
\(282\) 0 0
\(283\) 17.8134 1.05890 0.529448 0.848342i \(-0.322399\pi\)
0.529448 + 0.848342i \(0.322399\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −27.5425 −1.62578
\(288\) 0 0
\(289\) 4.60229 0.270723
\(290\) 0 0
\(291\) 25.0871 1.47063
\(292\) 0 0
\(293\) 20.9653 1.22481 0.612404 0.790545i \(-0.290202\pi\)
0.612404 + 0.790545i \(0.290202\pi\)
\(294\) 0 0
\(295\) 20.8792 1.21563
\(296\) 0 0
\(297\) 1.22206 0.0709109
\(298\) 0 0
\(299\) 7.16945 0.414620
\(300\) 0 0
\(301\) −18.4909 −1.06580
\(302\) 0 0
\(303\) 3.76098 0.216063
\(304\) 0 0
\(305\) −27.5678 −1.57853
\(306\) 0 0
\(307\) 0.237600 0.0135605 0.00678027 0.999977i \(-0.497842\pi\)
0.00678027 + 0.999977i \(0.497842\pi\)
\(308\) 0 0
\(309\) 4.20943 0.239466
\(310\) 0 0
\(311\) −26.9139 −1.52614 −0.763072 0.646313i \(-0.776310\pi\)
−0.763072 + 0.646313i \(0.776310\pi\)
\(312\) 0 0
\(313\) 1.73918 0.0983043 0.0491522 0.998791i \(-0.484348\pi\)
0.0491522 + 0.998791i \(0.484348\pi\)
\(314\) 0 0
\(315\) 21.2072 1.19489
\(316\) 0 0
\(317\) 16.9887 0.954179 0.477089 0.878855i \(-0.341692\pi\)
0.477089 + 0.878855i \(0.341692\pi\)
\(318\) 0 0
\(319\) −3.97538 −0.222578
\(320\) 0 0
\(321\) −33.7186 −1.88199
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0.695419 0.0385749
\(326\) 0 0
\(327\) 0.702017 0.0388216
\(328\) 0 0
\(329\) 19.5395 1.07725
\(330\) 0 0
\(331\) −11.9459 −0.656609 −0.328304 0.944572i \(-0.606477\pi\)
−0.328304 + 0.944572i \(0.606477\pi\)
\(332\) 0 0
\(333\) −18.0859 −0.991100
\(334\) 0 0
\(335\) −2.56721 −0.140261
\(336\) 0 0
\(337\) 24.2710 1.32212 0.661062 0.750331i \(-0.270106\pi\)
0.661062 + 0.750331i \(0.270106\pi\)
\(338\) 0 0
\(339\) −11.2426 −0.610614
\(340\) 0 0
\(341\) −6.11239 −0.331004
\(342\) 0 0
\(343\) 47.0836 2.54227
\(344\) 0 0
\(345\) 41.3173 2.22445
\(346\) 0 0
\(347\) 0.443192 0.0237918 0.0118959 0.999929i \(-0.496213\pi\)
0.0118959 + 0.999929i \(0.496213\pi\)
\(348\) 0 0
\(349\) −3.16489 −0.169413 −0.0847064 0.996406i \(-0.526995\pi\)
−0.0847064 + 0.996406i \(0.526995\pi\)
\(350\) 0 0
\(351\) −1.55216 −0.0828484
\(352\) 0 0
\(353\) −2.13050 −0.113395 −0.0566974 0.998391i \(-0.518057\pi\)
−0.0566974 + 0.998391i \(0.518057\pi\)
\(354\) 0 0
\(355\) 16.7248 0.887658
\(356\) 0 0
\(357\) 51.2953 2.71484
\(358\) 0 0
\(359\) 7.55493 0.398734 0.199367 0.979925i \(-0.436111\pi\)
0.199367 + 0.979925i \(0.436111\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 24.0500 1.26230
\(364\) 0 0
\(365\) −13.7754 −0.721035
\(366\) 0 0
\(367\) 11.9830 0.625507 0.312754 0.949834i \(-0.398749\pi\)
0.312754 + 0.949834i \(0.398749\pi\)
\(368\) 0 0
\(369\) −12.1385 −0.631906
\(370\) 0 0
\(371\) 6.11235 0.317337
\(372\) 0 0
\(373\) 13.4062 0.694145 0.347073 0.937838i \(-0.387176\pi\)
0.347073 + 0.937838i \(0.387176\pi\)
\(374\) 0 0
\(375\) 27.0564 1.39719
\(376\) 0 0
\(377\) 5.04923 0.260049
\(378\) 0 0
\(379\) −30.7731 −1.58071 −0.790355 0.612649i \(-0.790104\pi\)
−0.790355 + 0.612649i \(0.790104\pi\)
\(380\) 0 0
\(381\) −3.43108 −0.175780
\(382\) 0 0
\(383\) −16.1959 −0.827570 −0.413785 0.910375i \(-0.635793\pi\)
−0.413785 + 0.910375i \(0.635793\pi\)
\(384\) 0 0
\(385\) 6.22801 0.317409
\(386\) 0 0
\(387\) −8.14929 −0.414252
\(388\) 0 0
\(389\) 17.9684 0.911032 0.455516 0.890228i \(-0.349455\pi\)
0.455516 + 0.890228i \(0.349455\pi\)
\(390\) 0 0
\(391\) 41.6586 2.10677
\(392\) 0 0
\(393\) −2.01342 −0.101564
\(394\) 0 0
\(395\) −13.9964 −0.704237
\(396\) 0 0
\(397\) −12.1580 −0.610194 −0.305097 0.952321i \(-0.598689\pi\)
−0.305097 + 0.952321i \(0.598689\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.0990 1.40320 0.701598 0.712573i \(-0.252470\pi\)
0.701598 + 0.712573i \(0.252470\pi\)
\(402\) 0 0
\(403\) 7.76350 0.386727
\(404\) 0 0
\(405\) −22.0203 −1.09420
\(406\) 0 0
\(407\) −5.31135 −0.263274
\(408\) 0 0
\(409\) 7.46974 0.369355 0.184677 0.982799i \(-0.440876\pi\)
0.184677 + 0.982799i \(0.440876\pi\)
\(410\) 0 0
\(411\) −1.87395 −0.0924350
\(412\) 0 0
\(413\) 49.9878 2.45974
\(414\) 0 0
\(415\) −0.411808 −0.0202149
\(416\) 0 0
\(417\) −44.2058 −2.16477
\(418\) 0 0
\(419\) 28.3307 1.38405 0.692024 0.721875i \(-0.256719\pi\)
0.692024 + 0.721875i \(0.256719\pi\)
\(420\) 0 0
\(421\) 34.0098 1.65754 0.828769 0.559592i \(-0.189042\pi\)
0.828769 + 0.559592i \(0.189042\pi\)
\(422\) 0 0
\(423\) 8.61144 0.418703
\(424\) 0 0
\(425\) 4.04078 0.196006
\(426\) 0 0
\(427\) −66.0012 −3.19402
\(428\) 0 0
\(429\) 1.14258 0.0551643
\(430\) 0 0
\(431\) −25.4279 −1.22482 −0.612409 0.790541i \(-0.709799\pi\)
−0.612409 + 0.790541i \(0.709799\pi\)
\(432\) 0 0
\(433\) −13.4144 −0.644655 −0.322328 0.946628i \(-0.604465\pi\)
−0.322328 + 0.946628i \(0.604465\pi\)
\(434\) 0 0
\(435\) 29.0985 1.39517
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.51697 0.406493 0.203247 0.979128i \(-0.434851\pi\)
0.203247 + 0.979128i \(0.434851\pi\)
\(440\) 0 0
\(441\) 35.7619 1.70295
\(442\) 0 0
\(443\) −14.6107 −0.694177 −0.347088 0.937832i \(-0.612830\pi\)
−0.347088 + 0.937832i \(0.612830\pi\)
\(444\) 0 0
\(445\) 15.3253 0.726490
\(446\) 0 0
\(447\) −21.5110 −1.01744
\(448\) 0 0
\(449\) −4.09508 −0.193259 −0.0966293 0.995320i \(-0.530806\pi\)
−0.0966293 + 0.995320i \(0.530806\pi\)
\(450\) 0 0
\(451\) −3.56477 −0.167858
\(452\) 0 0
\(453\) −10.3784 −0.487622
\(454\) 0 0
\(455\) −7.91035 −0.370843
\(456\) 0 0
\(457\) 28.5352 1.33482 0.667410 0.744691i \(-0.267403\pi\)
0.667410 + 0.744691i \(0.267403\pi\)
\(458\) 0 0
\(459\) −9.01895 −0.420969
\(460\) 0 0
\(461\) 20.6494 0.961740 0.480870 0.876792i \(-0.340321\pi\)
0.480870 + 0.876792i \(0.340321\pi\)
\(462\) 0 0
\(463\) −15.1413 −0.703675 −0.351838 0.936061i \(-0.614443\pi\)
−0.351838 + 0.936061i \(0.614443\pi\)
\(464\) 0 0
\(465\) 44.7408 2.07480
\(466\) 0 0
\(467\) −33.9214 −1.56969 −0.784847 0.619689i \(-0.787259\pi\)
−0.784847 + 0.619689i \(0.787259\pi\)
\(468\) 0 0
\(469\) −6.14626 −0.283808
\(470\) 0 0
\(471\) −9.54190 −0.439667
\(472\) 0 0
\(473\) −2.39323 −0.110041
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.69383 0.123342
\(478\) 0 0
\(479\) −15.7155 −0.718061 −0.359030 0.933326i \(-0.616893\pi\)
−0.359030 + 0.933326i \(0.616893\pi\)
\(480\) 0 0
\(481\) 6.74608 0.307595
\(482\) 0 0
\(483\) 98.9196 4.50100
\(484\) 0 0
\(485\) −22.4796 −1.02074
\(486\) 0 0
\(487\) −21.5863 −0.978169 −0.489084 0.872236i \(-0.662669\pi\)
−0.489084 + 0.872236i \(0.662669\pi\)
\(488\) 0 0
\(489\) 4.85816 0.219694
\(490\) 0 0
\(491\) 28.4492 1.28389 0.641947 0.766749i \(-0.278127\pi\)
0.641947 + 0.766749i \(0.278127\pi\)
\(492\) 0 0
\(493\) 29.3389 1.32136
\(494\) 0 0
\(495\) 2.74481 0.123370
\(496\) 0 0
\(497\) 40.0415 1.79611
\(498\) 0 0
\(499\) 5.89187 0.263756 0.131878 0.991266i \(-0.457899\pi\)
0.131878 + 0.991266i \(0.457899\pi\)
\(500\) 0 0
\(501\) 17.9840 0.803466
\(502\) 0 0
\(503\) 21.8571 0.974560 0.487280 0.873246i \(-0.337989\pi\)
0.487280 + 0.873246i \(0.337989\pi\)
\(504\) 0 0
\(505\) −3.37007 −0.149966
\(506\) 0 0
\(507\) 28.0346 1.24506
\(508\) 0 0
\(509\) −7.15691 −0.317224 −0.158612 0.987341i \(-0.550702\pi\)
−0.158612 + 0.987341i \(0.550702\pi\)
\(510\) 0 0
\(511\) −32.9802 −1.45896
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.77190 −0.166210
\(516\) 0 0
\(517\) 2.52895 0.111223
\(518\) 0 0
\(519\) 1.27471 0.0559535
\(520\) 0 0
\(521\) 8.87178 0.388680 0.194340 0.980934i \(-0.437744\pi\)
0.194340 + 0.980934i \(0.437744\pi\)
\(522\) 0 0
\(523\) −19.2138 −0.840160 −0.420080 0.907487i \(-0.637998\pi\)
−0.420080 + 0.907487i \(0.637998\pi\)
\(524\) 0 0
\(525\) 9.59495 0.418758
\(526\) 0 0
\(527\) 45.1103 1.96504
\(528\) 0 0
\(529\) 57.3358 2.49286
\(530\) 0 0
\(531\) 22.0306 0.956046
\(532\) 0 0
\(533\) 4.52770 0.196116
\(534\) 0 0
\(535\) 30.2139 1.30626
\(536\) 0 0
\(537\) 6.15097 0.265434
\(538\) 0 0
\(539\) 10.5023 0.452368
\(540\) 0 0
\(541\) −3.67916 −0.158179 −0.0790897 0.996868i \(-0.525201\pi\)
−0.0790897 + 0.996868i \(0.525201\pi\)
\(542\) 0 0
\(543\) −47.6961 −2.04684
\(544\) 0 0
\(545\) −0.629049 −0.0269455
\(546\) 0 0
\(547\) −4.38138 −0.187334 −0.0936672 0.995604i \(-0.529859\pi\)
−0.0936672 + 0.995604i \(0.529859\pi\)
\(548\) 0 0
\(549\) −29.0880 −1.24145
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −33.5095 −1.42497
\(554\) 0 0
\(555\) 38.8774 1.65025
\(556\) 0 0
\(557\) −36.1073 −1.52992 −0.764959 0.644079i \(-0.777241\pi\)
−0.764959 + 0.644079i \(0.777241\pi\)
\(558\) 0 0
\(559\) 3.03971 0.128566
\(560\) 0 0
\(561\) 6.63903 0.280300
\(562\) 0 0
\(563\) −30.5369 −1.28698 −0.643488 0.765456i \(-0.722513\pi\)
−0.643488 + 0.765456i \(0.722513\pi\)
\(564\) 0 0
\(565\) 10.0740 0.423818
\(566\) 0 0
\(567\) −52.7197 −2.21402
\(568\) 0 0
\(569\) 18.7715 0.786942 0.393471 0.919337i \(-0.371274\pi\)
0.393471 + 0.919337i \(0.371274\pi\)
\(570\) 0 0
\(571\) 42.2926 1.76989 0.884945 0.465696i \(-0.154196\pi\)
0.884945 + 0.465696i \(0.154196\pi\)
\(572\) 0 0
\(573\) −15.5195 −0.648338
\(574\) 0 0
\(575\) 7.79237 0.324964
\(576\) 0 0
\(577\) −39.4541 −1.64249 −0.821247 0.570572i \(-0.806721\pi\)
−0.821247 + 0.570572i \(0.806721\pi\)
\(578\) 0 0
\(579\) 36.2596 1.50690
\(580\) 0 0
\(581\) −0.985928 −0.0409032
\(582\) 0 0
\(583\) 0.791107 0.0327643
\(584\) 0 0
\(585\) −3.48625 −0.144139
\(586\) 0 0
\(587\) 1.58742 0.0655196 0.0327598 0.999463i \(-0.489570\pi\)
0.0327598 + 0.999463i \(0.489570\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −44.5921 −1.83428
\(592\) 0 0
\(593\) −25.7532 −1.05756 −0.528779 0.848759i \(-0.677350\pi\)
−0.528779 + 0.848759i \(0.677350\pi\)
\(594\) 0 0
\(595\) −45.9636 −1.88433
\(596\) 0 0
\(597\) −32.3869 −1.32551
\(598\) 0 0
\(599\) 44.0105 1.79822 0.899109 0.437724i \(-0.144215\pi\)
0.899109 + 0.437724i \(0.144215\pi\)
\(600\) 0 0
\(601\) −5.99288 −0.244455 −0.122227 0.992502i \(-0.539004\pi\)
−0.122227 + 0.992502i \(0.539004\pi\)
\(602\) 0 0
\(603\) −2.70878 −0.110310
\(604\) 0 0
\(605\) −21.5502 −0.876141
\(606\) 0 0
\(607\) −11.2566 −0.456891 −0.228446 0.973557i \(-0.573364\pi\)
−0.228446 + 0.973557i \(0.573364\pi\)
\(608\) 0 0
\(609\) 69.6661 2.82301
\(610\) 0 0
\(611\) −3.21209 −0.129947
\(612\) 0 0
\(613\) −7.48695 −0.302395 −0.151198 0.988504i \(-0.548313\pi\)
−0.151198 + 0.988504i \(0.548313\pi\)
\(614\) 0 0
\(615\) 26.0930 1.05217
\(616\) 0 0
\(617\) −19.1951 −0.772765 −0.386383 0.922339i \(-0.626276\pi\)
−0.386383 + 0.922339i \(0.626276\pi\)
\(618\) 0 0
\(619\) −21.4504 −0.862165 −0.431082 0.902313i \(-0.641868\pi\)
−0.431082 + 0.902313i \(0.641868\pi\)
\(620\) 0 0
\(621\) −17.3925 −0.697935
\(622\) 0 0
\(623\) 36.6911 1.47000
\(624\) 0 0
\(625\) −19.8972 −0.795888
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 39.1985 1.56295
\(630\) 0 0
\(631\) 43.8325 1.74494 0.872472 0.488664i \(-0.162516\pi\)
0.872472 + 0.488664i \(0.162516\pi\)
\(632\) 0 0
\(633\) 3.86592 0.153656
\(634\) 0 0
\(635\) 3.07445 0.122006
\(636\) 0 0
\(637\) −13.3393 −0.528522
\(638\) 0 0
\(639\) 17.6471 0.698107
\(640\) 0 0
\(641\) −33.3519 −1.31732 −0.658661 0.752440i \(-0.728877\pi\)
−0.658661 + 0.752440i \(0.728877\pi\)
\(642\) 0 0
\(643\) 23.5928 0.930410 0.465205 0.885203i \(-0.345981\pi\)
0.465205 + 0.885203i \(0.345981\pi\)
\(644\) 0 0
\(645\) 17.5177 0.689759
\(646\) 0 0
\(647\) 4.78026 0.187931 0.0939657 0.995575i \(-0.470046\pi\)
0.0939657 + 0.995575i \(0.470046\pi\)
\(648\) 0 0
\(649\) 6.46980 0.253962
\(650\) 0 0
\(651\) 107.116 4.19820
\(652\) 0 0
\(653\) 46.1083 1.80436 0.902179 0.431363i \(-0.141967\pi\)
0.902179 + 0.431363i \(0.141967\pi\)
\(654\) 0 0
\(655\) 1.80415 0.0704938
\(656\) 0 0
\(657\) −14.5350 −0.567065
\(658\) 0 0
\(659\) 34.6130 1.34833 0.674165 0.738581i \(-0.264504\pi\)
0.674165 + 0.738581i \(0.264504\pi\)
\(660\) 0 0
\(661\) −26.8551 −1.04454 −0.522271 0.852780i \(-0.674915\pi\)
−0.522271 + 0.852780i \(0.674915\pi\)
\(662\) 0 0
\(663\) −8.43241 −0.327488
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 56.5781 2.19071
\(668\) 0 0
\(669\) 31.4892 1.21744
\(670\) 0 0
\(671\) −8.54239 −0.329775
\(672\) 0 0
\(673\) 6.83470 0.263458 0.131729 0.991286i \(-0.457947\pi\)
0.131729 + 0.991286i \(0.457947\pi\)
\(674\) 0 0
\(675\) −1.68702 −0.0649336
\(676\) 0 0
\(677\) −33.1909 −1.27563 −0.637815 0.770189i \(-0.720162\pi\)
−0.637815 + 0.770189i \(0.720162\pi\)
\(678\) 0 0
\(679\) −53.8193 −2.06540
\(680\) 0 0
\(681\) −25.3994 −0.973306
\(682\) 0 0
\(683\) −19.7485 −0.755657 −0.377829 0.925876i \(-0.623329\pi\)
−0.377829 + 0.925876i \(0.623329\pi\)
\(684\) 0 0
\(685\) 1.67917 0.0641577
\(686\) 0 0
\(687\) 52.0164 1.98455
\(688\) 0 0
\(689\) −1.00481 −0.0382800
\(690\) 0 0
\(691\) −31.9365 −1.21492 −0.607460 0.794350i \(-0.707812\pi\)
−0.607460 + 0.794350i \(0.707812\pi\)
\(692\) 0 0
\(693\) 6.57146 0.249629
\(694\) 0 0
\(695\) 39.6110 1.50253
\(696\) 0 0
\(697\) 26.3085 0.996506
\(698\) 0 0
\(699\) −21.2734 −0.804635
\(700\) 0 0
\(701\) −26.9241 −1.01691 −0.508454 0.861089i \(-0.669783\pi\)
−0.508454 + 0.861089i \(0.669783\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −18.5111 −0.697170
\(706\) 0 0
\(707\) −8.06842 −0.303444
\(708\) 0 0
\(709\) −20.3773 −0.765286 −0.382643 0.923896i \(-0.624986\pi\)
−0.382643 + 0.923896i \(0.624986\pi\)
\(710\) 0 0
\(711\) −14.7683 −0.553854
\(712\) 0 0
\(713\) 86.9923 3.25789
\(714\) 0 0
\(715\) −1.02382 −0.0382887
\(716\) 0 0
\(717\) 35.1328 1.31206
\(718\) 0 0
\(719\) −12.3258 −0.459675 −0.229837 0.973229i \(-0.573819\pi\)
−0.229837 + 0.973229i \(0.573819\pi\)
\(720\) 0 0
\(721\) −9.03047 −0.336312
\(722\) 0 0
\(723\) −48.0831 −1.78823
\(724\) 0 0
\(725\) 5.48793 0.203817
\(726\) 0 0
\(727\) −25.2787 −0.937535 −0.468767 0.883322i \(-0.655302\pi\)
−0.468767 + 0.883322i \(0.655302\pi\)
\(728\) 0 0
\(729\) −10.0308 −0.371512
\(730\) 0 0
\(731\) 17.6624 0.653268
\(732\) 0 0
\(733\) −2.52985 −0.0934421 −0.0467210 0.998908i \(-0.514877\pi\)
−0.0467210 + 0.998908i \(0.514877\pi\)
\(734\) 0 0
\(735\) −76.8738 −2.83553
\(736\) 0 0
\(737\) −0.795497 −0.0293025
\(738\) 0 0
\(739\) −9.54456 −0.351102 −0.175551 0.984470i \(-0.556171\pi\)
−0.175551 + 0.984470i \(0.556171\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.3100 0.598357 0.299178 0.954197i \(-0.403287\pi\)
0.299178 + 0.954197i \(0.403287\pi\)
\(744\) 0 0
\(745\) 19.2751 0.706186
\(746\) 0 0
\(747\) −0.434518 −0.0158982
\(748\) 0 0
\(749\) 72.3363 2.64311
\(750\) 0 0
\(751\) −10.2920 −0.375562 −0.187781 0.982211i \(-0.560129\pi\)
−0.187781 + 0.982211i \(0.560129\pi\)
\(752\) 0 0
\(753\) −31.9577 −1.16460
\(754\) 0 0
\(755\) 9.29971 0.338451
\(756\) 0 0
\(757\) −8.09240 −0.294123 −0.147062 0.989127i \(-0.546982\pi\)
−0.147062 + 0.989127i \(0.546982\pi\)
\(758\) 0 0
\(759\) 12.8029 0.464717
\(760\) 0 0
\(761\) −22.3727 −0.811008 −0.405504 0.914093i \(-0.632904\pi\)
−0.405504 + 0.914093i \(0.632904\pi\)
\(762\) 0 0
\(763\) −1.50603 −0.0545221
\(764\) 0 0
\(765\) −20.2571 −0.732396
\(766\) 0 0
\(767\) −8.21746 −0.296715
\(768\) 0 0
\(769\) −21.6013 −0.778961 −0.389481 0.921035i \(-0.627346\pi\)
−0.389481 + 0.921035i \(0.627346\pi\)
\(770\) 0 0
\(771\) 24.5792 0.885197
\(772\) 0 0
\(773\) −50.6542 −1.82190 −0.910952 0.412513i \(-0.864651\pi\)
−0.910952 + 0.412513i \(0.864651\pi\)
\(774\) 0 0
\(775\) 8.43803 0.303103
\(776\) 0 0
\(777\) 93.0781 3.33916
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 5.18248 0.185444
\(782\) 0 0
\(783\) −12.2490 −0.437743
\(784\) 0 0
\(785\) 8.55010 0.305166
\(786\) 0 0
\(787\) −46.3223 −1.65121 −0.825605 0.564248i \(-0.809166\pi\)
−0.825605 + 0.564248i \(0.809166\pi\)
\(788\) 0 0
\(789\) 23.6456 0.841805
\(790\) 0 0
\(791\) 24.1187 0.857562
\(792\) 0 0
\(793\) 10.8499 0.385291
\(794\) 0 0
\(795\) −5.79066 −0.205373
\(796\) 0 0
\(797\) −0.926931 −0.0328336 −0.0164168 0.999865i \(-0.505226\pi\)
−0.0164168 + 0.999865i \(0.505226\pi\)
\(798\) 0 0
\(799\) −18.6641 −0.660287
\(800\) 0 0
\(801\) 16.1705 0.571355
\(802\) 0 0
\(803\) −4.26855 −0.150634
\(804\) 0 0
\(805\) −88.6378 −3.12407
\(806\) 0 0
\(807\) 0.960949 0.0338270
\(808\) 0 0
\(809\) −46.1715 −1.62330 −0.811651 0.584142i \(-0.801431\pi\)
−0.811651 + 0.584142i \(0.801431\pi\)
\(810\) 0 0
\(811\) 22.9121 0.804552 0.402276 0.915518i \(-0.368219\pi\)
0.402276 + 0.915518i \(0.368219\pi\)
\(812\) 0 0
\(813\) 43.5505 1.52738
\(814\) 0 0
\(815\) −4.35320 −0.152486
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −8.34658 −0.291653
\(820\) 0 0
\(821\) −10.2391 −0.357348 −0.178674 0.983908i \(-0.557181\pi\)
−0.178674 + 0.983908i \(0.557181\pi\)
\(822\) 0 0
\(823\) −2.87285 −0.100141 −0.0500706 0.998746i \(-0.515945\pi\)
−0.0500706 + 0.998746i \(0.515945\pi\)
\(824\) 0 0
\(825\) 1.24185 0.0432358
\(826\) 0 0
\(827\) −35.2840 −1.22695 −0.613473 0.789716i \(-0.710228\pi\)
−0.613473 + 0.789716i \(0.710228\pi\)
\(828\) 0 0
\(829\) −35.9700 −1.24929 −0.624645 0.780909i \(-0.714756\pi\)
−0.624645 + 0.780909i \(0.714756\pi\)
\(830\) 0 0
\(831\) 27.6901 0.960557
\(832\) 0 0
\(833\) −77.5088 −2.68552
\(834\) 0 0
\(835\) −16.1147 −0.557674
\(836\) 0 0
\(837\) −18.8335 −0.650983
\(838\) 0 0
\(839\) 2.76020 0.0952925 0.0476463 0.998864i \(-0.484828\pi\)
0.0476463 + 0.998864i \(0.484828\pi\)
\(840\) 0 0
\(841\) 10.8462 0.374008
\(842\) 0 0
\(843\) 35.1445 1.21044
\(844\) 0 0
\(845\) −25.1207 −0.864178
\(846\) 0 0
\(847\) −51.5943 −1.77280
\(848\) 0 0
\(849\) −40.4033 −1.38664
\(850\) 0 0
\(851\) 75.5918 2.59125
\(852\) 0 0
\(853\) −3.61671 −0.123834 −0.0619169 0.998081i \(-0.519721\pi\)
−0.0619169 + 0.998081i \(0.519721\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.3716 −0.422607 −0.211303 0.977421i \(-0.567771\pi\)
−0.211303 + 0.977421i \(0.567771\pi\)
\(858\) 0 0
\(859\) 34.2618 1.16900 0.584498 0.811395i \(-0.301291\pi\)
0.584498 + 0.811395i \(0.301291\pi\)
\(860\) 0 0
\(861\) 62.4703 2.12898
\(862\) 0 0
\(863\) −46.0895 −1.56890 −0.784452 0.620189i \(-0.787056\pi\)
−0.784452 + 0.620189i \(0.787056\pi\)
\(864\) 0 0
\(865\) −1.14221 −0.0388365
\(866\) 0 0
\(867\) −10.4386 −0.354515
\(868\) 0 0
\(869\) −4.33705 −0.147124
\(870\) 0 0
\(871\) 1.01038 0.0342355
\(872\) 0 0
\(873\) −23.7192 −0.802774
\(874\) 0 0
\(875\) −58.0440 −1.96225
\(876\) 0 0
\(877\) −36.9338 −1.24716 −0.623582 0.781758i \(-0.714323\pi\)
−0.623582 + 0.781758i \(0.714323\pi\)
\(878\) 0 0
\(879\) −47.5524 −1.60390
\(880\) 0 0
\(881\) −3.86180 −0.130107 −0.0650537 0.997882i \(-0.520722\pi\)
−0.0650537 + 0.997882i \(0.520722\pi\)
\(882\) 0 0
\(883\) −12.9747 −0.436634 −0.218317 0.975878i \(-0.570057\pi\)
−0.218317 + 0.975878i \(0.570057\pi\)
\(884\) 0 0
\(885\) −47.3570 −1.59189
\(886\) 0 0
\(887\) 14.7714 0.495974 0.247987 0.968763i \(-0.420231\pi\)
0.247987 + 0.968763i \(0.420231\pi\)
\(888\) 0 0
\(889\) 7.36069 0.246870
\(890\) 0 0
\(891\) −6.82339 −0.228592
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −5.51163 −0.184234
\(896\) 0 0
\(897\) −16.2613 −0.542950
\(898\) 0 0
\(899\) 61.2660 2.04334
\(900\) 0 0
\(901\) −5.83849 −0.194508
\(902\) 0 0
\(903\) 41.9399 1.39567
\(904\) 0 0
\(905\) 42.7386 1.42068
\(906\) 0 0
\(907\) 7.73977 0.256995 0.128497 0.991710i \(-0.458985\pi\)
0.128497 + 0.991710i \(0.458985\pi\)
\(908\) 0 0
\(909\) −3.55591 −0.117942
\(910\) 0 0
\(911\) 48.5235 1.60766 0.803828 0.594862i \(-0.202793\pi\)
0.803828 + 0.594862i \(0.202793\pi\)
\(912\) 0 0
\(913\) −0.127606 −0.00422316
\(914\) 0 0
\(915\) 62.5276 2.06710
\(916\) 0 0
\(917\) 4.31939 0.142639
\(918\) 0 0
\(919\) −7.35044 −0.242469 −0.121234 0.992624i \(-0.538685\pi\)
−0.121234 + 0.992624i \(0.538685\pi\)
\(920\) 0 0
\(921\) −0.538911 −0.0177577
\(922\) 0 0
\(923\) −6.58240 −0.216662
\(924\) 0 0
\(925\) 7.33221 0.241082
\(926\) 0 0
\(927\) −3.97990 −0.130717
\(928\) 0 0
\(929\) 46.6758 1.53138 0.765691 0.643208i \(-0.222397\pi\)
0.765691 + 0.643208i \(0.222397\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 61.0444 1.99851
\(934\) 0 0
\(935\) −5.94897 −0.194552
\(936\) 0 0
\(937\) −4.78745 −0.156399 −0.0781995 0.996938i \(-0.524917\pi\)
−0.0781995 + 0.996938i \(0.524917\pi\)
\(938\) 0 0
\(939\) −3.94471 −0.128731
\(940\) 0 0
\(941\) −4.27902 −0.139492 −0.0697460 0.997565i \(-0.522219\pi\)
−0.0697460 + 0.997565i \(0.522219\pi\)
\(942\) 0 0
\(943\) 50.7342 1.65213
\(944\) 0 0
\(945\) 19.1898 0.624245
\(946\) 0 0
\(947\) −53.5099 −1.73884 −0.869419 0.494075i \(-0.835507\pi\)
−0.869419 + 0.494075i \(0.835507\pi\)
\(948\) 0 0
\(949\) 5.42160 0.175993
\(950\) 0 0
\(951\) −38.5327 −1.24951
\(952\) 0 0
\(953\) −43.2210 −1.40007 −0.700033 0.714111i \(-0.746831\pi\)
−0.700033 + 0.714111i \(0.746831\pi\)
\(954\) 0 0
\(955\) 13.9064 0.450002
\(956\) 0 0
\(957\) 9.01672 0.291469
\(958\) 0 0
\(959\) 4.02017 0.129818
\(960\) 0 0
\(961\) 63.2002 2.03872
\(962\) 0 0
\(963\) 31.8800 1.02732
\(964\) 0 0
\(965\) −32.4907 −1.04591
\(966\) 0 0
\(967\) −23.9680 −0.770758 −0.385379 0.922758i \(-0.625929\pi\)
−0.385379 + 0.922758i \(0.625929\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.8145 0.571696 0.285848 0.958275i \(-0.407725\pi\)
0.285848 + 0.958275i \(0.407725\pi\)
\(972\) 0 0
\(973\) 94.8346 3.04026
\(974\) 0 0
\(975\) −1.57731 −0.0505143
\(976\) 0 0
\(977\) −19.0026 −0.607947 −0.303973 0.952681i \(-0.598313\pi\)
−0.303973 + 0.952681i \(0.598313\pi\)
\(978\) 0 0
\(979\) 4.74884 0.151774
\(980\) 0 0
\(981\) −0.663739 −0.0211916
\(982\) 0 0
\(983\) 4.08920 0.130425 0.0652126 0.997871i \(-0.479227\pi\)
0.0652126 + 0.997871i \(0.479227\pi\)
\(984\) 0 0
\(985\) 39.9572 1.27314
\(986\) 0 0
\(987\) −44.3184 −1.41067
\(988\) 0 0
\(989\) 34.0608 1.08307
\(990\) 0 0
\(991\) 43.6388 1.38623 0.693115 0.720827i \(-0.256238\pi\)
0.693115 + 0.720827i \(0.256238\pi\)
\(992\) 0 0
\(993\) 27.0951 0.859837
\(994\) 0 0
\(995\) 29.0206 0.920014
\(996\) 0 0
\(997\) −46.7001 −1.47901 −0.739504 0.673152i \(-0.764940\pi\)
−0.739504 + 0.673152i \(0.764940\pi\)
\(998\) 0 0
\(999\) −16.3654 −0.517778
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.v.1.3 8
4.3 odd 2 5776.2.a.cc.1.6 8
19.18 odd 2 2888.2.a.w.1.6 yes 8
76.75 even 2 5776.2.a.ca.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2888.2.a.v.1.3 8 1.1 even 1 trivial
2888.2.a.w.1.6 yes 8 19.18 odd 2
5776.2.a.ca.1.3 8 76.75 even 2
5776.2.a.cc.1.6 8 4.3 odd 2